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ON PER MARTIN-LOF RANDOM SEQUENCES*

BY
CRISTIAN CALUDE and ION CHITESCU (Bucharest)

Our aim is to argue about the famous concept of random sequence, due
to P, Martin-Laf [1]. This is done by producing examples of primitive recursive
binary sequences which are random in the sense of P. Martin-L&f, thus violating
our intuition.

Let X = {0,1} and denote by X* the free monoid generated by
X, i.e. X* consists of all finite strings & = &)%;. - - T where the #; — §
can be 6 or 1 and also the null string 2 belongs to X™*.

For every # in X*, l(z) is the length of #, i.e. I(#) = m, In case
@ = B@s. - Ty and {a) = 0. For z and ¥ in X*, we write # <« ¢ to
denote the fact that x is an initial segment of y (we agree on the fact
that A = @ for every @ in X*). For every @ in X*, we define #0 and
#1 ag follows : if & = @y@g. « - Fp, then 20 = &2y - . . L0 and &1 = 2@, .-

. @,l; if # = 3, then 20 = 0 and 21 = 1.

Now X= is the set of all binary sequences, i.e. we can identify X
to the set of all functions k: N —> X, where N = {0,1,2,...] is the set
of natural numbers. Putting k(i) = @;, the elemexits of X* will be deno-
ted by @, i,e. & = Bg@y. .. Tp... For @ in = and n in N, #* stands for
the initial segment of length %, i.e. &" = %% - . Tp-y if » =1 and
g" = 2, if n=0. So & is in X=, but &" is in XE,

For every @ in X*, we define aX» = {¥ < X=[¥" ==x}, in the case
when n = l(z) >0; 3X° =X Let & be the c-algebra generated by
P = {aX=|ze X*}. :

A computable probability distribution is a function p: X* — [0, 1]
having the following properties : :

1) p(») =1,

(i) p(x) = p(x0) + p(al), for all z in X*, ;

(iii) p is computable (i.e. there exists a recursive function. o : X* =N
and a godelization (r,) of a subset of all recursive reals in [0, 1], such
that for every @ in X* we have p(®) = Tex)- '

Example 1. Take p(z) = 2-HA

* Communication presented at the Workshop on Recursion-Theoretic Aspects of
Computer Science, Purdue University, May 19--21, 1981, : .
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Example 2. Fix a natural number i > 2 and take piy)=1
and

1
P””*P“)(l—a@ﬁ:;}

1
1 = -_*‘_,! .
P = (o) s
for all # in X*.

Example 3. Again fix a natural number i
=1 and for all » in X*,

1
0) = ) 1 ——
p(20) = p(x) ( e 2)1)

if i(z) is even

1
1 = f———,
T
1
P =2 G '
it U{z) is odd
1 .
1 = )1 1 _— :
e =i @) + 2y

Let =: o —[0,1] be the probability induced by P; which iz given
by the conditions m(2X*) = p(x), for every z im X*: Note that in the
case of Example 1 we got the usual product probability.

Fix a computable probability distribution “p. 4 P-sequential P,
Maortin-Lof test (p-test) is a set [T N x X*; subject t0 the following
restrietions : C
(1) U is recursively enumerable, _

(2) For all natural numbers m, n 2 1, and for all , ¥ in’ X* we
have the implication '

(m>n and z<y and (m, 2) e )= (n, nel

) (zw(”’%levp(m)< S

for all patural numbers mz=1 and z.

Note that in the case of Example 1, condition (3) can be written
as follows:

(3" card {we X*((m, z), e U, Ya) = n} < 2

= 2 and take p()) =
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for all natural numbers m > 1 and n.

Notice that in the third paragraph of his paper [1] (page _6_10)
P. Martin-Lof works iu the particular case of Example 1, and condition
(3) is stated in the form

3"y card {we X*/(m, @)e U, l(z) = n} < 2,
for all natural numbers m > 1 and n. The apthor gxplgjns in t11:1g ioux}‘lsil
paragraph (page 613) why he changed the inequality into a s ne: (zr e.
Let U be a p-test. For every natural m > 1 put U, mf.{a,e ﬁ{
(m, x}e U}. It is obvious that Ulf > U; > U;.... One can %cra}mgxa; e(Ild
nite) function my : U, — N by mU(m)_ = max{me N!(.m, a-y) e U}, xtend
my to a funetion m, : AF - N, puttmg my{z) = mg(x), in dcause s
U, and m (x) = 0, otherwise. It is obvious that for all » and y we
Olg my(@) < I(z) and, in case o < ¥, my(x) < myly). _—
P. Marrin-Lor [1) asserts that for every computable pro 'awlth{;
distribution p there exists a wniversal p-test, ie. a p-test W hgvm: vy
property that for every p-test U there exists a natural n;]m 1e];1 o (de
pending upon W and U) such that U,..< W,, for all natura
m = 1. ] ) o _
ing such a W it is seen that the sequence mw(g.))n is increa
sing, ?:f ?;e:y z in X%, therefore liin my(2") exists, being a natural

» . r
number or being infinite. Moreover, one can prove that in case W

i ] i 1 © equi-
and W’ are two universal p-tests and @ is in X*, we have the eq
valence

L mg (@) < oo iff Hm mpe(@®) < oo

The, léhst equivalence enables us to call a binary sequence @ p-random
(in the sense of P. Martin-Léf) if

Hm - (#7) << co

for some ﬁﬁivéfsal'p-teéﬁ"(aﬁd" hence for all such tests). -

An example of ¢ p-random sequence (for the function p in Example
1) is given in [3]. . . :

In -[1] proofs are"-}'n.erely sketched. P. Martin-Lof proves that in

‘the case-of the produect probability (Example .1) the get of p-random
‘gequences has taeasure equal to one. : Lo

*"But he also claims there that this nice result holds for every com-
putable probability distribution p. This asserlion seems very unclear
to us;-and here is our motivation.
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Consider first the Example 2. Put 0 == 00... 0 ... X=(i.e. the
Zero sequence). We have {0} = ﬂA,,,' where 4, = 0 X=, A; = o0 X,
n=1 '

4, =000 X*, as.0. Hence =({0}) =1lim w(d4,) = lim ’i‘f (1 o1 ) _
i 1 ’ oo U (B2)
=I;£[2 ( 1= "g}'_)’ the product being absolutely convergent.In case i =

P = 1 1 : :
= 2 it is seen that [J ( 1-— ﬁ) =5 therefore #{({0}) > L, ‘Con-

. P . ‘L 2
sequently, if P. MArTIN-LOF’s results hold, then for all i
Example 2, the sequence 0 must be p-randt);n. _ b
: One might argue that the probability distributions from Ex

ampl

2 are too ,,bad”, because they produce constant sequences of stric%)l;
posztwe measure. This is not the case for the probability distributions
in Example 3. The reader may convince himself that all b'ina,ry almogt
((a%rﬁsta,nt sequences have measure zero. - )

he sequence #; = @yf;... Ty... is almost constant provid
exists a natural number n'deepending upon z such that -TnP: wl edzt.lfe-r)e
This is seen using the divérgence of the infinite products M '

(-3E0-36)

F-FE -3

We produce another ,, pathological” example within the framework of
Example 3, namely the primitive recursive binary sequence olt=01010101
(ie. alt = zy@ ... with @ = 0, if iis even and 2 =1,1f i is odd).

and

One can see that ali =M B,, W’here_Bl='0X°°',=Bz=OIX"’, B,=010 X~,
=l b .
a.s.0. Consequently, n({a_lt}) = lim ={B,) = ﬁ ( i— —}M) ;i. So, if
) . A oy ,nz 2
P.MARTIN-LOF’s results hold, alf mus be p-random for all p in Example 3
The above examples of ,,random sequendes’ havin ,
complexity violate: 0ur'intuit,o’i'n. sl GrtE A fan g .f?;t_reme.l_y low
' We conclude with a remark concerning C. P. Schiorr’s idéas in hi
_ ) i as in his
expository paper [2], where he asks for thg enlargement of the clags ;f
random. sequences : ,,We argue:that the rec. null-sets might be a too gene-
ral class of mull-sets” (page 198). For the convenience, we remind that
C.nf’._ S(E[hl_mrr states that a binary sequence.is p-random .iff it is not
‘contained in any recursive p-null set (page 197). Our examples con
~with Schoorr's requirements. et (pog A0 r ejx_am__p_le_s_'_ Pontrast

- Beseiped 11:IT.1989 -
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