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Elrernfeucht Test Sel Thecorem, highly significant in Formal
Language Thaory. arwd Hilbert Basis Thecorem are constructively
correlated. A constructive version of Ehrenfeucht Test Set Theorem is
proved; it is, classically, equivalent witkh the eriginal result, which
i turn is constructively equivalent with the classical Hilbert Basis
Thaorem. Our proof is given within Bishep Constructive Mathematics and

it relies upon Termenbaum’s version of Hilbert Basis Theorem.

4. INTRODUCTION

The proof of Ehrenfeucht’s Conjecture at the emd of 1983 (zee
Albert arnd Lawrence (1785), Perrin (1935), Salomaa (198%)) has
established a rather unexpected link between a result in Commutabive
Algebra, Hilhert Basis Theorem (Hilbert (12988-9)., Wasrder (1950)) and
a relevant property in Formal Larguage Theeory. of a non-commutative

character {see Karbhumaki (1984) for an overview).
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The present paper is a continuation of CALUDE (192467 . Our main aim
is to offer a comstructive version of Ehrenfeucht Test Zet Theorem
which is classically equivalent to the original resull and allows us
te constructively contrast the classical fﬁréﬁ of Ehrenfeucht amd
Hilbert theorems. Our analysis is made using Terrenbaum’s version of
the rnotion of & Noetherian discrete module, a constructive rotion
classically eguivalent to the ascerding chain condition {(see Bridges
ard Richmarn (198F), Mines, Richman arnd Ruitenburg (1738)). We work
within Bishep Constructive Mathematics., shortly BISH {(Bridges and
Richman (1987)). Our basic netation is taken from the above gquoted
monographs .

By N and £ wae dencte. respectively. the sel of naturals and the
set of integers. For every fTinite nor—empty set X (demected alphabet)
we construct X*; the freae moroid gererated by ¥ oard Z [X1 {i.e. the
set of all polyrmomiale in ¥ over Z), the free commubtative ring
generated by X.In view of the universality properties it follows that:
iy for every moroid M amd for every furnction f.X-2 M there exists a
unique moncid-merphism m{f) . X*~4 M which exterdds f. 1ii) for every
function f:6 -2 R, where R is a commutative rimg, there is a unigque
ring-morphism r{f) . & [A} ~* R which axtends f. Let R,, R, be two
rings and f . Ry~ R, be a ring-merphism . By aff(f) . aAffR, .-»
AFF(R,) we denote the moncid-morphism aff(f){s.t) = (F(=),T0L)), where
AfF(R ) is the affine moroid of R (i.e. the set R organized with the
binary operationmn {(r.s).{t.u) = (r+st,.sul). By ®(i=1,2) we denole the
projection functions m {s,t)=s, #s,t) =t  Finally, ¥+{ is the
disjeint uniorn {x, / x ¢ ¥ ¥ U {x, / xeX I, ard ¥ = {%x / zeX ¥ is &
digsjoint copy of ¥.

Classicaly, Ehrenfeucht and Hilbert results can be stated as
follows:

Ehrenfeucht’s Test Set Theorem. For every rwornemply subset L < a
(8 finite) there exists a finite subset Fel (called test set for LI
such that for every pair of morcid-morphisms f.g.8 - B (B Tinite}, if
fluy = gfu), for every neF, then flu) = glu), for every uel.

Hilbert Basis Theorem. For every nor-empty subset T © ZIAT (A
finite) there exists a finite subset FPeT such that every element of T
can be writtem as a limear combiration of elements of F with
coefficients polymomials inm 2 [AT {in all variables in A except &
fixed onel.

Both results presented above use the existential quantifization
i an essential way. The interpretation of the "existernce" ig the root
of the distinction betweenm the traditional or classical mathematics
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and its constructive counterpart. whereas, classically., the existancé
of am object x with property P canm be stated by deducing a2
contradiction from the assumption that o such % exists,
comstructivaely, the proof of the axisterce of such an x must  embody
two algorithms, one for the conmstruction of x and another for checking
that x has the property F.

From the very beginnirmg Hilbsert Basis Theorem was confronted with
constructive requirements (see the objections of Gordan, Cayley ard
Kreonecker imnm Reid (47703) and was a challenge for the search of
various constructive substitutes. Follewing Beiderbkerg (1973),  "any
condition o R classically equivalent to the ascending chain corndition
on ideals and which can be shows, constructively., to transfer to R I3
carr be reasonably be considered as a definitien of MNeetherian for
congbructive purposes” . Inm what follows we shsll use Ternernbaum’s
corndition., Let R be a ring arnd M a discrete R-module (see Bridges and

Richmar: {(1987)). A Npoetherianm basis function for M is a sequerce

-4 . .

( ¥ndnpa of functions, ¢, . M => R such that if (x,),, is an

infirdite sequerce of elements of M, then there exists arbitrarily
n=q

large n such that = = Z:h1 roX, . where qa(x1;.‘.;xh) = {r, RS A

Ume can prove (see Mires, Richman, Ruiternberg (1982}, p 204-207) that

every discrete HR-module M admitiirng a Noetherianm basis funciion is

(comstructively) Noetherian (i.e..for avery ascending chain of ideals

I,el,c ... in M. there exists a natural n such that T, = I,,,} and
+1

MLX] also admits a Neetherian base function. Our hasic example is ihe

ring £ of integers, as a module over itself, which admits a Noetherian

basis furction and therefore ZEAY also admits a Mestheriam basis
furction. The above corstructive defimition of Neetherian R-module is
classically., but rnot comstrustively., equivalent to the traditional
definition (for every ascending chain of ideals IL,cl,c... in M there
exists a natural n such that I, = I,, for all m>nr ). The above
definitions carm he correlated by means of Brouwer-Bishop limited
principle of omniscience (LPO)Y: if\(an} is a birmary sequence, thes
either there exists m such that a,= 1 or else a, = 0, Tor each n. Mow:;
the comstructive ascending chain corditien appended with LPO  is
conmtructively egquivalent to the classical ascending chain condition
{Bridges and Richman, 1987). As LPD is rejected irn comstiructive
mathematics {it is provably false within some varieties of
constructive mathematics, for example INT amd RUSS; see Bridpes and
Rickhmarei (1987, p.4), it Tollows that we must conternt our-selves with
the more restricted defimition, i.2. with the regquirement that we canm

fird a place where the chain pauses.
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A subset Sc A x A% is called a system of word equaticns. shortly
a word-system. A solution for S is a moneid merphism £:8 -2 B such
that flu) = fiv), for every (u,v) €S, Two word-systems = and 5'  are
equivalent in case they have exactly the same solutions. Finally., we
state the

Word-Zystem Theorem. For every Sc A xA (A finite) there exists a

g

finite word-system 57C & which is eguivalent to &

2. BASIC TRANSFER RESULTES

Our aim is to present, within BISH, two resulis relating
Elrenfeucht’s conditien to word-systems ard to sysiems of pelynomial
equations. These results appear, more or less, irm Culik IT  and
Earbumaki  (1982) and Thue Foulsen (4983), butl proofs are includedd to
insure that there are no problems from the constructive point of view:

Theorem 1. For every u;»feéf there exists a polynomial g%v£259+ﬁ3
(deperding upon u and v) satisfying the fellowing cordition:

(1Y for every morncid-morphism h . a - g there exists a ring-
morphism F . ZLA+AT - ZIBI (depending only upon k. but not on u and
v) such that hiu) = hiv) iff Fip, 1} = N

Froof. Cormsider the mappimg oA — AFF{ZLA+AT) defirned by
x (a) = {a,, a,}, aen ard put

(2 pyy = e mle Yl ~ Momle )lv).

Given the alphabet B we consider the furction pg:B - ATFIZIEI)

gy = (kb beB and we ohserve that

(3 the monoid-morphism Jem{ p) is injective.

Finally, given a monoid-morphism b . g e 8, we define the
function ¥ . A+A ~ ZIB] by the formula

(4) flay) =xiem(p)eh{a) , aefr 1= 1.2,
ar! we seti

(5 F = rifl.

By cemstruction, F . ZLA+AT ~-» ZIEI is a ring-morphism. Moreover.
F has the following useful property . aff{F) is the unigue monoid>
morphism such that

(A) aff({Floe m{«} = m(P Yo b
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Inmdeed., im view of the universality of A it is enough to  show
that  {4&) ig valid in every point ae A aff(Flim{x ¥{a)) =
= aff{Fy{«la)) = aff{Fla,, a,3) = (F (a1, F (a,)) =
= {r{fila, ) rif¥la,)) = (fla,) , fla,)) =
= ARy emip 3 ohiad, Tyem(p ) o Mlad) = (m(p o hi(a),
To end the proof we display the following equivalerces:
i) = hiv) &= gem{p) (hiu)) & Xemip Ihiv)); (3
=3 Feolm{p o b2 {u) =Ty e (m(p ) o h)(v)
= MelaffiFle m{a 33Ul =Ko (aff(Fle mi })iv),; (&)
= Relaffir(f)) emlo 11 {u) =Xplaff(r{fd)e mlix I} {v)i {5}
Suzmad x4°aff(r(f)}(ﬁ1om{o< Yiud e mix Jlud) =
RealfFlrtf ) {me mla Jvi, Fomlia J{v))
&=3 Mo lr{flixemi« )0)), rif)limemla JLud)} =
T lrdf I ine mlo 3{w)), riflimemlo Ylv}) ) idaef of aff
=3 {3 We mlie 1ud) = FIR(mem{x Y{v))
E=s PR e miot Fid = Teomla }{v)i=G;
r{f) is a ring-morphiam
Gamzd F(F:‘u,v yo= @ (2Y.05). #

Theorem 2. (Culik II and Karhumdki) Ehrenfeucht Test Set Theoram
is equivalent to Word-System Theorem.

Proof. Assume that Word-System Theorem is vaid.Let L ke a nons
enpty subset of A%, Comstruct the word-system S(L) = {{u, M)/uely <
(g U ﬁj* I view of the Word-System Theorem there sxists a finite
word-system S°c S(L), equivalent to S(L)Y. Take F = {ue L/{u, ulre 5%,
arwd note that for each pair of moneid-morphisms f,g . A“——> Y we can
construct the moncid-morphism W . (Quﬁ)* 3 E:F giver by hia} = fla);
hig)=gla), for every ae A such that the following eguivalerces hold:
fra agree on F &= h is a solution for 8/ &=3 k iz a solution for &
&= T, g agree on L,

Corversely., given a word-system Sc A x A% we comstruct the set
L= fuy/ tuv)e 5y (AUAY and the morcid-morphisms .5 . (au@) —» a*
given by fla) = a . fla) = & (the rull string). alay = e , gla) = a;
for all ae A. Clearly, 5 = {(f{ul,g(u))/ uely. Ii is obvious that
27 0= L0 glud)/ ueFY, (where F is & test set for L) is a finite

word-system, '€ 8 arnd 8/ is equivalent to S. #
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. CONTRAESTING HILEBERT AND EHRENFEUCHT THEOREMS

Tur  aim  is  te show that, within BISH, Ehrenfeucht Test SZet
Theoram arwl Hilbert Basis Theorem are both equivalent to LPO;
extending the resulis in Calude (1984) arnd Calude arnd Vaidse (1937).

Theorem 3. The folleowing assertions are equivalent

(1) LPO.

(ii) Hilbert Basis Theorem.

{iii) Ehrenfeuchi Test Set Theorem.

Proof. (i) =2 (ii}). The proof is by induction on the rumber of
elements of A, If A is emply. then ZLADJ reduces to . Given now a non-
empty subset T ¢ 2 we construct the subgroup <72 generated by T, i.e.
the set of all linear combimations of elements inm T with  integer
coefficients, Irm view of LPO there exists a natural n such that
<T>= mZ. We injectively gererate, using a dovelailing precedure. all
the elemermts of <Tamd we compare them to the generator n.lsing
Markov’s Principle (if {a, ) is a binary sequence so that 1t is
impossikle that a, = 9, for all m . then there exists a rnatural k such
that a, = 1), which is an easy consequence of LPO, we gel &
representation of the form n =Z::4 a,~t (a, e, t_ eT) arud
therefore the basis is P ={t,... ., t.3.

For the induction step we follow Hilbert’s original reasening
(see Hilberi (1988-7), Waesrden {(1950)). As usual ome considers a nont
ampty subset Te ZLAILYI, where Y is a new variable, and the ideal (T)
generated by T. Let J be the set of the leading ceefficients of the
polyriomials in (TY, accerding te their Y's sxpansions. The induction
hypothesis applies to JeZLAT, so that J is gererated by a finite
number of polyremials p, .. ...p, . In view of the construction of .J we
can Tird a Timite set of polynemials q, in (T}, of degree d; . lgigm;
whiich Fawve am corresponding leading coefficients exactly the
poelyrnomials By He repeat the above procedure for the sets
Jio (1 ¢ kg maxidy)) which contain the leading cecefficients of the
pelynomials i {TY of degree k.

From mow on Hilbert’s origiral preef iz constructive
arwl will ret be repeated.

(idy ===z (iii) Given L<:ﬁ* we construct the word-system S(L) as
in the proof of Theorem 2. For every pair (4, gy e S{L) we construct &
polyromial p, = Py 88 in Theorem 1. Using (ii), from the set of
polymomiale T = { p;} €LY we can construct a finite subset F o osuch

that each polynomial in T is in the ideal gernerated by F.Take riow
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Fo= 4 us PLE F¥ and notice that Fel is finite and by Theorems 1 ared 2
it satisfies the requiremant ir (iii),

(iii) === (i). Let { a,) be a binary sequence and construct the
set L = 0"

*
= xx.xk copies, for k>0, Let f.4 . 10,1 ——> 0,1} he the

1a"/ gl Yed{o, 13* . Here for avery x € {0.,1}. x° = e,

morphisms given by T(0) = f{1) = g(Q) = &, g1} = 00. Obvicusly. f ard
g agree on L iff ap = 6. for all . By {(iii) we comstruct a finite
subsat FC L so that ¢ ard g agree on F iff they agree orc b, i.e iff

&, = @ for all n. #

Comment. Irn Bridges and Richmarn (198F):p.  92-732 orne sketches a
proof of Hilbert Basis Theorem (for a countable discrete ring) by
invoking Markov’s Principle amd using soeme classical reasoning. The
presant preof deoes ret rely upen any classical reasoming: 1t makes use
ef LPO (arcl, as a corsequence.of Markov’s Principle), ancd it shows
that the use of LFO canmet be avoided.

The implicatioms (ii) === {iii) arnd (1iii) == (i) do rotl use LPD

or Markov’s Principle.

4. CONSTRUCTIVE EHRENFEUCHT TEST SET THEOREM

In this section we present a comstructive version of Ehrenfeucht
Test ZSet Theorem using Tennenbaum’s form of Hilbert Basis Theorem.

Theorem 4. Let L ¢ A%, For every sequence (x,) .. of elements in
L and for every rnatural k., fhere exists a natural sy k such that for
evary pair of morocid-morphisms f.g . A ——> 8%, f and o RGree on
{xg oo exg Y i they agree on {x,., ... ,x g, ¥,

Proof. Giver L we construct the langusge S(L) as in the proof of
Theorem 2 arnd the set of polynomials T = {p, = p%x‘/ ueblla ZLKY whera
XK= {AavAl + (AVAY . Using Termerbaum’s Theorem {see Mines. Richman
arwd Ruitenberg {(1988), Theorems 4.4 and 4.2, p. 205-207) we cam fTind a
Moetherian basis function for FIXI. The proot is concludad by
Theorem 1. #

Comment. In view of Theorems 1 ard 2 it follows that Theorem 4
classically implies Hilbert Basis Theorem. By Theorem %, we deduce
that Theorem 4 is classically equivalemt to Ehrenmfeucht Tast Set
Theorem., so, according to Seidenberg point of view, it rcan be
consideredd as a possible constiructive version of Ehrenfeuchi’s
cordition.
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