ON A THEOREM OF GÜNTER ASSER

by CRISTIAN CALUDE and LILA SÂNTEAN in Bucharest (Romania)

1. Introduction

Recently, G. Asser [2] has obtained two interesting characterizations of the class of unary primitive recursive string-functions over a fixed alphabet as Robinson algebras. Both characterizations use a somewhat artificial string-function, namely the string-function lexicographically associated with the number-theoretical excess-over-a-square function. Our aim is to offer two new and natural Robinson algebras which are equivalent to Asser's algebras.

Let \(N \) denote the set of naturals, i.e. \(N = \{0, 1, 2, \ldots\} \), and \(N^+ = N \setminus \{0\} \). We consider a fixed alphabet \(A = \{a_1, a_2, \ldots, a_r\} \), and denote by \(A^* \) the free monoid generated by \(A \) under concatenation (with \(e \) as the null-string). By length \((w) \) we denote the length of the string \(w \) (length \((e) = 0 \)). For every \(w \in A^* \) and \(m \in N \) let \(w^m = w \ldots w \) (\(m \) times), in case \(m > 0 \), and \(w^0 = e \). By \(Fnc \) (respectively, \(Fnc_A \)) we denote the set of all unary number-theoretical (respectively, string) functions. By \(Z, Succ, E, C, Pd \) we denote the following number-theoretical functions:

\[
Z(x) = x; \quad Succ(x) = x + 1; \quad E(x) = x - 1, \quad \text{where} \quad x \preceq y = \max(x - y, 0).
\]

By \(Z_A, Succ_A, C_A, Pd_A \) we denote the following string-functions:

\[
Z_A(w) = w; \quad Succ_A(w) = w_i (1 \leq i \leq r); \quad C_A(w) = u; \quad \text{where} \quad a(w) = a_i, \sigma(w) = wa_i+1, \text{if} \ 1 \leq i < r, \text{and} \ \sigma(w_0) = \sigma(w) a_1; \quad \delta(e) = e, \ \delta(w) = w (1 \leq i \leq r); \quad \pi(e) = e, \ \pi(\sigma(w)) = w.
\]

Furthermore we use the bijections \(c: A^* \rightarrow N, \check{c}: N \rightarrow A^* \) given by \(c(e) = 0, c(wa_i) = r \cdot c(w) + i, 1 \leq i \leq r, \text{and} \ \check{c}(0) = e, \ \check{c}(m) = \sigma(\check{c}(m)); \) obviously \(c(\check{c}(m)) = m \) and \(\check{c}(c(w)) = w \).

To each \(f \in Fnc \) we associate the string-function \(s(f) \in Fnc_A \) defined by \(s(f)(w) = \check{c}(f(c(w))) \); conversely, to each string-function \(g \) we associate the number-theoretical function \(n(g) \in Fnc \) defined by \(n(g)(x) = c(g((c(x))) \). It is easily seen that for every \(f \in Fnc \) and \(g \in Fnc_A \) one has \(n(s(f)) = f \) and \(s(n(g)) = g \). For example, \(s(C_m) = C_{\check{c}(m)}, s(Succ) = \sigma, \ s(I) = I^A, s(Pd) = \pi \).

For every \(F \subseteq Fnc \) and \(G \subseteq Fnc_A \), we put \(s(F) = \{s(f) | f \in F \} \) and \(n(G) = \{n(g) | g \in G \} \). A mapping from \(Fnc^n \) in \(Fnc \) (\(n \in N^+ \)) is called an \(n \)-ary operator in \(Fnc \), and analogous for \(Fnc_A \). We consider the following operators in \(Fnc \) and \(Fnc_A \):

\[
\begin{align*}
\text{sub}(f, g) &= h \ \text{iff} \ f, g, h \in Fnc \ \text{and} \ h(x) = f(g(x)); \\
\text{it}_{\sigma}(f) &= h \ \text{iff} \ f, h \in Fnc \ \text{and} \ h(0) = x, \ h(y + 1) = f(h(y)); \\
\text{add}(f, g) &= h \ \text{iff} \ f, g, h \in Fnc \ \text{and} \ h(x) = f(x) + g(x); \\
\text{diff}(f, g) &= h \ \text{iff} \ f, g, h \in Fnc \ \text{and} \ h(x) = f(x) - g(x); \\
\text{sub}_{\sigma}(f, g) &= h \ \text{iff} \ f, g, h \in Fnc_A \ \text{and} \ h(w) = f(g(w)); \\
\sigma-\text{it}_{\alpha}(f) &= h \ \text{iff} \ f, h \in Fnc_A \ \text{and} \ h(e) = u, \ h(\sigma(w)) = f(h(w)); \\
\text{it}_{\alpha}(f_1, \ldots, f_r) &= h \ \text{iff} \ f_i, \ldots, f_r, h \in Fnc_A \ \text{and} \ h(e) = u, \ h(\sigma(w)) = f_i(h(w)), 1 \leq i \leq r; \\
\text{con}_{\alpha}(f, g) &= h \ \text{iff} \ f, g, h \in Fnc_A \ \text{and} \ h(w) = f(w) g(w).
\end{align*}
\]
For every operator φ in Fnc,

$$s(\varphi)(f) = s(\varphi(n(f))), \text{ for every } f \in Fnc;$$

analogously, for every operator θ in Fnc,

$$n(\theta)(g) = n(\theta(s(g))), \text{ for every } g \in Fnc.$$

For example, $s(it_x) = \sigma-it_{\lambda,e(x)}$, $n(\sigma-it_{\lambda,e}) = it_w$.

Finally, for every subset $F \subseteq Fnc$ and every set X of operators in Fnc, $[F; X]$ denotes the smallest subset of Fnc which contains F and is closed under the operators belonging to X, and analogously for Fnc_Λ.

A simple, but useful, result in Asser [2] establishes the following relations:

1. For every $F \subseteq Fnc$ and for every set X of operators in Fnc, $s([F; X]) = [s(F); s(X)]$.
2. For every $G \subseteq Fnc_\Lambda$ and for every set Y of operators in Fnc_Λ, $n([G; Y]) = [n(G); n(Y)]$.

2. Main results

The primitive recursive string-functions were introduced by Asser [1] and studied by various authors (see Eilenberg and Elgot [6], Brainard and Landweber [4], Calude [5]). A famous result of R. M. Robinson [9] gives the following characterisation of the class $Prim^1$ of unary primitive recursive number-theoretical functions:

$$Prim^1 = \{\{Succ, E\}; \{\text{sub}, it_0, \text{add}\}\}.$$

In Asser [2] the following characterizations of the class $Prim_\Lambda^1$ of unary primitive recursive string-functions are obtained:

3. $Prim_\Lambda^1 = \{\{\sigma, s(E)\}; \{\text{sub}_\Lambda, \sigma-it_{\lambda,e}, s(\text{add})\}\}$,

4. $Prim_\Lambda^1 = \{\{\text{Succ}_1, \ldots, \text{Succ}_\Lambda, s(E)\}; \{\text{sub}_\Lambda, it_{\lambda,e}, \text{con}_\Lambda\}\}$.

These characterizations use the somewhat artificial string-function $s(E)$ and the operator $s(\text{add})$ in Fnc_Λ is also rather artificial.

In Georgieva [7] (see also Calude [5]) one finds the following result:

$$Prim^1 = \{\{\text{Succ}\}; \{\text{sub}, \text{diff}\} \cup \{it_x | x \in \mathbb{N}\}\}.$$

This formula can be simplified as follows:

5. $Prim^1 = \{\{\text{Succ}\}; \{\text{sub}, \text{diff}, it_0\}\}$.

All that remains to prove (5) is the inclusion

$$Prim^1 \subseteq P = \{\{\text{Succ}\}; \{\text{sub}, \text{diff}, it_0\}\},$$

i.e. the closure of P under the operators it_x for $x \in \mathbb{N}_*$. First we note that P contains the functions $sg = it_0(C_1)$, $\bar{sg} = \text{diff}(C_1, sg)$ and that P is closed under sum and product. Now let f in P and $h = it_x(f)$, $x \in \mathbb{N}_*$. If, for every natural $k > 0$, $f^k(x) = f(f(...(f(x))...)) \neq 0$ (k times), then $h = \text{sub}(h^*, \text{Succ})$, where $h^* = it_0(g)$ and $g(y) = x \cdot \bar{sg}(y) + f(y) \cdot sg(y)$ (\cdot denotes the product). In case there exists a natural $k > 0$ such that $f^k(x) = 0$, say the minimal one, then

$$h(y) = h^*(\text{Succ}(y)) \cdot \bar{sg}(t(x)) + h_*(t(x)) \cdot sg(t(x)),$$

where $t = \text{diff}(I, C_1)$, $h_* = it_0(f)$.
In view of (5) and (1), as a slight improved form of (3) we obtain:

(6) \[\text{Prim} \left(\{ \sigma \} ; \{ \text{sub}_A, \sigma-\text{it}_A, e, s(\text{diff}) \} \right). \]

The string-function \(s(E) \) is dropped, but the unpleasant operator \(s(\text{diff}) \) in \(\text{Fnc}_A \) is still present. To overcome this difficulty we shall present our first result:

(7) \[\text{Prim} \left(\{ \text{Succ}^\Lambda, \pi \} ; \{ \text{sub}_A, \text{it}_A, e, \text{con}_A \} \right). \]

For this, we denote by \(F \) the right-hand side of (7). In order to prove (7) we will show that (i) \(\sigma \in F \), (ii) \(F \) is closed under \(\sigma-\text{it}_A, e \), (iii) \(F \) is closed under \(s(\text{diff}) \).

As in the proof of Proposition 2 in Asser [2] we begin with displaying a list of string-functions belonging to \(F \):

a) \(\text{C}^\Lambda_e(w) = e \): \(\text{C}^\Lambda_e(\pi, \ldots, \pi) \).

b) \(\text{x}_i(w) = a_i \) (1 \(\leq i \leq r) \): \(\text{x}_i = \text{sub}_A(\text{Succ}^\Lambda, \text{C}^\Lambda_e). \)

c) \(\text{I}^\Lambda(w) = w \): \(\text{I}^\Lambda = \text{it}_A(\text{Succ}^\Lambda, \ldots, \text{Succ}^\Lambda) \).

d) \(\text{sg}^\Lambda(e) = e \), \(\text{sg}^\Lambda(w) = a_i \), for \(w \neq e \) (1 \(\leq i \leq r) \): \(\text{sg}^\Lambda = \text{it}_A(e, \ldots, e) \).

e) \(\text{succ}^\Lambda(w) = a_i w \) (1 \(\leq i \leq r) \): \(\text{succ}^\Lambda = \text{con}_A(\text{x}_i, \text{I}^\Lambda) \).

f) \(\text{mir}(e) = e \), \(\text{mir}(w) = \text{mir(u) mir(w)} \): \(\text{mir} = \text{it}_A(\text{succ}^\Lambda, \ldots, \text{succ}^\Lambda) \).

g) \(\lambda_i(w) = a_i \) (1 \(\leq i \leq r) \): \(\lambda_i = \text{it}_A(\text{Succ}^\Lambda, \ldots, \text{Succ}^\Lambda) \).

h) \(\gamma_i(w) = a_i \) (1 \(\leq i \leq r) \):

\[\gamma_i = \text{it}_A(\text{con}_A(\text{I}^\Lambda \ldots \text{I}^\Lambda, \text{x}_i), \text{con}_A(\text{I}^\Lambda \ldots \text{I}^\Lambda, \text{x}_i), \ldots, \text{con}_A(\text{I}^\Lambda \ldots \text{I}^\Lambda, \text{x}_i)) \]

(the \(k \)-th place of the operator \(\text{it}_A, e \) is \(\text{con}_A(\text{I}^\Lambda \ldots \text{I}^\Lambda, \text{x}_i) \) with \(r \) concatenations of \(\text{I}^\Lambda \) and \(k \) concatenations of \(\text{x}_i; \) 1 \(\leq k \leq r) \).

i) \(\alpha_i(w) = u \) if \(w = u a_i a_{i+1} \ldots a_r \) and \(u \) does not terminate with \(a_i \) (1 \(\leq i \leq r) \):

\[\alpha_i(\text{sub}_A(\text{mir}, \text{sub}_A(\text{it}_A, (\text{Succ}^\Lambda, \ldots, \text{Succ}^\Lambda)))). \]

j) \(\beta_i(w) = a_i a_{i+1} \ldots a_r \) if \(w = \alpha(w) a_i a_{i+1} \ldots a_r \) (1 \(\leq i \leq r) \): \(\beta_i = \text{it}_A(\text{con}_A(\text{I}^\Lambda \ldots \text{I}^\Lambda, \text{x}_i), \ldots, \text{con}_A(\text{I}^\Lambda \ldots \text{I}^\Lambda, \text{x}_i)) \).

k) \(\text{sg}^\Lambda(e) = a_i \), \(\text{sg}^\Lambda(w) = e \), for \(w \neq e \) (1 \(\leq i \leq r) \):

\[\text{sg}^\Lambda = \text{sub}_A(\text{sg}^\Lambda, \text{sub}_A(\text{I}^\Lambda, \text{sg}^\Lambda)) \).

l) \(\psi_i(e) = a_{i+1}, \psi_i(w) = a_i \), for \(w \neq e \) (1 \(\leq i < r) \): \(\psi_i = \text{con}_A(\text{sg}^\Lambda, \text{sg}^\Lambda) \);

\[\psi_i(e) = a_1, \psi_i(w) = a_r \), for \(w \neq e \): \(\psi_r = \text{con}_A(\text{sg}^\Lambda, \text{sg}^\Lambda) \).

m) \(\chi(e) = e \), \(\chi(u a_i) = u a_{i+1} \), for \(1 \leq i < r \): \(\chi(u a_r) = u a_i \):

\[\chi = \text{sub}_A(\text{mir}, \text{sub}_A(\text{con}_A(\text{I}^\Lambda, \psi_1), \ldots, \text{con}_A(\text{I}^\Lambda, \psi_r)) \).

We are now in a position to prove (i): \(\sigma \in F \). Indeed,

\[\sigma = \text{con}_A(\text{sub}_A(\text{sg}^\Lambda, \alpha), \text{con}_A(\text{sub}_A(\chi, \alpha), \text{sub}_A(\chi, \beta))) \).
Passing to (ii) we note that

\[(8) \quad \sigma_{it_{A^e}}(f) = sub_A(it_{A^e}(f, \ldots, f), y) \],

i.e. \(F \) is closed under the operator \(\sigma_{it_{A^e}} \).

To finish the proof we recall that, for every \(f \in F_{nc} \) and \(n \in \mathbb{N} \), \(f^0 = I^A \) and \(f^n = sub_A(f, sub_A(f, \ldots, sub_A(f, f), \ldots)) \), \(n \) times. Using a double lexicographical induction one proves the equality

\[\pi_{diff}(u) = c(diff(c(u), c(w))) \text{ for } u, w \in \mathbb{N}^* \],

which enables us to write the formula

\[(9) \quad s(diff)(f, g) = sub_A(it_{A^e}(\sigma, \pi, I^A, \ldots, I^A), con_A(sub_A(\gamma_1, f), sub_A(\gamma_2, g))) \],

for all \(f, g \in F_{nc} \), thus proving (iii). This ends the proof of (7).

Our second Robinson algebra is the following:

\[(10) \quad Prim_A^n = \{ \gamma; \{ sub_A, it_{A^e}, con_A \} \} \].

In view of (6) we must prove that the right-hand side of (10) is closed under \(\sigma_{it_{A^e}} \) and \(s(dif) \).

Again we proceed with displaying a sequence of primitive recursive string-functions belonging to the right-hand side of (10):

a) \(I^A = sub_A(\pi, \sigma) \).

b) \(C^A = it_{A^e}(\pi, \ldots, \pi) \).

c) \(\lambda_i = sub_A(\sigma, sub_A(\sigma, \ldots, sub_A(\sigma, C^A))) \),

where the operator \(sub_A \) appears \(i \) times (\(1 \leq i \leq r \)).

d) \(\gamma_i = it_{A^e}(con_A(M_i(I^A), M_i(\lambda_i)) \text{ con}_A(M_i(I^A), M_i(\lambda_i)), \ldots, \text{ con}_A(M_i(I^A), M_i(\lambda_i))) \),

with \(M_i(f) = \text{ con}_A(f, \text{ con}_A(f, \ldots, \text{ con}_A(f, f), \ldots) \), where \(f \) is any string-function and the operator \(\text{ con}_A \) appears \(j \geq 1 \) times.

The proof of (10) is complete in view of (8) and (9).

Finally, we conjecture the validity of the following formula:

\[(11) \quad Prim_A^n = \{ \gamma; \{ sub_A, \sigma_{it_{A^e}}, \text{ con}_A \} \}. \]

In view of (2) and \(n(Succ^i)(x) = Succ^i(x), 1 \leq i \leq r, \) (11) holds iff its right-hand side is closed under the operator \(it_{A^e} \).

3. Final remarks

After finishing this paper we have learnt the following new characterizations of \(Prim_A^n \) due to G. Asser [3]:

\[Prim_A^n = \{ \{ Succ^1, \ldots, Succ^n, \lambda \}; \{ sub_A, it_{A^e}, con_A \} \} \]

\[= \{ \{ Succ^1, \ldots, Succ^n, \varphi \}; \{ sub_A, it_{A^e}, con_A \} \}, \]

where \(\lambda, \varphi \) are the component functions of the pairing function.
\(\gamma(u, v) = a_1^{\text{length}(u)} a_2 u v a_3^{\text{length}(v)} \),

i.e., if \(w = \gamma(u, v) \) for some strings \(u, v \), then \(\lambda(w) = u \) and \(\varrho(w) = v \), else \(\lambda(w) = \varrho(w) = e \).

Furthermore G. Asser (communication of July 13, 1989) has perceived that in (7) the function \(\pi \) can be replaced by the function \(\delta \), i.e.

\[
\text{(12)} \quad \text{Prim}_A = \left\{ \{ \text{Succ}_A^\wedge, \ldots, \text{Succ}_A, \delta \}, \{ \text{sub}, \text{it}_A, \text{e}, \text{con}_A \} \right\}.
\]

The proof is essentially the same as for (7). Only a) must be replaced by

\[
C_\varepsilon^A = \text{it}_A, \varepsilon (\delta, \ldots, \delta),
\]

and (9) must be replaced by

\[
s(\text{diff})(f, g) = \text{sub}_A(\text{it}_A, \varepsilon (\sigma, \ldots, \sigma), \text{sub}_A(\text{it}_A, \varepsilon (\text{Succ}_A^\wedge, \delta, \ldots, \delta), (\text{con}_A(\text{sub}_A(y_1, f), \text{sub}_A(y_2, g))))).
\]

References

