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Proving the chaoticity of some dynamical systems is equivalent to solving the hardest problems in
mathematics. Conversely, classical physical systems may “compute the hard or even the incomput-
able” by measuring observables which correspond to computationally hard or even incomputable
problems. © 2010 American Institute of Physics. �doi:10.1063/1.3489096�

The relationship between classical physical systems mod-
eled by continua and their theory of computation is still
not entirely settled. On the one hand, chaotic systems in-
dicate that it might be “computationally hard” to for-
mally prove many of their properties, in particular chao-
ticity. On the other hand, it might not be too
unreasonable to speculate that such physical systems, due
to their capabilities of utilizing the continuum, may be
capable of performing tasks which are beyond the scope
of universal Turing machines based on discrete entities.

I. INTRODUCTION

Proving that a dynamical system is chaotic is an impor-
tant problem in chaos theory.1 Despite causality,2 virtually
any “interesting” question about nontrivial dynamical sys-
tems appears to be undecidable,3 but is there a way to math-
ematically prove this statement? Closely related is the ques-
tion: Is there a way to measure the difficulty of proving the
chaoticity of a dynamical system? There are only few
“bridges” between chaotic dynamical systems and complex-
ity theories, in particular algorithmic information theory.4–7

The unpredictability of the systems studied in this article
comes from a combination of chaoticity and a “decision
problem” embedded in the system; the complexity of the
decision problem �in the sense to be precisely described in
Sec. II� may be arbitrarily large, including high incomput-
ability. We shall show that “proving the chaoticity of some
dynamical systems” amounts to “solving the hardest prob-
lems in mathematics” and vice versa.

We will study a class of mathematical sentences called
�1-statements. A sentence of the form �= ∀n Pred�n�,
where Pred is a computable predicate �n is always a non-
negative integer�, is called a �1-statement. The Greek letter
� is used as a generic notation for such a statement; it has no

relation with the famous constant 3.145. . . . Clearly, � is true
iff all instances of Pred, Pred�0� ,Pred�1� , . . . ,Pred�n� , . . . are
true. Every �1-statement is finitely refutable because a single
false instance of Pred makes � false. For example,
∀n�n2+1�0� is true, but ∀n�2n+3 is prime� is false.

We deal with formal proofs by using the Zermelo–
Fraenkel set theory axiomatic system with the axiom of
choice �ZFC�, the standard system for doing mathematics.
So, we say that “ZFC proves �” in case there is a proof in
ZFC for �.

Da Costa and Doria8 and Da Costa, Doria, and do
Amaral9 constructed a two-dimensional Hamiltonian system
H—a system of first-order differential equations which can
be written in the form of Hamilton’s equations, in which the
Hamiltonian function represents the total energy of the
system—with the property that �formally� proving the exis-
tence of a Smale horseshoe in H is equivalent to �formally�
proving Fermat’s last theorem. Contrary to the opinion ex-
pressed in the above articles, it was shown that proving that
the two-dimensional Hamiltonian system H has a Smale
horseshoe has low complexity10 because Fermat’s last theo-
rem has a low complexity.

As Fermat’s last theorem is a �1-statement, it is natural
to ask whether the above results can be extended to any
�1-statement. In this note we show that to every
�1-statement � one can associate a dynamical system H�

such that proving in ZFC the chaoticity of H� is equivalent
to proving � in ZFC. By applying the computational
method11–13 to �1-statements we show that there are dynami-
cal systems whose ZFC proofs of their chaoticity are arbi-
trarily complex and there are chaotic systems for which ZFC
cannot prove their chaoticity. The techniques are related to
�i� the construction of a Poincaré box as a classical physical
random number generator �akin to a quantum Born box� and
�ii� the conceivable capability of classical physical systems
to “compute the hard or even the incomputable” by measur-
ing observables which correspond to computationally hard or
even incomputable problems.
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II. �1-STATEMENTS AND THE COMPLEXITY
MEASURE

In this section we present a complexity measure11–13 for
�1-statements defined by means of register machine pro-
grams.

We use a fixed “universal formalism” for programs,
more precisely, a universal self-delimiting Turing machine
U. The machine U �which is fully described below� has to be
minimal in the sense that none of its instructions can be
simulated by a program for U written with the remaining
instructions.

To every �1-statement �= ∀m Pred�m� we associate the
algorithm �Pred= inf�n :Pred�n�=false� which systematically
searches for a counterexample for �. There are many pro-
grams �for U� which implement �Pred; without loss of gen-
erality, any such program will be denoted also by �Pred. Note
that � is true iff U��Pred� never halts.

The complexity �with respect to U� of a �1-statement �
is defined by the length of the smallest-length program �for
U� �Pred—defined as above—where minimization is calcu-
lated for all possible representations of � as �= ∀nPred�n�:
CU���=min���Pred� :�= ∀nPred�n��.

For CU it is irrelevant whether � is known to be true or
false. In particular, the program containing the single instruc-
tion halt is not a �Pred program for any Pred. As the exact
value of CU is not important �CU is incomputable�, following
a previous article by two of the authors13 we classify
�1-statements into the following classes: CU,n

= �� :� is a �1-statement,CU����n kbit�. �Recall that a
kilobit �kbit� is equal to 210 bits.�

We briefly describe the syntax and the semantics of a
register machine language which implements a �natural�
minimal universal prefix-free binary Turing machine U. Any
register program �machine� uses a finite number of registers,
each of which may contain an arbitrarily large non-negative
integer. By default, all registers, named with a string of lower
or upper case letters, are initialized to 0. Instructions are
labeled by default with 0 ,1 ,2 , . . . .

The register machine instructions are listed below. Note
that in all cases R2 and R3 denote either a register or a
non-negative integer, while R1 must be a register. When re-
ferring to R we use, depending upon the context, either the
name of register R or the non-negative integer stored in R.

=R1 ,R2 ,R3: if the contents of R1 and R2 are equal,
then the execution continues at the R3th instruction of the
program; if the contents of R1 and R2 are not equal, then
execution continues with the next instruction in sequence,
and, if the content of R3 is outside the scope of the program,
then we have an illegal branch error.

&R1 ,R2: the contents of register R1 is replaced by R2.
+R1 ,R2: the contents of register R1 is replaced by the

sum of the contents of R1 and R2.
!R1: one bit is read into the register R1, so the contents

of R1 becomes either 0 or 1; any attempt to read past the last
data-bit results in a run-time error.

%: this is the last instruction for each register machine
program before the input data; it halts the execution in two
possible states: either successfully halts or it halts with an
under-read error.

A register machine program consists of a finite list of
labeled instructions from the above list, with the restriction
that the halt instruction appears only once, as the last instruc-
tion of the list.

To compute an upper bound on the complexity of a
�1-statement � we need to compute the size in bits of the
program ��, so we need to uniquely code in binary the pro-
grams for U. To this aim we use a prefix-free coding as
follows.

Table I enumerates the binary coding of special charac-
ters. For registers we use the prefix-free regular code,
code1= �0�x�1x �x� �0,1���. The register names are chosen to
optimize the length of the program, i.e., the most frequent
registers have the smallest code1 length.

For non-negative integers we use the prefix-free regular
code, code2= �1�x�0x �x� �0,1���. The instructions are coded
by self-delimiting binary strings as follows �see more details
in Refs. 11–13�:

�i� &R1 ,R2 is coded in two different ways, depending
on R2 �we omit ��: 01code1�R1�codei�R2�, where i
=1 if R2 is a register and i=2 if R2 is a non-negative
integer.

�ii� +R1 ,R2 is coded in two different ways depending on
R2: 111code1�R1�codei�R2�, where i=1 if R2 is a
register and i=2 if R2 is a non-negative integer.

�iii� =R1 ,R2 ,R3 is coded in four different ways depend-
ing on the data types of R2 and R3:
00code1�R1�codei�R2�codej�R3�, where i=1 if R2 is
a register and i=2 if R2 is a non-negative integer, j=1
if R3 is a register and j=2 if R3 is a non-negative
integer.

�iv� !R1 is coded by 110code1�R1�.
�v� % is coded by 100.

For example, Goldbach’s conjecture �included in Hil-
bert’s eighth problem14� states that all positive even integers
greater than two can be expressed as the sum of two primes.
The program �Goldbach listed in Table II gives the upper
bound CU�Goldbach��540 which proves that the Goldbach
conjecture is in the lowest class CU,1.

III. MAIN RESULTS

We start with a result relating �1-statements and Hamil-
tonians.

Theorem 1: Assume ZFC is arithmetically sound, i.e.,
every statement ZFC proves is true. Then, to each
�1-statement �= ∀mPred�m� one can effectively construct
in the formal language of ZFC a Hamiltonian system H�

TABLE I. Binary encoding of special characters �instructions and comma�;
� is the empty string.

Special characters code Instruction code

, � + 111
& 01 ! 110
= 00 % 100
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such that ZFC proves that the system H� has a Smale horse-
shoe iff ZFC proves �.

We denote by h and k the Hamiltonian for the two-
dimensional system with a Smale horseshoe as defined by
Holmes and Marsden15 �their example 4� and the Hamil-
tonian for the free particle, respectively. Clearly, the systems
h and k can be represented in the formal language of ZFC.
Define the Hamiltonian H�

m as a linear combination of h ,k,

H�
m�q1, . . . ,qn,p1, . . . ,pn� = Pred�m� · h�q1, . . . ,qn,p1, . . . ,pn�

+ �1 − Pred�m��

· k�q1, . . . ,qn,p1, . . . ,pn� . �1�

Fix a positive integer i. In view of Eq. �1�, H�
i can be

represented in the formal language of ZFC and
H�

i �q1 , . . . ,qn , p1 , . . . , pn�=h�q1 , . . . ,qn , p1 , . . . , pn� iff ZFC
proves �. In case the above equivalence holds true,
H�

i �q1 , . . . ,qn , p1 , . . . , pn�=H�
j �q1 , . . . ,qn , p1 , . . . , pn�, for all

non-negative integers i , j, hence we can name each H�
t

by H�.
We have shown that

ZFC proves � iff ZFC proves that H� has a Smale
horseshow,

hence ending the proof of Theorem 1.
If � is true but unprovable in ZFC, then the equality

H�
i �q1 , . . . ,qn , p1 , . . . , pn�=h�q1 , . . . ,qn , p1 , . . . , pn� is true

but unprovable in ZFC.
In case � is the Fermat’s last theorem, Theorem 1 is

exactly the result proved;8,9 our direct proof does not need
the machinery involving Richardson lemma used in Refs. 8
and 9.

Theorem 1 can be applied to a variety of �1-statements
including Goldbach’s conjecture, Riemann’s hypothesis, the
four color theorem, and many others.

We address now the complexity issue: How difficult is it
to prove in ZFC that the system H� in Eq. �1� is chaotic?
Using the complexity CU we can show that Fermat’s last
theorem and Goldbach’s conjecture are in CU,1, the Riemann
hypothesis is in CU,3, and the four color theorem is in
CU,4;13,16,17 their corresponding dynamical system produced
by Theorem 1 has the property that the complexity of its
chaoticity proof is in the corresponding class.

As for every natural n there exists a natural mn such that
CU,n�CU,mn

. It follows that, according to CU, there exist ar-
bitrarily complex �1-statements; hence proving the chaotic-
ity of the system H� can be arbitrarily complex.

Finally, there are infinitely many true, but unprovable in
ZFC, �1-statements �,18 such that the corresponding sys-
tems H�

i are chaotic but ZFC cannot prove their chaoticity.
For example, from the negation of the halting problem for U
we get infinitely many �1-statements �x= “∀n �U�x� does
not stop in time n�” which are undecidable in ZFC.

IV. COMPUTATIONAL CAPABILITIES OF CHAOTIC
MOTION

One of the intriguing possibilities of the aforementioned
equivalences between certain statements in ZFC and chaotic
motion is the hypothetical possibility to “decide” hard prob-
lems in ZFC or “perform incomputable tasks” by observing
the corresponding chaos.3,9,19–21 Indeed, if such methods and
procedures have an “effective” physical implementation,
then, strictly speaking, the Church–Turing thesis identifying
the informal notion of computable algorithm with Turing
computability, or, equivalently, recursive functions, is too re-
stricted and has to be adapted to the physical capacities22–24

�for a converse viewpoint restricting operations to strictly
finitistic means, see Refs. 25–27�.

It is rather intriguing that, at least in this respect, the
situation resembles the famous Einstein, Podolski, and Rosen
�EPR� argument28 for a possible “incompleteness” of quan-
tum mechanics. According to EPR, whereas quantum theory
does not allow complementary physical observables to si-
multaneously “exist,” experiment �augmented with counter-
factual reasoning� allows for such “elements of physical re-
ality.”

TABLE II. Program �Goldbach for the Goldbach conjecture.

00: = a a 16

01: & e 2

02: & d 1

03: = a e c

04: & d 0

05: & f e

06: = f a 13

07: +f 1

08: +d 1

09: = d e 11

10: = a a 6

11: & d 0

12: = a a 6

13: = d 0 c

14: + e 1

15: = a a 2

16: & g 4

17: & h 2

18: = g h 38

19: & c 22

20: & a h

21: = a a 1

22: = d 0 35

23: & i 0

24: & k h

25: = k g 29

26: +i 1

27: +k 1

28: = a a 25

29: & c 32

30: & a i

31: = a a 1

32: = d 0 35

33: +g 2

34: = a a 17

35: +h 1

36: = a a 18

37: & d 0

38: %
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In the case of chaotic systems, our present theory of
computability, formalized by recursion theory, does not al-
low the “execution” of certain “hard” tasks; but the equiva-
lent chaotic systems would perform just such tasks, some-
times with relative ease on the side of the experimenter. One
example of such seemingly mismatch—in the sense of
EPR—of computability theory and physical computation is
the construction of “oracles producing random bits,” as dis-
cussed in Sec. V.

V. POINCARÉ BOX AS PHYSICAL RANDOM NUMBER
GENERATOR

Chaotic systems can be used as a physical device for
incomputability. In the “extreme” algorithmically incom-
pressible case, a chaotic dynamical system can serve as a
source �oracle� of random bits; i.e., as a physical random
number generator �RNG�. This RNG can be conceptualized
by enclosing a chaotic system in a “black box” with an out-
put interface which communicates the consecutive physical
states of the chaotic evolution29 in a properly encoded sym-
bolic form. In order for these, say, strings of bits, to be physi-
cally certified random, it is necessary to ascertain chaoticity;
a property which relates to the proofs of chaoticity discussed
above.

This scenario can be elucidated by considering the shift
map � �a form of generalized shift studied by Moore6� which
“pushes” up successive bits of the sequence s=0.s1s2s3¯;
i.e., ��s�=0.s2s3s4¯, ����s��=0.s3s4s5¯, and so on. Sup-
pose one starts with an initial “measurement” precision of,
say, just one bit after the dot, indicated by a “window of
measurability;” all other information “beyond the first bit
after the comma” is hidden to the experimenter at this point.
Consider an initial state represented by an algorithmically
random real s. At first the experimenter records the first po-
sition s1 of s, symbolized by 0.��s1��s2s3¯, where the square
brackets ��¯ �� indicate the boundaries of the experimenter’s
sliding window of measurability. Successive iterations of the
shift map “bring up” more and more bits of the initial se-
quence of s; i.e., ��s� yields 0.s1��s2��s3s4¯, ����s�� yields
0.s1s2��s3��s4s5¯, and in general ��i��s� yields
0.¯si−1si��si+1��si+2si+3¯ after i iterations of the shift map.
Thus effectively, the algorithmic information content of s
“unfolds” at a rate of 1 bit per time cycle. If s is algorithmi-
cally random, then �at least ideally� the empirical recording
of its successive bits generates a random sequence �in the
asymptotic limit�.

It is not totally unreasonable to conjecture that, with re-
spect to algorithmic �hence also statistical� tests of random-
ness, Poincaré boxes cannot be differentiated from another
type of physical RNGs termed Born boxes, which are based
on quantum indeterminism �e.g., photons impinging on beam
splitters and detectors30–37�. Considering the different physi-
cal origins of physical indeterminism exploited by the
Poincaré and Born boxes—in the first, classical case, inde-
terminism resides in the continuum, whereas in the second,
quantum case, in the postulated38–41 irreducible randomness
of certain individual outcomes involving photons—why
should the two physical RNGs perform equally from an al-
gorithmic information theoretic42,43 point of view? Because,

one could argue, both would produce �in the asymptotic re-
gime� random strings with high probability.

The Poincaré box derives its random behavior from a
single, individual initial value containing incompressible al-
gorithmic information with probability one,4,5 whereas the
Born box utilizes successive, independent ideal coin tosses.
Whether or not these speculations are justified or not, only
experiment can tell. So far, no empirical evidence either for
or against the conjectured equivalence of Poincaré and Born
boxes exists.

It is not too difficult to “construct” a Poincaré box by
utilizing a shift map which “pumps” up the bits of the binary
representation of the initial value by 1 bit per �discrete itera-
tion� cycle. Of course, assuring the physical representability
of this extreme chaotic regime for concrete classical chaotic
systems might turn out to be a hard task, as has been argued
above. With this proviso, and by further assuming that the
initial value is some element of the continuum �in ZFC the
“selection” of an initial value is guaranteed by the axiom of
choice�, the shift map is, at least asymptotically, capable of
yielding a random number with probability one.

VI. SUMMARY AND OUTLOOK

We have argued that every �1-statement � can be asso-
ciated with a dynamical system H� such that ZFC proves the
chaoticity of H� iff ZFC proves �. Many hard problems,
such as, for example, the Riemann hypothesis and the four
color theorem, are �1-statements. The computational
method11–13 has been applied to �1-statements, resulting in a
complexity measure for proving the chaoticity of some dy-
namical systems. Consequently, there are dynamical systems
for which the ZFC proofs of their chaoticity are arbitrarily
complex according to the above complexity measure. Fur-
thermore, there are infinitely many chaotic systems for which
ZFC cannot prove their chaoticity.

One of the challenging conceptual questions which are
motivated by these results is the issue of relating physical
entities to formal ones. In particular at stake is the Church–
Turing thesis, which is challenged from a classical physical
perspective. As classical chaotic motion seems to be capable
to “perform” incomputable tasks—a criterion which might,
as we argue, be hard to certify for a wide variety of Hamil-
tonian systems, but which nevertheless is a feasible
scenario—it might not be too unreasonable to speculate that
the present formal theories of computability would have to
be adapted in accordance with our physical capabilities origi-
nating from chaotic motion.
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