
Zeiruhr. J math Logik und Crnndlagm d Math 
Bd.?@.Sl69-I78(l992)  

@ I992 lolurnn Ambmtiuc Eanh 

RECURSIVE BAIRE CLASSIFICATION AND SPEEDABLE FUNCTIONS 

by CRISTIAN CALUDE, GABRIEL ISTRATE and MARIUS ZIMAND in Bucharest (Roumania) 

Abstract 

Using recursive variants of Baire notions of nowhere dense and meagre sets we study the 
topological size of speedable and infinitely often speedable functions in a machine-inde- 
pendent framework. We show that the set of speedable functions is not "small" whereas 
the set of infinitely often speedable functions is "large". In this way we offer partial 
answers to a question in [4]. 
MSC: 03D15. 
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1. Introduction 

Let N be the set of natural numbers and let (pi: i h 0 )  be an acceptable godelization 
of PR, the set of unary partial recursive (p.r.) functions. For ~ E P R  we put 

In case x E dom ( p) we write p(x) < 0 3 ,  otherwise p(x) = 0 0 .  A recursively enumerable (r.e.) 
set is the domain of a p.r. function. By min we denote the minimization operator and by 
( -, - ) : N2 + N a fixed pairing function. 

By R and R(0) we denote, respectively, the sets of unary recursive functions and unary re- 
cursive functions of finite support. The set R ( 0 )  is r.e., i.e. R (0) = { p,+(,,) I n 2 O}, for some 
h E R .  The function h will be fixed throughout the paper as well as the recursive function 
[(n) = card (SUPP (ah(,,))). 

For p, B E  PR we put ~1 E B in case supp( p) S supp (8) and p(x) = 8(x), for every 
x E supp (p).  If, in addition, p * 8, we write p c 8. For X 5 PR we define the finite trace 
of X to be set X+=(tER(O)I tEpforsomepEX) .  For every t E R ( O ) ,  we put 
U, = { p E PR 1 t E p} . The family ( U,) is a system of basic neighborhoods in PR; we shall work 
with the topology generated by this system [41, [51. 

Following [ll], [4], [S] we say that a set X S  PR is recursively nowhere dense with respect to 
f; g e  R in case the following four conditions hold: (i) p,(,,)~ R(O) ,  (ii) m > g ( n )  implies 
p,(,,)(m) = 0, (iii) Q)h(n) c p,(,,), (iv) there exists a natural i such that x n UV,,., = 0 whenever 
l(p,(,,J > i .  A set X E PR is recursively meagre if there exist a sequence ( X l ) l ~ o .  XI E PR and 
two r.e. sets ( j J l p 0 ,  ( g l ) , z o , l ; ,  g, E R ,  such that X =  UX, and each X, is recursively nowhere 
dense with respect to 1; and g, .  A set which is not recursively meagre is called a set of recur- 
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siuely second Baire cafegoty. The above notions are recursive variants of the classical notions 
introduced by BAIRE [12]. 

A Blum space is a couple @ = ((p;), (@;)), where (p;) is an acceptable godelization and 
(@;) is a sequence of p.r. functions (called the step-counfingfuncfions) satisfying the follow- 
ing two axioms (called Blum axioms): (i) dom ( pi) = dom (@;), (ii) the ternary predicate 
M(i ,  x , y )  = 1 if G i ( x )  s y  and M(i,  x , y )  = 0 otherwise is recursive [l], [lo], [7]. A set (@J 
satisfying only the second Blum axiom is called a measured sef. 

Following [lo] we shall fm a Blum space B = ( (b;) ,  ( B J )  satisfying the following two addi- 
tional properties: 

(1) There exists a recursive function s: N Z +  N such that b f l L x ) b )  = b i ( ( x , y ) )  and 
B d i X ) b )  4 B ; ( ( x , y ) ) ,  for all natural i x, Y .  

(2) There exists a recursive function k: N 2 + N  such that 

Bk(& &) s B ; b ) ,  for every y 6 dom (rp,) ; here (y,) is an enumeration of the finite functions 
whose domains are the nonempty initial segments of the natural numbers. For example, the 
timeispace RAM complexities [lo] and in fact virtual all "natural" Blum spaces satisfy (1) 
and (2). 
In what follows, when considering the Blum spaces 0 and B we shall fix the recursive bi- 

jection u: N--* N such that pi = b,,,, for all natural i (ROGERS' Isomorphism Theorem) and 
the recursive, increasing in the second argument, function r:  N 2 +  N satisfying for all natural 
i the inequalities @ , ( x )  s r(x,  BHo(x) )  a.e. and Bdo(x)  zi r (x ,  Oi(x))  a.e. (Recursive Related- 
ness Theorem); here a.e. refers to "for all but finitely many" [lo], [S]. Also in Section 3, 
R (0) = (bh(,,) I n 2 0) , with h E R. 

The complexify class named by f E R with respecf to rhe Blum space @ is the set 
c;" = {pi 1 @ i ( X )  

A Blum space @ has the parallel computation properiy [9] if there is a recursive function 
g: N 2 + N  such that 

a.e.1. 

and Ofii,,(x) = min (@,(x), @,(XI).  This property is not satisfied by all Blum spaces; how- 
ever, (i) the model of many-tape, many-heads Turing machines, with a read-only head on 
their input tape offers an example of a Blum space having the parallel computation property 
and (ii) each set of step-counting functions can be extended to a set of step-counting func- 
tions satisfying the above property (by introducing sufficiently many new programs) (161. 

2. Recursively nowhere dense sets 

We present a simple characterization of recursively nowhere dense sets and some examples 
of such sets occuring in BLUM'S abstract complexity theory. They provide interesting refine- 
ments of some results in 151. 

The first result is an easy consequence of definitions. 
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L e m m a 1 . Let r be in R (0) and X E PR . The following assertions are equivalent: 
(a) X n  U, = 0, (b) X, n U, = 0, (c) I B X . .  0 

Next we offer an algebraic characterization of recursively nowhere dense sets. 

Prop  o s i t  i o n 2 . Let X E PR. The following assertions are equivalent: 
( 1 )  the set X is recursively nowhere dense, 
(2) the set X, is recursively nowhere dense, 
(3) there exists a recursive function p :  N + N such that for aZ1 naturals n, 9)h(n) f Q)h(p(,,)) and 

Proof.  In view of Lemma 1 the statements (1) and (2) are equivalent. 
(1)-(3): Suppose X is recursively nowhere dense via the recursive functions f and g. By a 

standard use of the s-m-n Theorem (valid for the numbering (Q)h(n)) of R (0)) we define a re- 
cursive function s: N 4 N such that 

(Ph(p(n)) @ x* * 

ph(n)(x) if x S U n ) ,  

[o otherwise, 
Q)h(r(n))(X) = 1 if f ( n )  + 1 5 X 5 Z(n) + i + 1 ,  

where i 2 1 is the natural such that X n U,,,", = 0 whenever Z(n) > i .  We construct the recur- 
sive function 5: N + N , 

rCv) = min,[(x s gCv) & x ~ s u p p ( ~ , t , . ) ) * ~ h & )  = p,t,.dx)) 
(x 5 ZO') & x E SUPP (pho)) * ph(,)(x) = q,t,.)(x))1. 

and we notice that q,-(,,, = q$,(*)). Finally, we define the recursive function p: N+ N by 
p ( n )  = r ( s ( n ) ) .  If follows that Q)h(n) E (Ph(p(n)) = qXNn)); consequently, if Z(s(n)) 2 i + 1 ,  then 
U,,,a,, n X = 0,  which by Lemma 1 means that @,(fin)) B X,. 

(3)*(1): Put f ( n )  = h ( p ( n ) )  and g ( n )  = Z ( p ( n ) ) ;  using Lemma 1 one can easily verify 
that X is recursively nowhere dense under f and g. 0 

Example  3 .  In every Blum space each measured set (and in particular the set of step- 
counting functions) and every complexity class are recursively meagre ([4], [S]). Sometimes, 
these sets can be recursively nowhere dense (Example 3); in other cases, they are not recur- 
sively nowhere dense (Example 7). 

(i) Let @ be a Blum space with the property that for all natural i and x, Qi(x) 2 x (e.g. the 
time complexity for Turing machines). The set of step-counting functions (@, I i 2 0)  is recur- 
sively nowhere dense. Indeed, define the recursive function r: N + N such that 

(ph(n)(x) i f x  5 z ( n ) ,  
if x = Z(n) + 1, 
if x = Z(n) + 2 ,  P)h(r(n))(X) = { 

l o  otherwise, 

and notice that Q),,(<.)) B {Qi I i h O},, for all natural numbers n (reason: 
@,(Z(n) + 2) 2 Z(n) + 2 > 1 = ph(,(n))(/(n) + 2)).  The conclusion follows from Proposition 2 
(3). 

(ii) There exists an infinite, r.e. complexity class which is nowhere dense. To prove this 
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consider a recursive function f: N -+ N , f(x) 2 x + 1, for all natural x, and a injective recur- 
sive function g: N+N such that 

x) i f x s i ,  
otherwise. 

Next define the recursive function H: N+N by 

H(0) = 0 and H(x + 1) = g(mini[g(i) > H(x) l ) .  

It follows that I = range(H) is an infinite recursive set. Consider now an arbitrary Blum 
space 0 with Oi(x) z x + 1, for all natural i and x, and modify its step-counting functions 
as follows: 

{:(x) ifitEI, 
@;(x) = 

otherwise. 

It is easily seen that 0' = ((pi), (0;)) is a Blum space. Construct the recursive function 
p :  N+N by 

ph(n)(x) if x 5 [ ( n ) ,  

Q)h(p(n))(X) = f(x) + 1 if x = [ ( n )  + 1, 
t o  otherwise. 

Let r be the zero function and notice that the complexity class c is exactly the set 
(pncn, I n 2 0). Further, &(fin)) t~ (c). , for all natural n, which proves the assertion. 

The following three corollaries provide useful suficient conditions for a set to be or not to 
be recursively nowhere dense. 

0 

Corol la ry  4 .  I f X  E PK and X, = R(O), then X is not recursively nowhere dense. 
Proof .  Directly from Proposition 2 (3). 

Coro l la ry  5 .  Lei YS N be u set which conruins u non-zero elernenr. Then rhe set 
is u recursively nowhere dense set. 

Proof.  Let p :  N-, N be the recursive function given by 

0 

X = [p E PR I range( p) E 

ph(n)(X) if x 6 I ( n ) ,  
Ph(p("))(X) = 0 i f x  = I ( n )  + 1, 

t o  otherwise, 

where u E N \ (Y\ (0)). Clearly, Q)h(n) E Q)h(fin)) and PHfin) tE X,. 

other example is Y =  N \ (k}, where k * 0. 

then g E X. 

0 

C o m m e n t .  If Y =  {O, 1) or Y =  [O, 1, ..., k}, we obtain results proved in [13] and [18]. An- 

A set X S PR is closed underfinite vuriurions in case for every f e X and g E PR, iff = g a.e., 

Coro l la ry  6 .  Let XE PR be u non-ernpty set closed underfinite vuriurions. Then X is nor a 

Proof.  Take f in X and r in R ( 0 ) .  The p.r. function g(x) = r(x) if x ~ s u p p ( r ) ,  and 

recursively nowhere dense set. 
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g(x) =f(x) otherwise, belongs to X since f = g a.e. Consequently, X. = R ( 0 )  and the conclu- 
sion follows from Corollary 4. 0 

Comment .  Many natural and important classes of p.r. functions are closed under 
finite variations; for example, the class of unary primitive recursive functions, each unary 
Grzegorczyk class, the complexity classes P, NP, PSPACE etc. 

In contrast with Example 3 we present 

Example 7 .  (i) Let f: N-N be a recursive function and If N an infrnite recursive set 
such that f= pi, for all i E I. Let g: N + N be a strictly increasing recursive function such 
that range(g) = I. The p.r. function p: N+N defined by p ( i )  = 0 if i b  I, and 
p ( i )  = min, [ g ( n )  = i] otherwise, is recursive and surjective. Modify an arbitrary Blum space 
0 as follows: 

It is seen that 0' = ((tpi), (0;)) is a Blum space, {0: I i 2 O}, = R(O),  so the set of step-count- 
ing functions in 0' is not recursively nowhere dense. 

(ii) Take a Blum space 0 with the property offinite variation, i.e. for every recursive func- 
tions f; g with f = g a.e. and for every recursive function w one has f E iff g E C$. Such a 
complexity class is r.e. ( [9 ] ,  (71) and closed under finite variations, so it is not recursively 
nowhere dense, by Corollary 6. 0 

Comment .  In contrast with the case of complexity classes, the honesly-classes of [17] can 
never be recursively nowhere dense. Indeed, given a p.r. function f: N2+ N, the honesty- 
class off is 

H,= {p E PRI there exists an index i such that for almost all x, 
if pi(x) < Q) and f(a Pi(x)) < Q), then @i(X) S ~ ( X ,  pi(X))} 

and (H& = R (0). 

3. Speedable functions 

This section presents the main results on this paper, the topological size of speedable func- 

Fix a Blum space 0 = ((pi), (@)). For a recursive function g: N2+ N, increasing in the 
tions, thus offering partial answers to a question in [4]. 

second argument, we define the set of g-speedable functions 

SPEED(g; O;a.e.) 
= c/ :  N + N I f recursive and for every i with pi = f there exists a j 

with pl =fand 0dx)  t g(x, @,(x)) a.e.); 

replacing the condition a.e. by i.0. (infinitely often) we get the set of g-i.0. speedublefuncrions 
SPEED(g; 0; i.0.); see [ 5 ] ,  [161, [171. 

The sets SPEED(g; 0; a.e.) and SPEED(g; 0; Lo.) are machine-dependent (one can eas- 
ily construct a new Blum space for which infinitely many functions in SPEED(g; 0; a.e.) 

13 Ztschr. f. math. Logik 
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have zero complexity). In what follows we shall offer machine-independent results concem- 
ing the size of these sets of functions. 

Theorem 8 .  The sets SPEED(g; @; a.e.) and SPEED(g; @; Lo.) are not recursively 
nowhere dense. 

Proof. Recall that B = ( (b i ) ,  (B, ) )  is the particular Blum space introduced in Section 1. 
First we construct a recursive function q :  N2+ N, increasing in the second argument such 
that SPEED(q; B ;  a.e.) f SPEED(g; @; a.e.). To this aim we shall use the recursive func- 
tions r and u satisfying (l), (2) (see 4 1) and we set q(x ,y)  = r(x, g ( r ( x ,  y ) ) ) .  Take f in 
SPEED(q; 8 ;  a.e.) and pick an index i with pi = f. Then B,,(x) s r(x, W x ) )  a.e. and there 
exists an index j with f = pf = b,, = b, and 

Bdl)(x) 2 q(x, Bj(X))  a.e. = g(& r (x,  B , ( x ) ) ) ) .  

Since r is increasing in the second argument it follows that 

@Ax) z g(x, r(x,  B , (x) ) )  a.e. 5 g(x, Bj(x) )  8 . c  

i.e. fe SPEED (g; 0; a.e.j. 
Next we prove that SPEED(q; B ;  a.e.) is closed under finite variations and thus is 

not recursively nowhere dense (by Corollary 6). Accordingly, from the relations 
SPEED ( q ;  B; a.e.) 5 SPEED (8;  @; a.e.) S SPEED (g; @; Lo.) and the fact that the sets not 
recursively nowhere dense are closed under superset [4], [5 ] ,  it follows that the last sets are 
not recursively nowhere dense. 

To finish the proof let fi E SPEED (4; B ;  a.e.1 and let fi: N+ N be a recursive function 
such that f l ( x )  = f2(x)  for all x z m. Let h = bi and let Y E  N such that q ( x )  = f l ( x )  if 
x d  rn, and y y ( x ) =  m otherwise. Then b W t y ) , =  fl and there exists a natural j such 
that fi = b, and Bkct,,(x) L q(x, B,(x)) a.e. Take a natural z with tp,(x) = f 2 ( x )  if x 5 m, and 
y.+(x) = otherwise; one has by. I) = fi and B,(x) h Bu ,(x) for x L m. We conclude with 

Bi(X) h BrkJx)  a.e. L dx, Bj(X)) a.e. 2 d x ,  Bw,&))  a.e., 

i.e. ft E SPEED ( q ;  B ;  a.e.). 0 

For the set SPEED(g; @; Lo.) the above result will be significantly improved in The- 
orem 9. The importance of the set SPEED (g; @; i.0.) comes from the fact that the process of 
constructing a faster program for a g-i.0. speedable function is algorithmic (21, [16], in contrast 
with the case of speedable functions [S], [16]. Furthermore, from the fact that p, is i.0. faster 
than pi the possibility that pj is slower than pi on the remainder points does not exclude. How- 
ever, as pointed out in [16], by requiring the parallel computation property to be valid one 
can replace p, by a new program which runs pi and p, in parallel, thus ensuring that the i.0. 
speed-up of pi  is nowhere slower than the original one. 

Theorem 9. The set SPEED(g; 0; Lo.) Q of the recursively second Baire category. 

Proof. For t in R(0)  and natural n we define P) in R(0) by 

t ( x )  if t ( x ) + O  or x >  n ,  
1 if t ( x )  -0 and x 5 n ,  

t (") (x)  = 
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and we notice that for every set X S PR, X n Up, = 0 whenever X n U, = 0, and I(") f f im- 
plies rE f. 

Fix a recursive function g: N2+ N ,  increasing in the second argument, and suppose, by 
absurdity, that SPEED ( g ;  @; i.0.) is recursively meagre. Proceeding as in the proof of The- 
orem 8 we can find a recursive function q :  N2 + N , increasing in the second argument, such 
that SPEED(q; B ;  i.0.) 5 SPEED(g; @; i.0.) and consequently recursively meagre. Working 
from now on in the Blum space B we fH an enumeration h of R(O), i.e. R (0) = (bh(n) I n L O} . 

and a 
r.e. family of unary recursive functions (f;), (g,) such that 

(i) SPEED = SPEED(q; B; i.0.) = Uj,,SPEED,, 
(ii) bh(,,) C b4<n) for all natural n, j ,  
(iii) bfin,(m) = 0 whenever m > o(n), 
(iv) SPEED, n Ubom, = 0, for all j and sufficiently large n 

Replacing r E R(0)  by some E R(O), as mentioned in the beginning of the proof, we may 
suppose in (iii) that bfi,(m) 9 0 for m 5 g j ( n ) .  

The idea of the proof is to construct a function z E SPEED such that for every natural j 
there exist infinitely many n with bfi,,) f z. The construction of z is done by stages. At stage 
s + l , w i t h s = ( j , k ) , w e t r y t o f o r c e ~ t o e x t e n d b ~ , ) , f o r s o m e n  w i t h I ( n ) > k i n s u c h a w a y  
that z will be speedable in some new point. The speedable process is performed in the stand- 
ard way (see (51, [lo], [19]). 

Defrne a family of p.r. functions (z,),,~, zI: N'+N, in a construction by stages. At stage s 
we define the p.r. function z, and the sequence of integers   AS)),,^^ with the following pro- 
perty: for every natural w, z,(n, w, x) = Q) whenever x > l,,(s). Simultaneously we construct, 
for each natural n, a recursive set called CRITICAL-SET(n), in which, at each stage, 
we try to introduce some natural number (i.e. the point in which z will be speedable). Let 
CRITICAL-SET(n, s) be the set of elements introduced in CRITICAL-SET(n) by stage s, 
inclusively. 

In view of our assumption it follows that there exist a sequence of sets 

We display now the construction. 
Stage s = 0 .  Set ro(n, w, x) = Q), ln(0) = - 1 and CRITICAL-SET (0,O) = 0, for all natural 

Stage s + 1. Let s = (i, k) and compute an index k(n, s + 1) such that 
n, w, x 

z,(a 0, X) if x 5 L(s)B 
i f l , ( S ) + l S X S  k, bh(L(rs I +  l))(x) = 

[o otherwise. 

Note that if z,(n, 0, x) = Q) for some x S  ln (s ) ,  then k(n, s +  1) is not defined. Let 
11": = gj(k(n, s + 1)) + 1 and call it the crirical element computed at stage s + 1 (in case it 
exists!). Construct then the set 

13' 
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Further we construct: 

otherwise, 

CRITICAL-SET(n, s + 1) = CRITICAL-SET(& s) u { r p !  1}, ln(s + 1) = gi(k(n, s + 1)) + 1. 

End of the construct ion.  

Note that z,+ extends zl for each natural s, so there exists a p.r. function 2 N3- N given 
by i ( n ,  w, x) = liml+-z,(n, w, x). Let H: N + N  be a recursive function such that 
T(n,  w, x) = b,,,,(w, x) and let n be a fued-point of function H, i.e. b,(w, x) = b,,(,,)(w, x) 
= lim,+- zl(n, w, x). This n will be fued throughout the rest of the proof. 

We continue our proof with the following facts. 
Fact  1. For all narural x, s and w, z,(n, w, x) < m ,  whenever x 5 ln ( s ) .  
We proceed by induction on s. For s = 0, ln(0) = - 1. so the assertion holds. Assume now 

that the statement is true for s. In view of the induction hypothesis, k(n, s + 1) is defined; all 
it remains to prove reduces to the convergence of the computation of ~ ~ + ~ ( n ,  w, x) for 
x = t?! First we determine the set C(n, w, x), which means the computation of the sets 
C(n, w, y )  for all y < x, y E CRITICAL-SET (n, s), and of the values bn(( u, x)) for all 
w < u d x. The set C(n, w, y )  is constructed during the computation of bn((w,  y ) )  : 

b n ( ( x ,  x)), b n ( ( &  x - I)), . - . t  b n ( ( 4  0))s 

4 ( ( w  + 1, x)), bn((w+ 1, X -  I ) ) ,  .-.> bn((w+ 1, O)) ,  

bn((w, x)), bn((w, X -  I)), ...) bn((w9 0)). 

We notice that b,,((w, x)) < m ,  whenever bn(( 4 x)) < for w < u x and b,((w, y ) )  < for 
0 s y < x; denote this statement the "rectangle rule". For 0 5 y < x, b,(( w, y )) < for all w, 
i.e. in the above table, the entries in all columns but the first one are defined. Indeed, two 
cases may occur: (i) if y 6 ln (s) ,  then z,(n, w, y )  < (the induction hypothesis), and conse- 
quently, b , ( ( w , y ) ) = z , ( n , w , y ) < m ;  (ii) if l n ( s ) +  1 S y S x -  1, then ~ , + ~ ( n ,  w , y )  
= bh(k(n, s + l ) ) (y )  < and b , ( ( w , y ) )  = ~ , + ~ ( n ,  w , y )  < a. It remains to show that all en- 
tries in the fmt column converge. Since C(n, x, x) = 0, I,+ I(n, x, x) < = and consequently 
b,((x,  x)) < m. In view of the "rectangle rule" b , ( ( x  - 1, x)) < m ,  stepping down in the first 
column we get the desired conclusion; b n ( ( 4  x)) < w, x) < 0 3 ,  

thus ending the induction step. (Notice that we have proved a bit more than the statement of 
Fact 1.) 

Fact  2 .  For a e r y  natural w there exists a natural m, such that b,((O, x)) = b,((w, x)), when- 
ever x m,. 

An induction on x shows that for all natural w and x E CRITICAL-SET ( n ) ,  

for w < u 5 x, i.e. z,+ 

C(n, w, x) = C(n, 0, x) - (0, 1, ..., w - l}. 
Since an index i appears at most once in some C(n, 0, x), x 0 ,  there exists an integer m: 
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such that C(n ,  w, x )  = C(n ,  0, x )  for all x 2 m:. The sequence ( f y ) } ,  is strictly increasing, so 
there is some s with 1:) 2 m:. Consequently, for every x z m, = t y ) ,  b,,((O, x ) )  = b,,((w, x ) ) .  
Let z :  N 4 N be the function defined by z ( x )  = b,((O, x ) ) .  In view of Fact 1 it follows that z 
is a recursive function. 

Fac t  3. Lef i be on index such thot bi = z. For infinitely many x, B , ( x )  2 q ( x ,  B,(( i + 1, x ))). 
Suppose, by absurdity, that B i ( x )  < q(x ,  B,(( i + 1, x ) ) )  for almost all x. Take x the mini- 

mal natural such that x 2 i, x E CRITICAL-SET(n) and B i ( x )  < q(x ,  B,(( i + 1, x))); it fol- 
lows that iE C(n, 0, x ) ,  which implies bi(x)  = b,((O, x ) )  = z ( x ) ,  a contradiction. 

Fact  4. The function z tF in SPEED(q; B; Lo.). 
Let bi = z .  In view of Fact 3, for infinitely many x, B i ( x )  L q ( x ,  B,(( i + 1, x ) ) ) .  By Fact 2 ,  

Take y there exists a natural mi+ such that b,(( i + 1, x ) )  = b,((O, x ) ) ,  whenever x 2 mi+ 
such that 

In view of (1) and (2), for infinitely many x 

B l ( x )  2 q(x ,  B , ( ( i +  1, x ) ) Z  q(x,  B , ( % l + ~ ) ( ~ ) ) L  q ( 4  B M , ( ~ ~ + ~ ) , ~ ) ( X ) )  

and bk(N%l+l) .y) (x)  = z ( x )  for all x. 
We are now in a position to conclude our proof. From z E SPEED (4; B; i.0.) it follows that 

z E SPEED, for some j .  There exists also a natural c with SPEED, n uboa) = 0 for n 2 c. Take 
s = (j, c)  and consider the operations performed during the stage s + 1. We get 

h . z s ( %  0, x )  5 b h ( k ( & r + l ) ) E  b f , M % s + l ) ) *  

For all m s g,(n) we have bfi,,,(m) * 0 ;  so 0 E range (h.z , (n,  0, x ) )  and thereafter 
Lx.z,+l(n, 0, x )  2 bh(k(%,+l)) .  This implies that z 3 b4<k(f i ;+l)) .  Keeping in mind that 
k(n, s + 1) z c we get that z E SPEED, n (IbM,, for some n z c, a contradiction. 

Comment .  For every recursive functions A g we can find z E SPEED(g; 0; i.0.) such 
that z a c;" (use Theorem 10 and the fact that every complexity class is recursively meagre). 
In other words, there exist arbitrarily complex g.i.0. speedable functions, a statement in 
accord with our intuition. 

0 

Finally, let us briefly consider the case of p.r. functions. Clearly, Theorem 8 and 9 remain 
true when we replace recursive functions by p.r. functions. In the spirit of (141, [lS] and [3] 
one may define the set 

X = VE PRI for every recursive increasing in the second argument function 
g :  N2+ N and for every pI = f there exists p, = f 
with G l ( x )  2 g(x ,  @, (x ) )  Lo.}. 

This set is non-empty [3]. 

Proposi t ion 11. The set X ir recursively meagre. 

Proof. First notice that X n R = 0. Indeed, take p1 E R and put g(x ,  y )  = G l ( x )  + 1 for all 
x and y. Consequently, X is included in the set of strictly partial, p.r. functions, which is re- 
cursively meagre [13], [181, [61. 0 
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Open problems. Determine the exact position of the sets SPEED(g; 0; a.e.), 
PR \ SPEED (g; @; a.e.), PR \ SPEED (8; @; i.0.) according to the above Baire classifica- 
tion. 
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