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Abstract
In finite probability theory, the only probability zero event is the impossible one, but in standard Kolmogorov probability 
theory, probability zero events occur all the time. Prominent logicians, probability experts and philosophers of probability, 
including Carnap, Kemeny, Shimony, Savage, De Finetti, Jeffrey, have successfully argued that a sound probability should 
be regular, that is, only the impossible event should have zero probability. This intuition is shared by physicists too. Totality 
is another desideratum which means that every event should be assigned a probability. Regularity and totality are achievable 
in rigorous mathematical terms even for infinite events via hyper-reals valued probabilities. While the mathematics of these 
theories is not objectionable, some philosophical arguments purport to show that infinitesimal probabilities are inherently 
problematic. In this paper, we present a simpler and natural construction—based on Sergeyev’s calculus with Grossone 
(in a formalism inspired by Lolli) enriched with infinitesimals—of a regular, total, finitely additive, uniformly distributed 
probability on infinite sets of positive integers. These probability spaces—which are inspired by and parallels the construc-
tion of classical probability—will be briefly studied. In this framework, De Finetti fair lottery has the natural solution and 
Williamson’s objections against infinitesimal probabilities are mathematically refuted.
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Introduction

The gap between finite and infinite probabilities has been 
highlighted by probability zero events since the Kolmogorov 
axiomatic has been proposed, see [1].

The standard probability theory is a mathematically rigor-
ous, consistent theory with an immense range of applications 
which demonstrate its usefulness in modelling many situa-
tions in the physical world [2]. However, there are infinite 
probabilistic scenarios that cannot be described in a satis-
factory way in terms of this theory. One example is the De 

Finetti fair lottery in which draws are taken from the infinite 
set {1, 2, 3,…} with equal non-zero probability.

In this paper, we use Grossone [3–6] in a formalism 
inspired by Lolli [7] to construct and study a class of infini-
tesimal probabilities. We prove that these probabilities sat-
isfy the properties regularity, totality, perfect additivity and 
weak Laplaceanity discussed in Benci et al. [1], provide the 
natural solution to De Finetti infinite fair lottery, William-
son’s objections [8] against infinitesimal probabilities are 
mathematically refuted.

In what follows ℕ is the set of positive integers, ℝ is the 
set of reals, the power set of X is denoted by P(X) and the 
number of elements of a finite set is indicated by #.

In Sects.  2 and 3 we present random events, classical 
probabilities, Kolmogorov axioms and natural probability 
desiderata. Section 4 is a brief informal presentation of 
Grossone which is followed by Lolli’s formalism in Sect. 5. 
De Finetti’s infinite lottery is discussed in Sect. 6. The main 
Sect. 7 is devoted to Grossone-like uniform probability 
spaces. The last two Sects. 8 and 9 are dedicated to non-
uniform Grossone probabilities and conclusions.
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Random Events and Classical Probabilities

Informally, a random experiment E  (process/variable) is an 
experiment that is not and cannot be made exact and, con-
sequently, its outcomes cannot be predicted. Carrying out a 
random experiment is called a trial. An outcome obtained 
as a result of a trial is called an elementary event. The set of 
all possible outcomes of a random experiment is called the 
sample space and is denoted by �.

The subsets of � are called events and the family of 
events is denoted by P(�). For example, rolling two dice 
is a random experiment E  ; the sample space is the set 
� = {(i, j) ∣ 1 ≤ i, j ≤ 6}. This experiment has 62 elemen-
tary events {(i, j)} . The pair (1, 6) is one possible outcome 
of a trial. The event “the sum of the two dice is equal to 3” 
is A = {(1, 2), (2, 1)}. Events can be combined with usual 
set-theoretical operations of union, intersection and comple-
ment. The empty set, denoted by ∅ , is the impossible event. 
To conclude, to a random experiment E  we associate the 
mathematical object (�,P(�)).

Let us consider a random experiment E  and an event 
A ∈ P(�). If we perform n trials of E  , then the ratio between 
the number occurrences of A and n is called the “frequency 
of A in n trials”, and is denoted by fn(A). It is an empirical 
fact that, when n increases, fn(A) tends to “stabilise” to a 
number called “the probability” of A,  which is denoted by 
P(A) . If instead of an arbitrary A we consider the elementary 
events, performing n trials will produce a frequency distribu-
tion for elementary events; this distribution will approach 
a probability distribution as the number of trials increases. 
Since fn(A ∪ B) = fn(A) + fn(B) whenever A ∩ B = �, it is 
natural to assume that P(A ∪ B) = P(A) + P(B) if A ∩ B = � 
and P(�) = 1.

In the example of rolling two dice, we have 62 elementary 
events. If the dice are “fair”, the probability of any elemen-
tary event is P((i, j)) = 1∕36.

When � is a finite set and A ∈ P(�), then the probability 
defined by P(A) = #(A)

#(�)
 is called the classical probability. For 

every event A ∈ P(�),P(A) = 0 if and only if A = � . See 
more in Nelson [9].

Kolmogorov Axioms and Probability 
Desiderata

Kolmogorov axioms are the standard framework for prob-
ability theory. The sample space, that is, the set of (atomic) 
outcomes is denoted by � . A measurable space is a couple 
(�,B(�)) where the event space is a Borel field of sub-
sets of �, B(𝛺) ⊆ P(𝛺) . A probability space is a triple 
(�,B(�), Pr) , where (�,B(�)) is a measurable space and 
Pr ∶ B(�) ⟶ [0, 1] is a probability measure, that is, Pr 

satisfies the following two conditions: (a) the probability 
of a countable union of mutually exclusive sets in B(�) is 
equal to the countable sum of the probabilities of each of 
these sets, and (b) Pr(�) = 1. In case condition a) is satisfied 
only for finitely many mutually exclusive sets, the probabil-
ity space will be called finitely additive.

Kolmogorov axioms for infinite sample spaces do not 
respect any of the following—arguably natural—desiderata 
[1]:

1.	 Regularity The probability of every possible event, that 
is, any non-empty subset of � , should be strictly larger 
than that of the impossible event,1

2.	 Totality Every element of the event space should be 
assigned a probability value,

3.	 Perfect additivity The probability of an arbitrary union 
of mutually disjoint events should be equal to the sum 
of the probabilities of the separate events, where “sum” 
has to be appropriately defined,

4.	 Weak Laplaceanity The probability theory should allow 
for a uniform probability distribution on the sample 
space.2

De Finetti fair lottery, in which draws are taken from the 
infinite set {1, 2, 3,…} with equal probability, is a classi-
cal example in which Kolmogorov axioms fail the above 
desiderata [1, 10].

The above desiderata are achievable in rigorous math-
ematical terms even for infinite events and one way to do it 
is to use hyper-reals valued probabilities, see for example 
NAP [1, 11].

In what follows, we will present a simpler and natural 
construction of infinitesimal probabilities based on Gros-
sone inspired from the classical probability which satisfies 
all above desiderata.

An Intuitive Glance at Grossone

The set of positive integers (shortly, numbers in what 
follows)

(1)ℕ = {1, 2, 3,…}

1  This is a special case of the Euclidean principle requiring that 
any set should have a strictly larger probability than each of its 
strict subsets. It is easy to see that every regular, total and finitely 
additive probability is Euclidean: indeed, for all X,Y ⊆ 𝛺 , if 
X ⊂ Y  , then because Y = X ∪ (Y⧵X) and Y⧵X ≠ ∅ , then by finite 
additivity of the mutually disjoints events X and Y, we have: 
Pr(Y) = Pr(X) + Pr(Y⧵X) > Pr(X) as Pr(Y⧵X) > 0.
2  A more general, but less formal, form is to ask that the probability 
theory should allow for a mathematical representation of any proba-
bilistic situation that is conceptually possible.
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can be represented by different numeral systems. The most 
common ones use a positional numeral system with bases 10 
or 2. In some sense these systems “reveal” the same infor-
mation about the set (1). The system proposed by Sergeyev 
[3–6] gives more information about (1) using a formalism 
supporting Aristotles Principle: “the whole is greater than 
its parts”.3 To this aim, a new infinite number 1  (called 
Grossone) is introduced: informally, 1  is the number of 
elements of the set of numbers (1).

The infinite number 1  can be used to calculate the number 
of elements of various infinite sets of numbers. For example, 
the number of elements of the set ℕ⧵{10} is 1 − 1 ; the sets 
of even and odd numbers have the same number of elements, 

namely 1
2

 ; the set {1} ∪ {2n ∣ n ∈ ℕ} has 1 + 1 elements. 

The elements 1 , 1 + 1, 1 − 1,
1
2

 and many others like

can be thought as infinite numbers.
Accordingly, we can “magnify” ℕ to the set

We may think of the sets (1) and (2) as the results of two dif-
ferent experiments performed on the set of positive integers.4 
The set ℕ† will be used to “measure” the sizes of different, 
finite or infinite, subsets of ℕ.

Grossone Calculus

We introduce now a calculus with 1  following the axi-
omatic theory of Grossone developed and studied in Lolli 
[7]. Our approach differs twofold from Lolli’s: (a) we do no 
restrict ourselves to the predicative second-order logic, that 
is, quantifications of sets are allowed, (b) while Lolli uses ℕ 
for analysing ℕ† , we proceed the other way round: we study 
ℕ with ℕ† . The notation n ∈ ℕ means that n is a finite ele-
ment in ℕ†.

⋯ ,
1

2
− 2,

1

2
− 1,

1

2
,
1

2
+ 1,

1

2

+ 2,⋯ , 1 − 2, 1 − 1, 1

(2)
ℕ
† =

{

1, 2,… ,
1

2
− 2,

1

2
− 1,

1

2
,
1

2
+ 1,

1

2

+2,… , 1 − 2, 1 − 1, 1

}

.

The following infinite list of rules R1 and R2 defines the 
arithmetic structure of ℕ† . 

R1	� Infinity For every n ∈ ℕ , n < 1 .

R2	� Divisibility For every n ∈ ℕ , 1
n

 is an infinite number.

As proved in Lolli [7], the rules R1 and R2 justify all 
infinite numbers in (2), operations with 1  like 

n + 1 , 1 − n,
1 −n

k
 and identities like 0 ⋅ 1 = 1 ⋅ 0 = 0,

1 − 1 = 0,
1

1
= 1, 1

1 = 1, 0
1 = 0. Is 1  prime? The 

answer is negative: in fact 1  is “maximally composite” as 

by R2 for every finite n ∈ ℕ , 1
n

∈ ℕ
† , hence n divides 1 .

The 1 -measure � ∶ P(ℕ) → ℕ
† ∪ {0} is introduced 

using the following two axioms:5 

���.	� For every x ∈ ℕ , �({x}) = 1.
���.	� For every sets X, Y ⊆ ℕ , if X ∩ Y = � , then 

�(X ∪ Y) = �(X) + �(Y).

In conjunction with R2 we introduce a partition (ℕi,n)1≤i≤n 
of ℕ : for every n ∈ ℕ and 1 ≤ i ≤ n,

For every x ∈ ℕ
† , ≺x is the initial segment of numbers less 

than or equal to x, ≺x = {y ∈ ℕ ∣ y ≤ x}. If x ∈ ℕ , then ≺x is 
finite, but if x is an infinite number, then the set ≺x is infinite; 
for example, ≺

1
= ℕ . A set X is called bounded if there 

exists an x such that X ⊆≺x.
The following two theorems have been proved in Lolli 

[7].

Theorem 1  The following facts can be proved from R1, R2, 
��� and ���:

1.	 �(�) = 0.
2.	 For every bounded sets X, Y ⊆ ℕ , if X ⊆ Y  , then 

�(X) ≤ �(Y).
3.	 For every x ∈ ℕ , 𝜇(≺x) = x ; in particular, 𝜇(≺ 1 ) = 1 .

4.	 Every proper subset of ℕ has a measure x with x < 1 .

Theorem 2  From R1, R2, ��� and ��� for every n ∈ ℕ and 

1 ≤ i ≤ n , we have �(ℕi,n) =
1
n
.

From Theorem 2 the 1 -measure of each ℕi,n is n times less 
than the 1 -measure of the whole set ℕ . This validates to the 

ℕi,n = {i, n + i, 2n + i,…}.

3  Aristotles Principle is not satisfied by set theory. For other math-
ematical approaches to the notion of “size” of sets based on Aristotles 
Principle see [12, 13].
4  According to Sergeyev [3–6], (1) and (2) represent the same set of 
numbers. In (1) we can “see” only the finite numbers, but in (2) we 
can “see” both finite and infinite numbers. 5  The name “measure” will be justified by Theorem 1.
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intuition that the ‘number’ of even numbers is the same as the 
‘number’ of odd numbers and half of the ‘number’ of all numbers 
.

Corollary 1  From R1, R2, ��� and ��� we have

1.	 �(ℕ) = 1 ,

2.	 �(ℕ1,2) = �(ℕ2,2) =
1
2
,

3.	 �(ℕ1,3)) = �(ℕ2,3) = �(ℕ3,3) =
1
3
,

4.	 �(ℕ ∪ {0}) = 1 + 1,

5.	 �(ℕ⧵{3, 5, 10, 23, 114}) = 1 − 5,

6.	 �({x ∈ ℕ ∣ x = n2, n ∈ ℕ}) = ⌊

√

1 ⌋.

De Finetti Infinite Fair Lottery

By a finite lottery, we mean a process that assigns exactly one 
winner among a finite set of tickets (contained in an urn) in a 
fair way, that is, each ticket can be won with the same proba-
bility. If the tickets are drawn from the label set {1, 2, 3,… , n} , 
then the probability that each i, 1 ≤ i ≤ n , is a winner is 1 / n. 
In particular, the probability of a combination of tickets con-
tains the winner is the sum of the individual probabilities of 
the tickets. This process can be modelled by a uniform prob-
ability space which fulfils the Kolmogorov’s axioms.

What about an infinite lottery in which tickets are drawn 
from the label infinite set {1, 2, 3,…} . Can it be fair? “Clas-
sically” this is impossible because informally the uniform 
distribution will require that each number has probability 
1∕∞ = 0 ; for a formal argument see [14, 15, Ch 11].

Using the Grossone framework it was informally argued 
in Rizza [16] that the infinite fair lottery ℕ – which has 1  
numbers – is possible and the probability of each number to 
be a winner is 1∕ 1  , a positive infinitesimal. This intuition 
will be made rigorous in Theorem 3.

Grossone‑Like Uniform Probability Spaces

In this section, we construct and study Grossone-like uni-
form probability spaces. The approach is inspired by and 
parallels the construction of classical probability.6

Next, we introduce the infinitesimals based on 1  . A real 
number x is infinitesimal if |x| < r for every positive real r 
(see more in Lolli [17]). 

R3	� I n f i n i t e s ima l s :  The re  ex i s t s  1
−1 w i t h 

1
−1

⋅ 1 = 1 ⋅ 1
−1

= 1.

From R1 and R3, 1 −1
> 0 and for every n ∈ ℕ , 1 −1

<
1

n
 , 

so 1 −1 is an infinitesimal less than 1.
In what follows we will assume R1, R2, R3, ��� and 

��� . The probabilities defined in this section will have also 
infinitesimal values drawn from the set

(see R3). Hence, all the probabilities will be defined on 
P(�) and will take values in the extended unit interval 
[0, 1]† = [0, 1] ∪ �.

In this framework, Williamson’s arguments against infini-
tesimal probability are mathematically refuted.

Grossone Probability Space

Let us consider the sample space ℕ and the elementary 
events of the random experiment E  consisting in picking 
at random a number from ℕ . The Grossone uniform prob-
ability space

is defined by assigning to every event A ∈ P(ℕ) the 
probability

Theorem 3  The probability space ℕ( 1 ) is regular, total, 
finitely additive and uniform.

Proof  In  v iew of  Theorem  1 ,  the  func t ion 
Pr ∶ P(ℕ) → [0, 1]† defined by (4) satisfies the properties 
of a finite-additive probability. Indeed, Pr(A) ≥ 0 for all 
A ∈ P(ℕ) , Pr(ℕ) = 1 and for all sets A,B ∈ P(ℕ) such that 
A ∩ B = � we have Pr(A ∪ B) = Pr(A) + Pr(B) by ���.

By Theorem 1 and (4), every event has a probability and 
for every A ∈ P(ℕ) , Pr(A) = 0 iff A = �.

Finally, ℕ( 1 ) is uniform because, by ��� , every elemen-
tary event {n} has the same chance to occur:

	�  ◻

Theorem 3 shows that the Grossone probability space 
ℕ( 1 ) satisfies all four probability desiderata in Sect. 3. 
In contrast with the standard probability theory, where 
there is no infinite fair lottery, the probability space 

(3)𝕀 =

{

𝜇(A)

𝜇(𝛺)
∣ � ≠ A ⊂ 𝛺 ⊆ ℕ,𝛺 infinite

}

,

ℕ( 1 ) = (ℕ,P(ℕ), Pr)

(4)Pr(A) =
�(A)

�(ℕ)
=

�(A)

1
.

(5)Pr({n}) =
�({n})

1
=

1

1
.

6  An informal discussion of a probability on a set with more than 1  
elements is presented in Section 9.1 [6].
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ℕ( 1 ) = (ℕ,P(ℕ), Pr) is an adequate model for the fair lot-
tery on ℕ . In this probability space, we can calculate the 
probability of every event, in particular, the probability of 
each event in Corollary 1. For example, in ℕ( 1 ) , the prob-
ability of picking at random an arbitrary odd number is

Grossone‑Like Probability Spaces

Let 𝛺 ⊂ ℕ be infinite. The probability Pr� ∶ P(�) → [0, 1]† 
is defined for every n ∈ � by

As a consequence of Theorem 3 we get

Corollary 2  The probability space �( 1 ) = (�,P(�), Pr�) 
is regular, total, finitely additive and uniform.

The probability space �( 1 ) will be called a Grossone-
like probability space.7 It is clear that by (5) and the assump-
tion 𝛺 ⊂ ℕ , for every n ∈ � , Pr({n}) < Pr𝛺({n}).

Grossone-like probability spaces can be defined not only 
on infinite sets of numbers, but also on other infinite discrete 
sets, like the sets of integers or rationals.

Williamson’s Arguments

Williamson’s argument [8] purports to show that infinitesi-
mal probabilities are inherently problematic; for more philo-
sophical arguments refuting Williamson’s conclusion see [1, 
18]. In this section, we refute mathematically Williamson’s 
conclusion.

Consider an urn containing tickets labelled with the ele-
ments of ℕ and a mechanism to implement a fair lottery for 
the tickets in the urn. We consider two cases.

In case (1), all tickets are in the urn and the probability of 
winning each arbitrary single ticket n in this lottery is Pr1(n) , 
a probability which can be infinitesimal, but not zero.

In case (2), one ticket k is removed from the urn prior 
to the drawing of the winning ticket. Accordingly, the urn 
contains one ticket less, so the probability of winning each 
remaining ticket m ∈ ℕ⧵{k} is (after renormalisation):

However, in isolation, case (2) looks exactly as before the 
removal of the ticket k, which is case (1). Why? Due to a 

(6)Pr(ℕ1,2) =

1
2

1
=

1

2
.

Pr�({n}) =
1

�(�)
.

(7)Pr2(m) =
Pr1(m)

1 − Pr1(m)
.

simple set-theoretic argument: both urns have the same set-
theoretical cardinality. Accordingly, for every m ∈ ℕ⧵{k}:

From (7) and (8) we deduce that for every m ∈ ℕ⧵{k} , 
Pr1(m) = Pr2(m) = 0 , a contradiction. In [8], this is inter-
preted as an inherently problematic situation arising in any 
attempt to use infinitesimal probabilities, irrespective of 
their mathematical constructions.

The reason case (1) and case (2) look exactly the same is 
because the urns have the same set-theoretical cardinality, that 
is, because informally they have the same number of elements. 
The cardinality of a finite set is indeed the same as the number 
of elements of the set; however, this is not true for infinite sets.

Here is the resolution of Williamson’s contradiction using 
the Grossone probability space. In case (1), the probability 
space is

in which the winning probability of every single ticket 
labelled by n ∈ ℕ is

In case (2), when k has been removed from the urn, the 
correct probability space is the Grossone-like space

In this space, the winning probability of every single 
ticket labelled by m ∈ ℕ⧵{k} is obviously larger than the 
probability in the space ℕ( 1 ):

A similar analysis works if instead of removing one ticket 
from the urn we remove infinitely many tickets, say, all tick-
ets labelled with even numbers. In this example, the first 
probability space remains unchanged, but the second prob-
ability space is the Grossone-like space

In this space, the winning probability of every single 
ticket labelled by m ∈ ℕ2,2 is larger than the probability in 
ℕ( 1 ):

Independence

Consider a Grossone-like probability space (�,P(�),

Pr�

)

 .  Two events A  and B  are independent  if 
Pr�(A ∩ B) = Pr�(A)Pr�(B) . A finite set of events is 

(8)Pr2(m) = Pr1(m).

ℕ( 1 ) = (ℕ,P(ℕ), Pr1)

Pr1({n}) =
1

1
.

(ℕ⧵{k})( 1 − 1) =
(

ℕ⧵{k},P(ℕ⧵{k}), Pr2
)

.

0 < Pr2({m}) =
1

1 − 1
>

1

1
= Pr1({m}).

ℕ2,2

(

1
)

= (ℕ2,2,P(ℕ2,2), Pr3).

Pr3({m}) =
1

1
2

>
1

1
= Pr1({m}) > 0.

7  In case � is contextually clear Pr� will be simply written Pr.
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mutually independent if every event is independent of any 
intersection of the other events.

Example 1  Consider the Grossone-like model for De Finetti 
infinite fair lottery ℕ

(

1
)

 and the following two events: A: 
the winner is smaller or equal to 10, and B: the winner is an 
odd number. We have:

hence, Pr(A ∩ B) = Pr(A)Pr(B) so the events A and B are 
independent.

On the other hand, the events “the winner is an even num-
ber” and “the winner is an odd number” are not independent 
because Pr

(

ℕ1,2

)

= Pr
(

ℕ2,2

)

=
1

2
 while Pr

(

ℕ1,2 ∩ ℕ2,2

)

= 0.

Conditional Probabilities

Cons ider  a  Grossone- l ike  p robab i l i ty  space 
(

�,P(�), Pr�
)

 . The conditional probability of an event 
A assuming that the event B with Pr𝛺(B) > 0 has occurred 
is defined as

Note that two events A and B are independent iff Pr�(B) = 0 
or Pr�(A ∣ B) = Pr�(A).

In Example 1, we have

For A ⊆ 𝛺 , we denote Ā = 𝛺⧵A and A → B = Ā ∪ B.

Example 2  (Negation elimination) For every A ∈ P(�) 
such that A ≠ ∅ ( Ā ≠ ∅ ) and for every B ∈ P(�) we have: 
Pr𝛺(Ā → B ∣ A) = 1 (Pr𝛺(A → B ∣ Ā) = 1).

Proof  We have: Pr𝛺(Ā → B ∣ A) = Pr𝛺(A ∪ B ∣ A) =
Pr𝛺 (A∩(A∪B))

Pr𝛺(A)

= 1 and similarly Pr�
(

A → B ∣ A
)

= 1. 	�  ◻

Lemma 1  (Law of Total Probability) If 
(

Bi

)

1 ≤ i ≤ n
 is a  

partition of � , then for every event A ≠ ∅ and all 1 ≤ i ≤ n 
we have:

Pr(A) =Pr(≺10) =
10

1
; Pr(B) = Pr(ℕ1,2) =

1

2
, Pr(A ∩ B)

=Pr({1, 3, 5, 7, 9}) =
5

1
,

Pr�(A ∣ B) =
Pr�(A ∩ B)

Pr�(B)
.

Pr
(

≺10∣ ℕ1,2

)

=
Pr
(

≺10 ∩ℕ1,2

)

Pr
(

ℕ1,2

) =

5

1
1

2

=
10

1
= Pr

(

≺10

)

.

Pr�(A) =

n
∑

j=1

Pr�
(

Bj

)

Pr�
(

A ∣ Bj

)

=

n
∑

j=1

Pr�
(

Bj

)

PrBj
(A).

Proof  We have

Then, by ��� and the definition of conditional probability, 
we have

	�  ◻

Theorem 4  (Bayes Theorem) If 
(

Bi

)

1 ≤ i ≤ n
 is a partition 

of � , then for every event A ≠ ∅ and all 1 ≤ i ≤ n we have:

Proof  The property follows from Lemma 1 and the equalities

	�  ◻

Bayes Theorem plays a very important role when we gain 
an extra knowledge achieved through an auxiliary experi-
ment. Assume we are interested in the outcomes B1,… ,Bn 
of a random experiment which form a partition of the sample 
space �. Their prior probabilities are 

{

Pr�
(

Bi

)

, 1 ≤ i ≤ n
}

.

We then perform an auxiliary random experiment and 
denote by A its outcome. Using Bayes formula (9), we can 
calculate the posterior probabilities of B1,… ,Bn, that is 
{

Pr�
(

Bi ∣ A
)

, 1 ≤ i ≤ n
}

.

Example 3  Consider an infinite, fair lottery with tickets, 
drawn from ℕ , written in red and blue in such a way that both 
colours are used. We can formulate the following hypotheses 
about the lottery:

Hi ∶ “The lottery contains i red tickets and 
(

1 − i
)

 blue 
tickets”, 1 ≤ i ≤ 1 − 1,

and, accordingly, model the lottery with the sets

It is seen that

A =

n
⋃

j=1

(

A ∩ Bj

)

and
(

A ∩ Bj

)

∩
(

A ∩ Bi

)

= �, for every j ≠ i.

Pr�(A) =

n
∑

j=1

Pr�
(

A ∩ Bj

)

=

n
∑

j=1

Pr�
(

Bj

)

Pr�
(

A ∣ Bj

)

.

(9)Pr�(Bi ∣ A) =
Pr�(A ∣ Bi)Pr�(Bi)

∑n

j=1
Pr�(A ∣ Bj)Pr�(Bj)

.

Pr�
(

Bi ∣ A
)

=
Pr�

(

Bi ∩ A
)

Pr�(A)
=

Pr�
(

Bi

)

Pr�
(

A ∣ Bi

)

Pr�(A)
.

ℕ(i,red) =
{

1, 2, 3,… ∣ i tickets are red, 1 - i tickets are blue
}

,

i ≥ 1, i ≤ 1 − 1.

ℕ(i,red) = ℝ𝔼𝔻i ∪ 𝔹𝕃𝕌𝔼i,�
(

ℝ𝔼𝔻i

)

= i,

�
(

𝔹𝕃𝕌𝔼i

)

= 1 − i, 1 ≤ i ≤ 1 − 1.
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A drawing of the lottery will produce a (winner) ticket in one 
of the sets ℕ(i,red) , a process which can be formally described 
by the following Grossone-like space 

(

�,P(�), Pr�
)

 in 
which the sample space is

and the probability is Pr�({x}) =
1

1
(

1 −1
) , for all x ∈ �.

The event that the hypothesis Hi is true is ℕ(i,red) ; for sim-
plicity we write Bi = N(i,red).

A priori, the likelihood of the hypothesis Hi is given by 
the prior probability:

The auxiliary experiment now consists in drawing one ticket 
which should give more information about the events Bi . 
Assume the winner’s ticket is red, which means that the 

event 
�

⋃ 1 −1

i=1
ℝ𝔼𝔻i

�

∈ P(�) has occurred. Using the sim-

pler notation A =
⋃ 1 −1

i=1
ℝ𝔼𝔻i we have:

On the other hand, if the hypothesis Hi is true we have

As the events {Bi ∣ 1 ≤ i ≤ 1 − 1} form a partition of 
� , we can now use Bayes formula to calculate, for every 
1 ≤ i ≤ 1 − 1 , the posterior probabilities:

� =

1 −1
�

i=1

ℕ(i,red) =

⎛

⎜

⎜

⎝

1 −1
�

i=1

ℝ𝔼𝔻i

⎞

⎟

⎟

⎠

�

⎛

⎜

⎜

⎝

1 −1
�

i=1

𝔹𝕃𝕌𝔼i

⎞

⎟

⎟

⎠

,

Pr�
(

Bi

)

=
�(Bi)

1
(

1 − 1
) =

1

1
(

1 − 1
) =

1

1 − 1
.

Pr�(A) =
�(A)

1
(

1 − 1
) =

1

1
(

1 − 1
)

1 −1
∑

i=1

�
(

ℝ𝔼𝔻i

)

=
1

1
(

1 − 1
)

1 −1
∑

i=1

i =
1

1
(

1 − 1
) ⋅

(

1 − 1
)

1

2
=

1

2
.

(10)

Pr�
(

A ∣ Bi

)

=
Pr�

(

A ∩ Bi

)

Pr�
(

Bi

) =

�(A∩Bi)

1
(

1 −1
)

Pr�
(

Bi

)

=

�(ℝ𝔼𝔻i)

1
(

1 −1
)

Pr�
(

Bi

) =
i ⋅ ( 1 − 1)

1
(

1 − 1
) =

i

1
.

(11)

Pr�
(

Bi ∣ A
)

=
Pr�

(

A ∣ Bi

)

⋅ Pr�
(

Bi

)

Pr�(A)
=

i

1
⋅

1

1 −1

1

2

=
2i

1
(

1 − 1
) .

First note that max

1 ≤ i ≤ 1 −1

Pr�

(

B
i
∣ A

)

= Pr�

(

B
1 −1

∣ A
)

=
2

1
. 

Second, for some 1 ≤ i, j ≤ 1 − 1 , Pr𝛺
(

Bi

)

< Pr𝛺
(

Bi ∣ A
)

 

and Pr𝛺
(

Bj

)

> Pr𝛺
(

Bj ∣ A
)

 . To locate a “switch” threshold 
we use (10) and (11) and get the inequalities

which have the solutions 1
2

− 1 ≤ i <
1
2
. Then, a “switch” 

threshold is the Grossone number i = 1
2

− 1.

Random Variables

Using (3), let ℝ† = ℝ ∪ 𝕀 . A real random variable on the 
Grossone-like probability space (�,P(�), Pr) is a function 
X ∶ � → ℝ

† with the property that for every measurable set 
B ∈ B

(

ℝ
†
)

 we have X−1(B) ∈ P(�). A random variable X 
generates a probability space 

(

ℝ
∗,B

(

ℝ
†
)

,PX

)

, in which the 
probability PX—called the probability distribution of X—is 
defined as follows:

The distribution of the discrete random variable X can be 
described by PX({x}), x ∈ X(�) . For example, if we consider 
the Grossone probability space ℕ

(

1
)

= (ℕ,P(ℕ), Pr) and 
the random variable X ∶ ℕ → ℕ,X(n) = n , then the prob-
ability distribution of X is

that is, the Grossone-like uniform distribution.
Using Grossone calculus, one can calculate the moments 

and variance of the Grossone-like uniform distribution. For 
example,

2i

1
(

1 − 1
) <

1

1 − 1
,

2(i + 1)

1
(

1 − 1
) ≥

1

1 − 1
,

PX(B) = Pr
(

X−1(B)
)

, B ∈ B
(

ℝ
†
)

.

PX({n}) = Pr ({X = n}) =
1

1
,

E(X) =
∑

n ∈ ℕ

n ⋅
1

1
=

1

1
⋅

1
(

1 + 1
)

2
=

1 + 1

2
,

E
(

X2
)

=
∑

n ∈ ℕ

n2 ⋅
1

1
=

1

1
⋅

1
(

1 + 1
)(

2 1 + 1
)

6

=

(

1 + 1
)(

2 1 + 1
)

6
,

Var(X) =E
(

X2
)

− E2(X) =

(

1 + 1
)(

2 1 + 1
)

6

−

(

1 + 1
)2

4
=

(

1
)2

− 1

12
.
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A Non‑Uniform Grossone‑Like Probability

In this section, we discuss a non-uniform Grossone-like 
probability.

The binomial experiment with parameters n ∈ ℕ and 
rational p ∈ (0, 1) is a sequence of n independent experi-
ments, each asking a yes–no question with the outcome 
being: “success” (with probability p) or “failure” (with prob-
ability q = 1 − p ). If we consider n = 1  , then the discrete 
probability distribution of the number of successes in this 
experiment can be modelled by the Grossone-like probabil-
ity space (ℕ ∪ {0},P(ℕ ∪ {0}), PBinomial,p) where

Using Grossone calculus we have

Conclusion

In this paper, we have constructed and studied a class of 
infinitesimal probabilities on infinite sets of positive inte-
gers based on the notion of Grossone size. More precisely, 
we have used the “magnified” set ℕ† to measure the sizes of 
different, finite or infinite, subsets of ℕ.

These probabilities have natural properties which are not 
satisfied in the standard Kolmogorov probability theory on 
infinite sample sets, like regularity, totality, uniform distribu-
tivity and weak Laplaceanity. In this framework, De Finetti 
fair lottery has the natural solution and Williamson’s objec-
tions against infinitesimal probabilities are mathematically 
refuted.

An advantage of the proposed construction over other 
infinitesimal probabilities studied in the literature [1] comes 
from its naturalness and simplicity: the construction is oper-
ationally similar to classical (finite) probability.

It will be interesting to test the utility of these proba-
bilities in areas in which their properties not shared by the 
standard probability theory matter: a prime example will be 
(quantum) physics (see for example [19–21]).
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PBinomial,p({k}) =

(

1

k

)

⋅ pk(1 − p) 1 −k, k ∈ ℕ ∪ {0}.

1
∑

k=0

(

1

k

)

⋅ pk(1 − p) 1 −k = (p + (1 − p)) 1 = 1 1 = 1.
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