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Ehrenfeucht Test Set Theorem, highly significant in Formal 

Language Theory, and Hilbert Basis Theorem are constructively 

correlated. A constructive version of Ehrenfeucht Test Set Theorem iS 

proved~ it is, classically, equivalent with the original result, which 

in turn is constructively equivalent with the classical Hilbert Basis 

Theorem. Our proof is given ~ithi~ Bishop Constructive Mathematics and 

it relies upon Tennenbaum's version of Hilbert Basis Theorem. 

i .  INTRODUCTION 

The proof of Ehrenfeucht's Conjecture at the end of 1985 (see 

Albert and Lawrence (1985), Perrin (1985), Salomaa ('1985)) has 

established a rather unexpected link between a result in Commutative 

Algebra~ Hilbert Basis Theorem (Hilbert (1888-9), Waerden (1958)) and 

a relevant property in Formal Language Theory~ of a non-commutative 

character (see Karhumaki (1984) for an overview). 
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The present paper is a cor~tin~atior~ of CALUDE (19;E:6). Our mair~ aim 

is to offer a ronstructive version of Ehr~nfeucht Test Set T h e o r e m  

which is classically e,luivalent to the original result arid allows uS 

to constructively contrast the classical forms of Ehrenfeurht arid 

Hilbert theorems. Our analysis is made using Tenner~baum's version of 

the notion of a Noetherian discrete module, a constructive notiot~ 

classically e,~uivalent to the ascendir~r4 chain conditior~ (see 8ridge~ 

and Richman ('1987), Mines, Richman ard Ruitenbur9 (1988)). We worR 

within Bishop Cor~structive Mathematics, shortly BISH (Bridges and 

Richman (-1987)). Our basi,- notation is .taker~ from the above aiuoted 

morJocj raphs. 

By N and Z me denote, respertively, the set of naturals and the 

set of ir~tegers. For every finite non-empty set × (der~oted alphabet) 

~,e construct X • the free monoid generated by X and Z [X] (i.e. the 

set of all polynomials in ,,v over Z), the free commutative rirtg 

8enerated by X.Irt view of 'the universality properties it follows that: 

i) for every monoid M and for every furuztion f:X--~ M there exists a 

unique monoid-morphism re(f) : X*--~ M whirh extends f, ii) for every 

fun,ztior~ f:A --~ R, wh~re R is a ,.-ommu'tative ring, there is a uni,~ue 

rinc_~-morphism r(f) : Z [A] -4 R which e.:~:tends f. Let RI, R 2 be two 

rings and f : R~--~ R~ be a rin,zj-morphism . By aff(fl : Aff(R~ ) .-~ 

Aff(Rz) we der~ote the monoid-morphism aff(f)(s~'t) = (f(s),f(t)), whera 

Aff(R ) is the affir~e monoid of R (i.e. the set R or,Banized with the. 

binary operationn (r,s).(t,u) = (r+s't,su)). By ~;(i=1,2) me denote the 

~, v ,  is the pro~ection fur, ctions ~r,(s,t)=s, ~(s,t) = t .  Finally, " ~ "  

disjoint union {~, / ~ ~ X } U {zs / .x~X }, and ){ = {E ! ~ X } is a 

disjoint copy o f  " 

Classicaly, Ehrenfeucht and Hilbert results can be stated as 

fol lows: 

Ehrenfeucht's Test Set Theorem. For every nor~-empty subset L ~ A m 

(A finite) there exists a finite subset F~L (called test set for L) 

such that for every pair of monoid-morphisms f,g,A --> B (8 finite), if 

f ( u )  = , . -~(u),  f o r  e v e r y  u ~ F ,  t h e n  f ( u )  = , B ( u ) ,  f o r  e v e r y  u e L .  

Hilbert Basis Theorem. For every r~on-emF, ty subset T ~ ZEA] (A 

finite) there e.xists a finite subset P~T such that every element or T 

can be ~,ritter~ as a linear combination of elements of P with 

coefficients polynomials in Z [A] (in all variables in A e~ceF, t a 

fi~ed o n e ) .  

Both results presented above use the e~ister~tial c[uantificatior~ 

in an essential way. The interpretation of the "existen,-e" is ~ the roo't 

of the distinction between the traditional or classical mathemat:~,zs 
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arid its constructive counter"part: whereas, classically, the existeru:a 

of an object x with property P can be stated by ded,4cir~cj a 

cont radictior, from the assumpt ior~ that r~o s,Jch x exists, 

constructively, the proof of the existence o~ such an x must embod~i 

two algorithms, one for the construction of x and another for checkin,-3 

that x has the property P. 

From the very begir, rd.r~,2~ Hilbert Basis Theorem was confronted with 

cor~structive requirements (see the objections ot gordan, Ca!tley and 

Kror~ecker in Reid (1970)) arid was a chal].er~ge for the search of 

l-l, .. ) " a r ,  y v a r i o u s  c o n s t r u c t i v e  s u b s t i t u t e s .  F o l l o w i r J  9 S e i d e n b e r , B  ( -~'=~ , 

condition on R classically e,~uivalent to the ascer, dinq chair~ cor,~itior~ 

on ideals and which can be sho~,n, constructively, to transfer to R D-(] 

can be reasonably be cor~sidered as a clefirtitior~ of Noetherian for 

corlst I"J4 c t ;i. Ve  "-~ '= purpose= .In what follows we shall use Tenner~baum'~ 

cor,~i'tion. Le.t R be a riru-3 ar,J M a discrete R-module (see 8ridges and 

Richman (1987)). A Noetharian basis function for M is a se,luence 

( ~n )r~?.. o f  functions, ~ M ~ R ~'~ : --> such that if (xn)n>.1 is a~ 

infinite se,~uence of e!emer~ts of Mt then there exists arbitraril~t 

large r~ such that x = i.-i r~ x~, ,~,here ~(x I ..... x ) = (f"1 ..... ~-~)" 

One can prove (see Mines, Richmar,, Ruiter~berg ('1988), p.2<14.-207) that 

every discrete R-module M admitting a Noetherian basis function iS 

(constructively) Noetherian {i.e. ,for every ascending chair~ of ideal~ 

I~ llc ... in M, there exists a r~atural n such that In = In+~ ) and 

MIX] also admits a Noetherian base function. Our Basic e~ample is the 

rin9 Z of integers, as a module over itself, which admits a Noetheriar~ 

basis function and therefore Z[A] also admits a Noetherian basis 

function. The above constructive definition of Noetherian R-module is 

classically, but not constructively, e~luivalent to the traditional 

definition (for every ascendir~g chair~ of ideals I, cI~r-.., in M there 

exists a natural n such that Im= I n, for all m> r~ ). The above 

defir~itions car~ b e  correlated I;,y means of 8rouwer-Bishop limited 

principle of omniscience (LPO): if (a n ) is a bir, ary seAuence, thet~ 

either there exists m such that am= "I or else a n = 8, for each n. Now~ 

the constructive ascendin,B chair, cor'dition appended with LPO is 

constructively e,luivalent to the classical ascer~dir~g chain conditior~ 

• B~id,i~es and Richman, -1987). As LPO is rejected in constructive 

matkiemat ics (it is provably false within some varieties of 

constructive mathemati,-s, for ezample INT and RLI.,._-,, see Bridges and 

'" 1987 ) p ,  Richmann( , 4), it follo~s that ~e must content our-selves ~ith 

the more restricted definitior~, i.e. ~ith the re~uirement that we ca~ 

find a place ~here the chair~ pauses. 
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A subset Sc A*x A * is called a system of word equations, shortly 

a word-system. A solution for S is a monoid morphism f:A -~ B such 

that f(u) = f(v), for every (u,v)~ S. Two word-systems S and S' are 

equivalent in case they have exactly the same solutions. Finally, we 

state the 

Word-System Theorem. For every S c ~xA*(A finite) there exists a 

finite word-system S'C S which is equivalent to S, 

2. BASIC TRANSFER RESULTS 

Our aim is to present, withir. BISH, two results re i at i r,.'~ 

Ehrenfeucht's conditior~ to word-systems and to systems of polynomial 

e.~uations. These results appear, more or less, in Culik II ar.d 

Karhum3ki (1983) and Thue Poulsen ('1985), but proofs are included to 

insure that there are no problems froro the cor~structive point of view: 

Theorem ~I. For every u,v~A ~ there e~ists a polynomial p,,veZ[A+A] 

(deper~ding upon u and v) satisfying the following condition: 

(I) for every monoid-morphism h : A*--~ B ~ there exists a ring~- 

morphism F : Z[A+A] --~ Z[B] (dependir~g only upon h, but not or~ u and 

v) such that h(u) = h(v) iff F(p,, v ) = 8. 

Proof. Consider the mapping ~:A --~ Aff(Z[A+A]) defined by 

re(a) = (a~, az), a~A ar.d put 

(2) Pu,v =~I ° m(~ )(u) - x10m(~ )(v). 

Given "the... alphabet B ~.e consider the function ~:B --> Aff(Z[B]); 

(b) = (b,b), bmB arid we observe that 

(3) the monoid-morphism nl~m( ~ ) is injec'tive: 

Finally, given a monoid-morphism h : A*---> A', we define the 

functior~ f : A+A --~ Z[8] by the formula 

(4) f(aL) =mio m(~ ) o h(a) , aeA , i = I,.2, 

and we set 

(5) F = r(f). 

By cor~structiort, F : Z[A+A] --~ Z[B] is a ring-morphism. Moreover, 

F has the following useful property : all(F) is the uni~lue monoid ~ 

morphism such that 

(6) all(F) o m(~ ) = m( ~ ) o h 
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Indeed, in vie~, of the universality of A $ it is enough to shoe 

that (6) is valid in every poir, t a~ A: aff(F)(m(~< )(a)) = 

= a f f ( F ) ( ~ ( a ) )  = a f f ( F ( a  t ,  a z ) )  = (F  ( a t ) ,  F ( a z ) )  = 

= (r(f)(a~),r(f)(az)) = (f(a~) , f(az)) = 

= (~ ~ m(#S ) o h(a), ~z°m(p ) ° h(a)) = (m(~)o h)(a). 

To end the proof we display the following e.~uivalences: 

h ( u )  = h ( v )  ~==) ~7 m( I~ ) ( h ( u ) )  i= ~ , ° m ( l l  ) ( h ( v ) ) ~  (3 )  

#==) X1o(m(~ ) o h ) ( u )  = ~I ° (m(#) ° h)(v) 

~==~ ~,o(aff(F)~ m(~ ))(u) =~+~(aff(F)~ m(~ ))(v)) (6) 

~=~ Aio(aff(r(f)) o m(~ ))(u) =~,.(aff(r(f)) o m(~ ))(v)~(5) 

~oaff(r(f))(~+ m(~ )(v),~.om(~()(v)) 

(=-=~ ~(r(f)(m~m(~ )(u))~ r(f)(~om(~ )(u))) = 

~,(r(f)(~,o m(~ )(v)), r(f)(~zom(~ )(v)));def.of aff 

~=~ r(f)(~ m(~)(u)) = r(f)(~T~om(~ )(v)) 

~=~ r(f)(~om(~ )(u) - ~o m(~ )(v))=e; 

r(f) is a ring-morphism 

~="==) F(Pu,v ) = @~ ( 2 ) , ( 5 ) .  # 

Theorem 2. (Culik II and Karhumlki) Ehrenfeucht Test Set Theorem 

is e~&uivalent to Word-System Theorem. 

Proof. Assume that Word-System Theorem is raid. Let L be a non-" 

e m p t y  s u b s e t  o f  A ~. C o n s t r u , - t  t h e  w o r d - s y s t e m  S ( L )  = { ( u ,  u ) / u e  L }  c 

(A U A+) °+ Ir, view of the Word-System Theorem there exists a finite 

w o r d - ~ y s t e m  .,c"~ ~£(L) ,  e q u i v a l e n t  t o  S ( L )  T a k e  F = { u e  L l ( u ,  u ) e  c . , } ;  

and note that for each pair of monoid-morphisms f, 9 : A~--~ E; ~ we car~ 

construct the monoid-morphism h : (AL~A) --e B given by h(a) = f(a); 

h(a)=g(a), for every a~ A such that the following equivalences hold~ 

f,g a~ree on F ~=@ h is a solution for S' ~=@ h is a solution for e 

(=-=@ f~ g agree on L. 

Conversely, given a word-system Sc A~× A ~ we construct the set 

L = {uv_/ (u,v)e S}c (AVA) ~ and the monoid-morphisms f,g : (AVA)~--> A ~ 

given by f(a) = a , f(aa _) = e (the null string), g(a) = e , g(a_) = a~ 

for all a e A. Clearly, S = {(f(u),g(u))/ ueL}. It is obvious that 

• -,-~' = { ( f ( u ) , q ( u ) ) / _  u ~ F } ,  ( w h e r e  F i s  a t e s t  s e t  f o r  L )  i s  a f i n i t e  

w o r d - s y s t e m ,  S ' c  S a n d  S '  i s  e , & u i v a l e n t  t o  S. # 
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3. CONTRASTING HILBERT AND EHRENFEUCHT THEOREMS 

nur aim is to show that, within BISH, Ehrenfeucht Test Set 

Theorem and Hilbert Basis Theorem are both equivalent to LPO~ 

19,:,:,) and Calude and Vaida (igE:7) extending the results ir, Calude (" ~',: 

Theorem 3. The following assertions are equivalent : 

(i) LPO, 

(ii) Hilbert 8asis Theorem, 

(iii) Ehrenfeucht Test Set Theorem. 

Proof. (i) =@ (ii). The proof is by induction on the number of 

elements of A. If A is empty, then Z[A] reduces to Z. Given now a non- 

empty subset T ~ Z we ronstruct the subgroup <T> generated by T, i.e. 

the set of all linear combinations of elements in T with integer 

coefficients. In view of LPO there exists a natural n such that 

<T>= nZ. We injectively generate, usinq a dovetailing procedure, all 

the elements of ~T>and we compare them to the generator n. Using 

Markov's Principle (if (a m ) is a binary sequence so that it i~ 

impossible that a m = @, for all m , then there exists a natural k such 

that a~ = I), whi,-h is an easy consequence of LPO, we Get a 
m 

representation of the form n =~i-, a~.- t i (a I e Z, t L e T), and 

therefore the basis is P ={t I ..... t~}. 

For the induction step we follow Hilbert's original reasoning 

(see Hilbert ('1988-9), Waerder, (1950)). As usual one considers a r~on = 

empty subset Tc Z[A][Y], where Y is a new variable, and the ideal (T) 

generated by T. Let ,J be the set of the leading coeffi,-ier, ts of the 

polynomials in (T), according to their Y's expansions. The indu,-tior, 

hypothesis applies to d~Z[A], so that d is generated by a finite 

number of polynomials Sz,,, .... p~ . In view of the cor, structior, of d we 

can find a finite set of polynomials qt in (T), of ,degree d L, "l.<i_< m~ 

which have as cor respor, ding leading coefficients exa,: t ].y the 

polynomials Pt We repeat the above procedure f o r  the sets 

d~ (i & k z max(d[)) whi,_-h cor, tain the leading coefficients of the 

polynomials in (T) of degree k. 

From now on Hilbert's original proof is constructive 

and will not be repeated~ 

(ii) ==-~ (iii) Giver, L~A ~ we construct the word-system S(L) as 

in the proof of Theorem 2. For every pair (u, u~ 6. S(L) we construct a 

polynomial Pu = puuas ir, Theorem i. Usir,,?~ (ii), from the set of 

polynomials T = { pu/ ,-~L} we car, construct a finite subset P such 

that ea,-h polynomial ir, T is Jr, the ideal generated by F'.Take r, ow 
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F = { u/ pu ~ P} and notice that FcL is "rinite and by Theorems "I and 2 

it satisfies the requirement ir~ (iii 

(iii) === (i). Let (a~) be a binary se,'_lUenCe and construct the 

s e t  L = { ~ a , /  n ~ ' l  } c { O ,  -I} ~ Here f o r  e v e r y  x E { O , l } .  ~ = e,  

x = x x . . . x , k  r o p i e s ,  ~or  .b > O. Le t  f,~3 : { 0 , ' i } ~ - - - ~  {O,'I~F b,~- th~ 

morphisms q iver ,  by f ( O )  = f ( 1 )  = ,.3((3) = O, ~( ' I )  = 00. O b v i o u s l y ,  f a r ,  d 

g ac~ree on L i f f  a n = O, f o r  a l l  r,. 8y ( i i i )  '~- c o n s t r u c t  a t i r ,  it~_ 

subset Fc L so that f and 'B agree on F iff they aqree on L, i.e.iff 

a n = 0 for all n. # 

Comment. In Brid,Bes and Richmann (i987),p. 92-93 or~e sketches a 

proof of Hilb~rt Basis Theorem (for a countable discrete ring) by 

invoking Markov's Principle and usir~,.3 some classical reasonir,,~. The. 

preser-~t p r o o {  does no t  rely LIpor, ar~y c l a s s i c a l  reason ing. :  i t  makes use 

o f  LPO (and, as a cons~!,lue:r, ce,of Markov's Principle), and it shows 

that the use o f  LPO cannot b e  avoided. 

The implications (ii) ==@ (iii) and (iii) ===~ (i) do r~ot use LPO 

or Markov's Principle. 

4. CONSTRUCTIVE EHRENFEUCHT TEST SET THEOREM 

In this section we preser~t a constructive version of Ehrenfeucht 

Test Set Theorem usinq Tenner~baum's form of Hilbert Basis Theorem. 

Theorem 4. Let L ~ A ~, For every sequence (xn)n~ I of elements in 

L and for- every natural k, there exists a natural s~ k such that for" 

~very pair of mor, oid-morphisms f,g : A ~ ---> E: ~, f and g agree on 

{,~ . . . . .  x~} iff t h e y  a,Bree on {x~ . . . . .  x s .  t 7 ,  

P r o o f .  G i v e n  L w~ c o n s t r u c t  t h e  l a n g u a q e  S ( L )  a s  i n  t h e  p r o o ?  o f  

Theorem 2 and the set of polynomials T = {Pu = Ps~ ! y~L}~ EEX] where 

X = (AUA) + (Av A) Using Tennenbaum's Theorem (see Mines, Richmar~ 

and Ruitenberg (1988), Theorems 4.4 and 4.2, p.205-207) we can firzd a 

Noetherian basis function for ZE×]. The proo~ is concluded by 

Theorem i. # 

Comment. 

classically 

that Theorem 

Theo rem, so, 

considered 

condition. 

In view of Theorems i and 2 it follows that Theorem 4 

implies Hilbert Basis Theorem. By Theorem 3, we deduce 

4 is classically e~uivalent to Ehrenfeucht Test Set 

accordin 9 to Seidenber 9 point of view, it can be 

as a possible constructive version of Ehrenfeucht'S 
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