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TOPOLOGICAL SIZE OF SETS O F  PARTIAL RECURSIVE FUNCTIONS 

by CRISTIAN CALUDE in Bucharest (Romania) l) 

1. Introduction 

S o t a t i o n s  

N = the set of non-negative integers, 

P = the set of unary partial recursive functions, 

(a,) = an acceptable Godelization of P (ROGERS [IS]), 

(A, )  = a Blum measure of computational complexity (BLUM [l]), 

R’ = the set of recursive functions of i arguments, 

R = R1, 
F = the set of unary recursive functions of finite support, 

supp(f) = {. I f ( 4  * 0, m} ( f  E P), 

Z ( f )  = cWsupp(f ) )  ( f  E F), 
f E 9 iff supp(f) 5 dom(9) and glsupp(f) = flsupp(f) ( f ,  9 E PI, 
f c 9 iff f G9 and f =!= 9, 

J J ( 3 )  

N x N 

a.e. = almost everywhere, 

r.e. = recursively enumerable, 

C, = (f E R J there exists i, a,  = f and A,(%) 5 t(z) a.e.}, 

A 5 P is a measured set iff A = (fL(z) I i 2 0 }  

f is g-honest iff there exists i such that a,  = f and A,($) 

N, N3 -+ N = Cantor pairing functions, 
6, L ‘It0 

(the complexity class of t E: R), 

and the predicate “fi(x)  = y”  is recursive (BLUM [l]), 

g(f(z)) a.e. 
(f E p, 9 E R) P L U M  P I ) ,  

E ( f )  = the elementary recursive class of f ( f  E R) (MEYER-RITCHIE [12]), 

Pol(/) = the polynomial class of f (f E R) (MELHORN [ll]), 

Pr(f) = the primitive recursive class of f (f E R) (MACHTEY [S]). 

The category-theoretic methods (in Baire sense) were used in the theory of degrees 
(MYILTLL [13]; MELHORN [lo]), in the theory of recursive operators (ROGERS [IS]), 
in a-recursion theory (LOWENTHAL [5 ] ) .  We shall define a natural recursive topology 
on the set of partial recursive functions and recursive variants of the notions of no- 

1) I wish to thank Prof. G. WECHSUNG for helpful comments on this work. 
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where dense set and meagre set. These instruments will be used to  analyse the topo- 
logical size of various sets of partial recursive functions. All results are compatible 
with those obtained by MELKORN [lo] for classes of recursive functions. Topological 
refinements of the Honesty and Gap Theorems will be equally obtained. 

We shall work in a fixed Blum space, i.e. a couple A = ( (a , ) ,  (A , ) ) ,  where (a , )  is an 
acceptable Godelization of P and (A , )  are Blum step counting functions, satisfying 
the axioms: 

1) For every i 2 0,  doin(ai) = dom(A,). 

1, if A J x )  = y 
0, otherwise 

is recursive. 2) The predicate M ( i ,  x ,  y) = 

The set of functions of finite support is r.e. We shall adopt the following fixed 
enumeration of F. By the s-m-n-Theorem there exists a recursive function s(i, y ,  z )  
such that 

ai (x) ,  if x 5 y and A j ( x )  5 x 
as(i,y,z)(x) = ( 0 ,  otherwise. 

Let h(i)  = s(1i3)(i), 1i3)(i), 1i3)(i)); h is recursive and F = {ajLca(z) I i >= O}. From the 
above construction it follows that for every x 2 1A3)(m), ahC,?,(x) = 0 and supp(ah(,), 
g { O , 1 ,  . . ., IP)(n)}. 

Finally, let us observe that the relation is a quasi-order in F and P. 

2. Basic Topological Constructions 

We define a system of basic open neighborhoods which induces a topology in the 
set of (unary) partial recursive functions. For every t E F we put U ,  = { f  I f E P, t E f } .  

Lemma 1. For every t ,  E F such that U,l n Ut2 $. 0 there exists t ,  E F mch that 

Proof .  Let X = supp(t,) n supp(t,). Since Utl n U ,  =/= 0 it follows that if x E S, 
Utl n utz = uts. 

then t l(x) = tz(s). The required function t ,  is defined by 

t l ( x )  ( =  t 2 ( x ) ) ,  if x E X ,  
t l (4  > if x E supp(t,) - X ,  
t z ( 4  > if x E supp(t,) - X, 

( o ,  otherwise. 

t 3 ( 4  = 

From Lemma 1 we deduce that ( U t ) I E F  is a system of basic neighborhoods in P. 

Propos i t i on  1. Let X be a subset of P. Then, the following stnternerzts are equivalewt: 
(i) X is open. 
(ii) For every f E X aizd for every g E P, if f & g, then g E X (i.e. X is solid), a?id for 

(iii) X = (J U,.  

The proof is obvious. 

Remark .  The topology defined on P is not separated; it is quasi-compact and i t  

We shall work with the topology generated by this system. 

every f E X there exists t E X n F such that t & f .  

t e S n F  

has an enumerable base (for every f E P, ( U J t S f ) .  
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We give the crucial definition, i.e. the definition of the recursive nowhere dense set. 
A set X 5 P is nowhere dense (under f and g) if f ,  g E R and the following four condi- 
tions hold : 

1) For all n, arc,, E F. 
2 )  For all m and n, m > g(n) implies af(,,(m) = 0. 
3) For all n, ah(n, 
4) There exists a number i such that for every TL for which Z(ahio,) > i ,  we have 

X n UatC,, = 0. 

Remark .  Usually, a nowhere dense set is a set X together a function D which 
maps non-empty open sets into non-empty open sets such that for every (non-empty 
open) set U ,  D( U )  n X = 0 (OXTOBY [14]). It is clear that we can work with the 
restriction of D to the family of basic open neighborhoods. These facts motivate the 
general principle of the above construction. The additional restrictions are imposed by 
the constructive nature of our concept. Particularly, the condition 2) is motivated by 
the necessity that the support of every function af(n, could be recursively determined. 

In  order to show the compatibility with Melhorn definition we prove the following 
equivalence. 

Propos i t ion  2. Let X be a subset of P. Then, the following statements are equivalent: 

(1) X is nowhere dense under f and g .  
(2 )  There exists a recursive function r for which the following two conditions hold: 

(b) There exists i such that for all n with Z ( U , , ( , ~ ~ )  > j ,  we have X n Uah(,(,,)) = 0. 

Proof. (1) 

arc,, . 

(a) For every 8, ah(n)  L a/i(r(n)). 

( 2 ) .  We define the function r by the formula 

r ( l )  = p i [ ( W  (x I 9( i )  & x: E suPP(af(1)) * ah(&) = af(L,(x)) 
( V 4  ( x  5 P ( i )  &3 x E SUPP(%,,) * qcr;(x) = ah(J,(x))l 

From this formula it is clear that r E R. Moreover, for all x,  x E s ~ p p ( a ~ ( ~ , )  is equivalent 
to  0 =+ urcL,(x) = O ~ ~ ( ~ ( ~ ~ ) ( X ) ,  i e it is equivalent to x E supp(a,(,(,))); hence af(,)(x)= 
= U ~ ( , ~ ~ ~ ) ( Z ) .  The condition (a) follows from the property 3), and the last condition is 
a consequence of the property 4) for i = i. 

(2 )  3 (1). We put f(i) = h(r( i ) ) ,  g ( i )  = 1i3)(r(i)). The conditions 1)-4) are obviously 
verified (for the condition 2) we use the relation supp(aJLcl,) 

The following result will be useful in the proof of the main theorem. 

Lemma 2 .  Let X 5 P. Then, the following statements are equivalent: 

(1) A is nowhere dense under f and g .  
(2)  There exist two functions f ‘ ,  g’ E R such that X together f ’  and g’ satisfy the condi- 

(0, 1, . . ., I i3 ) ( i ) } ) .  

tions 1). 2 ) ,  4) in the definition of the nowhere dense set, and the condition 
3’) For every n, ah(n) C ay( l l ) .  

Proof .  We must prove only the implication (1) => (2). Thus, let A be a nowhere 
dense set under f and g. First let us construct the auxiliary function 

af( t ) (4 ,  if x: 5 di), 
if x: = g(i) + 1, 
if x > g(i) + 1. 
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It is obvious that p E R2. By the s-m-n-Theorem we get a function s E R such that 
p ( i ,  x )  = ~ ~ ( ~ ) ( x ) .  We put f’(i) = s ( i ) ,  g ’ ( i )  = g ( i )  + 1. Clearly, f ’ ,  g’ E R. By construc- 
tion, for every i, p ( i ,  x) = 0 a.e., hence ar(i) E F. Moreover, if m and n are arbitrary 
such that m > gf(n), then arcn)(m) = aScn)(m) = p(n, m) = 0. For all n, ar(II) = as(”) 2 
7 2 ah(ll,, so af,(,&) 3 ah(n). Finally, in view of the condition 4) for the triple X ,  
f ,  g there exists a number i such that for all n with l(ah@)) > i ,  we have X n Ual(n, = 0. 
But, from the relation ar(n) 3 aft, we derive the inclusion U a p )  c Unt(-,,  hence 
X n Ua,,(,&) = 0. 

Thus, by Lemma 2, in the definition of the nowhere dense set we may equally use 
the condition 3) or the condition 37, i.e. & or [I. 

A set X P is meagre (or a set of the first Baire category) if there exist a sequence 
X i  E P, and two r.e. sets ( f i ) i z o ,  (gi)i20, f i ,  g i  E R such that the following 

conditions are fulfiled : 
(1)  x = u xi. 

i > O  
(2) For every i 2 0, Xi is nowhere dense under f i  and gi. 
If X g P is not meagre, then X is called a set of the second Baire category. 

Remarks .  a) Intuitively, the meagre sets are “recursively small” sets, in opposi- 
tion to  the sets of the second Baire category which are “recursively big” ones. b) Every 
nowhere dense set is meagre but the converse fails. 

P ropos i t i on  3. The family of m.eagre sets i s  closed under subset. 

Proof .  Let Y be a subset of a meagre set X .  Thus X = U Xi, and for all i 2 0, 

Xi is nowhere dense under f i  and gi, where ( f i )  and (g i )  are r.e. sets of recursive func- 
tions. If Yi = Y A X i ,  then Y becomes meagre under the decomposition Y = U Y i .  

Corol lary 1. The family of sets of the second Baire category is closed under superset. 
Propos i t i on  4. Let X E P be a set which can be written as X = U X i ,  and for 

i20 

i20 

i>O 
uhich there exist two functions f, g E Ra such that the following two conditions hold: 

(1)  For all i 2 0, X i  = U Yi, j ,  Yi,j 

(2 )  li’or all i ,  j 2 0, is  nowhere dense under a f ( i , ; )  and ag(i,,i). 

P. 
j 2 0  

Then, X i s  meagre. 

Proof .  From the hypothesis it follows that every set Xi is meagre. For every m 2 0 
we set C,, = Ya(r,r),L(n), rn&) = af(a(llL),L(nc))(x), and p n L ( 4  = a g ( ~ ( m ) , ~ ( T I I ) ) ( x ) -  In  view 
of the fact that K and L are pairing functions we have: X = U X i  = u (u yi,j) = 

= U C,,, . Now it is obvious that A is meagre under the above decomposition (i.e. C,, 

is nowhere dense under r ,  and pnz).  

i > O  120 j Z 0  

Ill20 

Corol lary 2. The family of meagre sets is closed under union. 
Theorem 1 (Main Theorem). For every meagre set X P and every t E P, there i s  

a recursive junction f E U ,  - X. 
Proof .  Since X is meagre, it follows that it can be written as X = U X i ,  where 

i Z 0  
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Xi is nowhere dense under f i  and g,; the sets ( f i )  and (gi) are r.e. In  view of the Lemma 2 
we can suppose that ah(rl) [z afi(n), for all n and i. Let us observe that for fixed n and i 
the equality af,(,i)(z) = a,&(j)(z), for all x:, is equivalent to the following two conditions: 

(a) for every x S gi(n), z E supp(afi(n,), ahcj)(") = afi(n)(x); 
(b) for every x 5 Ih3)(n)> x E supp(ah(j)), ari(j)(z) = afi(n)(x). 

Hence, the predicate 

1 ,  if afi(,,)(x) = for all x 
0 ,  otherwise Q ( i ,  j ,  n) = 

is recursive. Moreover, since af,(,l, E F, for all numbers i and n, there is a number j 
such that Q( i, j, n)  = 1.  By means of the predicate Q and of the number q (with t = ah(*)) 

we construct the recursive function r :  r(0) = q,  r(z + 1) = ,ul[Q(K(x:)), j ,  r(x:)) = 11 and 
a sequence (t,,J of functions of finite support: 

to(") = f(4 > f r n ( 4  = afgcm,(r(m))(4 (m > 0 ) .  

a/z(r(fu+l))(x:) = afx(nl,(r(n))(") 1 

t l ( 4  = af,(qM 7 ah(q,(4 = t ( 4  > 

tnz+,(z) = afgc,+l,(r(rii+l),(") 7 all(r(ni+1))(x) = afs,,,(r(rn))(x) = trn(z), form > 0. 

Let us note that from the above construction we deduce the following useful relation : 
for all m and z. 

For every m 2 0,  C tnl+l. Indeed, 

Sow we can define the function f .  Set f ( z )  = t f ia (z ) ,  if x: 5 gK(nl,(r(m)). Since t ,  E F 
and t ,  C t l+l ,  it follows that the definition is correct; moreover, f E R. 

By construction, for every m 2 0,  t,,, C f ;  in particular, t = to C f ,  i.e. f E U,.  We 
must prove that f # X .  Suppose, by contrary, that f E X .  There must exist a number i 
such that f E X, But, in view of the hypothesis, X ,  is nowhere dense under f l  and 9,. 
We use the property 4): there exists a number rb, such that for all n, Z(ahCn,) > n, im- 
pIies S, n Uo,,(n, = 0. We choose a number m such that K(m + 1)  = i and Z(tm) > n,. 
The existence of such a number follows from the fact that for every j the equation 
K ( z )  = j has an infinity of solutions and from the monotonicity of sequence ( tm) .  Set 
?L = r(m + 1) .  We have tIr,(z) = ah(r(ffz+l))(z) = ah(,)(%); Z(tnl) = Z(ah(n)) > nL .  We obtain 
a~z(J ,~( .4  = afii(,,~+l,(.("l+l))(z) = tr , i+l(4 LZ f(4 ; hence, f E Uat,(,, . We arrived to  a contra- 
diction. 

Corol lary 3 (Baire Category Theorem). The set of reczcrsive functions i s  a set of the 
second Baire category. 

Proof. Suppose, by contrary, that R is meagre. By Theorem 1 we get the follow- 
ing contradictory relation: for every t E F, there exists a recursive function f with 
t & f, but f $ R. 

Remark .  The relation between Corollary 3 and the classical Baire Category Theorem 
is more profund. Every real 0 < ix < 1 has a continued fraction expansion no, n l ,  . . . 
defined by the relations 

1 

ri 
1 2 ,  = [--!-I, if r ,  + 0 ,  where ro = K ,  = - - ni.  

Hence, every number-theoretic function f can be identified with the expansion 
f (0)  + 1 ,  f (1 )  + 1,  . . .. This yields a one-to-one and onto correspondence between the 
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set of number-theoretic functions and the irrationds between 0 and 1, which preserve 
the correspondence between recursive functions and recursive irrationals in [0, 11 (see 
RICE [15]). This correspondence allows to  reformulate Corollary 3 as follows: The set 
of recwsive real numbers between 0 and 1 i s  a set of the secod Baire category. 

Corol lary 4. The set of partial recursive functions is  a set of the second Baire category. 
Proof .  It follows from Corollaries 1 and 3. 
Corol lary 5 .  Every non-empty open set i s  a set of the second Baire category. 
Proof .  From Theorem 1 it follows that every basic open neighborliood U t  is of 

the second Baire category. We apply Corollary 1 and we obtain the Corollary 5. 

3. Applications in Computational Complexity 

from the point of view of the Baire Category Theorem. 
In  this paragraph we analyse some well-known results in computational complexity 

Theorem 3. Every measured set i s  meagre. 
Proof .  Let S g P be a measured set. Then X = ( fL( . r )  I i 2 U), and the predicate 

if j i (x)  = y 
0 ,  otherwise 

M ( i ,  2, y) = 

is recursive. We shall prove the existence of two r.e. sets of recursive functions ( d L )  
and (gi) such that for all i, ( f i )  is nowhere dense. In  order to  constzruct the function d i  
we apply two fold the s-m-rt-Theorem to the following recursive function : 

a1p(, ,)(x),  if .1: 5 IL3)(n), A p ( , , ) ( x )  5 Ih3)(?7) 
.E + 2 

g = O  
1 ,  

x + 3 ,  

if x = Ih3)(n) + 1 ,  C M ( i ,  x, y) = 0 

if x = @(x) + 1 ,  C M ( i ,  x, y) 2 1 
X + 2  

v = O  i 0 ,  otherwise. 

p ( i ,  n, .1:) = 

We obtain a function s ( i )  E R such that p ( i ,  n, x) == aa8(i)(rl)(x). Put  d , ( n )  =  ti) and 
g i ( n )  = I f ) (n )  + 1, for all i. The sets (a i ) ,  {gi} are obviously r.e. We verify the four 
conditions in the definition of the nowhere dense set. The first two conditions are 
obviously fulfiled: ~ l ~ ~ ( , ~ ) ( z )  = p ( i ,  'n, x) = 0 a.e., and a,+,,,,(m) = 0 for all 77 and ?n 
with ?n > gi(n) = IL3)(n) + 1 .  For all 12 ,  ad,c,,,(x) = aab(d,(,l)(x) 3 a/,\,,,(x) because 
ah(,&-) = aIp+,(x) for all x E supp(ahc,,) n (0 ,  1, . . .~ I i3) (n)> .  To prove the last 
condition we set ni = 0 and we show that for all n wit#li Z(ah(,,J > 0. f i (x )  $ Urnat(,,). 
Suppose, by contrary, that for some i ,  i.e. adit,{, & f i .  This means f i ( x )  E 7 J a d , ( n ) ,  
that for every x E supp(adic,,,), f L ( x )  = adt(,,,(r). Let ro* = IL3)(n) + 1. K e  must analyse 

J " + 2  
two cases. I n  t,he first case, C M ( i ,  xo, y) = 0: that is, for all 0 5 y 5 x0 + 4, 

?/ = 0 
M ( i ,  xo, y) = 0,  i.e. f i(xo) + y .  We have adicn,)(x0) := 1 I - xo -I- 2 ,  and ji[.xo) > x0 + 2 
or f i (xo)  is undefined. Hence, in this case f i(xo) + ~ , ~ , ( ~ , ( x ~ ) .  In  the second case 
1 , + 2  

C M ( i ,  x,,, y) 2 1, that is, 0 5 fi(zo) 5 ro + 2 .  But, adjcn,(x0) = xo + 3 ;  in con- 
y=o 

elusion, fi(zo) + ad,(,,(z0). In  both cases we arrived to  a cont.radiction. 

then ( f )  is nowhere dense. b) For every f E R, ( f }  is nowhere dense. 
Remarks .  a) The proof of Theorem 2 shows that if the graph of f is recursive, 
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Corol lary 6. Every r.e. set of recursive functions i s  meagre. 

Proof. Every r.e. set of recursive functions is a measured set. By Theorem2 it 

Corol lary 7 .  The following sets are meagre: 

1) The set of primitive recursive functions. 
2 )  Every subset of the set of primitive recursive functions (in particular, every class in 

the G'rzegorczyk hierarchy, the set of Kalrncir elementary functions, the set of context- 
sensitive languages), 

follows that the set is meagre. 

3) The family ( f , ( x ) )  defined by 

if a L ( x )  is  defined and A,(x)  5 i . a , ( x )  
otherwise. 

f J X )  = [ ;:+ 
4) The set of real-time computable functions. 
5 )  Every r.e. complexity class. 
6) E(f), Pol(f) and Pr(f), for every f E R. 

If we combine Corollary 6 and the Honesty Theorem (MCCREIGHT-MEYER [9]) we 

Theorem 3. There exists a meagre set X c R such that for every t E R we can find 

We may ask whether all complexity classes (not only those r.e.) are meagre. 

C'orollary 8.  Every complexity class i s  meagre. 

Proof. Let f E R. Then, there exists a recursive function t' such that C, u F 5 C,,. 
But, every complexity class which contains the set of functions of finite support is 
r.e. By Corollary 7. 5 )  C,,  is meagre. Now we apply the Proposition 3, C, C,. ,  and 
we deduce that C, is meagre. 

ROBERTSON [4]) shows that the converse of Theorem 2 fails. 

i s  meagre. 

numbers IS contained in a complexity class. Hence, by Corollary 8, i t  is meagre. 

in the set of recursive reals only a few numbers are algebraic (rationals). 

obtain 

effectively a ficnction t' E S for which G, = C t # .  

Remark .  The existence of complexity classes which are not r.e. (LANDWEBER and 

Corol lary 9. The sets of algebraic numbers (and, in particular, the set of rationals) 

Proof .  By a well-known result of HARTMANIS and STEARNS [3] the set of algebraic 

Remark.  Corollary 3 and Corollary 9 reinforce the classical result on the real line: 

Since the set of step-counting functions is obviously measured we obtain 

Theorem 4. I n  any  B lum space the set of step-counting functions is meagre. 

Remarks .  a) Theorems 3 and 4 show that the sets occuring in the Honesty and 
Gap Theorems are small not only in algebraic sense, but also in a topological sense. 
b) Theorem 3 is based on the Honesty Theorem. Theorem 4 is independent of the Gap 
Theorem (BORODIN [2]). Moreover, Theorem 4 shows that the Gap Theorem is not a 
consequence of the distribution of step-counting functions between all partial recursive 
functions. 
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4. Concluding Remarks 

S.MARCUS [8] pointed out that in Real Function Theory the proofs of category 
theorems show that the property of a set of functions to be meagre is, in some way, 
conditioned to some degree of effectiveness of the definitions of the functions. Our 
results reinforces this remark : the distinction between meagre and nonmeagre sets of 
partial recursive functions is based on the difference on the effectiveness of the defini- 
tions of these sets. 

Many results in Computational Complexity can be studied from a topological point 
of view. Hence, a great number of open problems naturally arise. We display some 
of them. 

1. (Conjecture) The set of (partial) recursive 0-1 valued functions is a set of the 
second Baire category. 

2.  (Conjecture) The set of strictly partial recursive functions is a set of the second 
Baire category, i.e. the set of recursive functions i s  not a residual. 

3. Find topological versions of Speed-up and Compression Theorems (BLUM [l]). 
4. The set of (optimal) Godel Numberings is meagre? (SCHNORR [17]) 
5. Find analogue results from the point of view of a recursive measure. 
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