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ON A THEOREM OF G ~ T E R  ASSER 

by CRISTIAN CALUDE and LILA S ~ A N  in Bucharest (Romania) 

1. Introduction 

Recently, G. ASSER [2] has obtained two interesting characterizations of the class of unary 
primitive recursive string-functions over a fixed alphabet as Robinson algebras. Both charac- 
terizations use a somewhat artificial string-function, namely the string-function lexicographi- 
cally associated with the number-theoretical excess-over-a-square function. Our aim is to of- 
fer two new and natural Robinson algebras which are equivalent to ASSER'S algebras. 

Let N denote the set of naturals, i.e. N = {0,1,2, . . .} , and N, = N \ {O} . We consider a fixed 
alphabet A = {al, a*, . . . , a,}, r z 2 ,  and denote by A* the free monoid generated by A under 
concatenation (with e as the null-string). By length (w) we denote the length of the string w 
(length (e) = 0). For every w E A* and m E N let w m  = ww.. .w ( m  times), in case m > 0, and 
w o  = e .  By Fnc (respectively, Fnc,) we denote the set of all unary number-theoretical (respec- 
tively, string) functions. By Z, Succ, E ,  C,, Pd we denote the following number-theoretical 
functions: Z(x)  = x; Succ(x) = x + 1 ; E ( x )  = x 1, where 
x l y  = max(x - y,O). By ZA, Succ:, C;,  a, 6 ,  n we denote the following string-functions: 
ZA(w) = w ;  Succs(w) = wui (1 5 i 5 r )  ; C:(w) = u ;  ate) = (I~, a(wai) = wui+ if 1 s i < r, and 
a(wa,) = b(w)o1 ; 6 ( e )  = e, 6(wai)  = w (1 5 i 5 r ) ;  n(e) = e, n(a(w)) = w. Furthermore we 
use the bijections c: A*+N, C: N+A* given by c ( e )  = 0, c(wai) = r *  c(w) + i ,  1 5  is r,  and 
E(0) = e, E(m + 1) = a(E(m));  obviously c(C(m)) = m and E(c(w)) = w. 

To each f €  Fnc we associate the string-function scf) E Fnc, defined by s(f) (w) 
= E(f (c(w))) ; conversely, to each string-function g we associate the number-theoretical 
function n ( g )  E Fnc defined by n ( g )  ( x )  = c(g(E(x))) .  I t  is easily seen that for every f E Fnc 
and g E  Fnc, one has n ( s ( f ) )  =fand s ( n ( g ) )  = g .  For example, s(Cm) = C:,, ~ ( S U C C )  = u, 
s(Z) = ZA, s ( P d )  = n. 

For every F S  Fnc and G S  Fnc, we put s(F)= { s c f ) I f ~ F }  and n ( G )  = { n ( g ) l g ~  G}. A 
mapping from Fnc" in Fnc (n E N,) is called an n-ary operator in Fnc, and analogous for Fnc,. 
We consider the following operators in Fnc and Fnc,: 

[&I2; C m ( x )  = m; P d ( x )  = x 

s u b C f ; g ) = h  iff f , g , h E F n c  and h ( x ) = f ( g ( x ) ) ;  
i t , , ( f ) = h  iff f , h ~ F n c  and h ( O ) = x ,  h ( y + l ) = f ( h ( y ) ) ;  

a d d ( f ; g ) = h  iff f , g , h ~ F n c  and h ( x ) = f ( x ) + g ( x ) ;  
d i f f C f ; g ) = h  iff f ; g , h E F n c  and h ( x ) = f ( x ) - g ( x ) ;  
sub,Cf; g )  = h iff f, g, h E Fnc, and h (w) = f ( g ( w ) )  ; 

a - i t A , , ( f ) = h  iff f , h ~ F n c ,  and h ( e ) = u ,  h ( o ( w ) ) = f ( h ( w ) ) ;  
it,.Cf,, ... ,L) = h iff fi, ... ,L, h E FncA and 

c o n , ( f g ) = h  iff f ,g ,hEFncA and h ( w ) = f ( w ) g ( w ) .  

h (e )  = u,  h(wai) =fi.(h(w)), 15 i s  r ;  
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For every operator Q, in Fnc, 

s(Q,) (f) = s ( ~ , ( n ( f ) > ) ,  for every f~ Fnc ; 

n ( O > ( g ) = n ( B ( s ( g ) ) ) ,  forevery gEFnc 

For example, s(it,) = g-itA,c(,), n ( a  - = i&. 
Finally, for every subset F S  Fnc and every set X of operators in Fnc, [ F ; X ]  denotes the 

smallest subset of Fnc which contains F and is closed under the operators belonging to X ,  
and analogously for Fnc,. 

(1) 
(2) 

analogously, for every operator 6 in Fnc, 

A simple, but useful, result in ASSER [2] establishes the following relations: 
For every F 
For every G S Fnc, andfor every set Y of operators in FncA, n ( [ G ;  Yl) = [ n ( G ) ;  n ( Y ) ] .  

Fnc and for every set X of operators in Fnc, s ( [ F ;  XI) = [ s ( F ) ;  s(X)]. 

2. Main results 

The primitive recursive string-functions were introduced by ASSER [l] and studied by var- 
ious authors (see EILENBERG and ELGOT [6 ] ,  BRAINERD and LANDWEBER [4], CALUDE [5 ] ) .  A fa- 
mous result of R. M. ROBINSON 191 gives the following characterisation of the class Prim' of 
unary primitive recursive number-theoretical functions: 

Prim = [ { Sum, E }  ; {sub, it,, add}]  . 
In ASSER [2] the following characterizations of the class Prim: of unary primitive recursive 

string-functions are obtained: 

(3) 

(4) 

These characterizations use the somewhat artificial string-function s(E) and the operator 
s(add) in Fnc, is also rather artificial. 

Prim: = [{a,s(E)};  {sub,, a-it,,,,s(add!}], 

Prim: = [{Succ?, . . . , Succ?,s(E)) ; {sub,, conA}]. 

In GEORGIEVA [7] (see also CALUDE [S]) one finds the following result: 

Prim = [ {Succ} ; {sub, diff3 u {it, I x E N}] . 
This formula can be simplified as follows: 

( 5 )  Prim' = [ {Succ} ; {sub, difJ; ito}] . 
All that remains to prove (5) is the inclusion 

Prim' S P = [ (Succ} ; {sub, d s  i to}],  

i.e. the closure of P under the operators it, for x E N, . First we note that P contains the func- 
tions sg = ito(C1), Sg = diff(C,, sg)  and that P is closed under sum and product. Now let f in P 
and h = i t , ( f) ,  X E  N,. If, for every natural k >  0,  f k ( x )  =f(f( ...(f( x)) ...)) * 0 ( k  times), 
then h = sub(h*, Succ), where h* = ito(g) and g ( y )  = x . S g ( y )  + f ( y ) . s g ( y )  (. denotes the 
product). In case there exists a natural k > 0 such that f k ( x )  = 0, say the minimal one, then 

h ( y )  = h * ( S u c c ( ~ ) ) . s g ( t ( x ) )  + h , ( t ( x ) > .  s g ( t ( x ) ) ,  

where t = d$f (Z, CJ,  h * = i t o ( f ) .  
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In view of (5) and ( l ) ,  as a slight improved form of (3) we obtain: 

(6 )  Prim:= [{a}; {subA,a-itA,,,s(diff>}]. 

The string-function s (E)  is dropped, but the unpleasant operator s(diff> in FncA is still pre- 
sent. To overcome this difficulty we shall present our first result: 

(7) Prim: = [ { S U C C ; ,  .. . , SUCC:, z} ; {sub,, itA,,, COnA}]. 

For this, we denote by F the right-hand side of (7). In order to prove (7) we will show that 

As in the proof of Proposition 2 in ASSER [2] we begin with displaying a list of string-func- 

a) Ct(w) = e: C t  = i tA,e(n, ... , z). 

(i) OE F ,  (ii) F is closed under (T-itA,,, (iii) I; is closed under s(di f f ) .  

tions belonging to F: 

b) x ~ ( w )  = a, (1 s i s r ) :  x; = subA(S~ccr ,  Ct)  . 
c) ZA(W) = w : Z A  = i t A , e ( S U C C : ,  . .. , S U C C t )  . 

d) s g : ( e ) = e ,  s g 4 ( w ) = a i ,  for w * e  ( 1 5 i 5 r ) : s g 4 = i t ~ , , ( x i ,  ..., x i ) .  

e) succ~(w> = aiw 

Q mir(e) = e ,  mir(wu) = mir(u)  mir(w):  mir = itA,,(succ?, ... ,succ:). 

g) n,(w) = a F h ( w )  

h) y , ( w )  = a?) 

( 1  5 i s r ) :  S U C C ~  = conA(x;, ZA) . 

(1 5 i 5 r ) :  A; = ifA,,(Succ:, ... , Succ:) . 

(1 5 i 5 r ) :  

y; = i f A , e ( C O n A ( z A . .  .IA, x i ) ,  conA(zA.. .IA, xixi) ,  . . . , conA(zA.. .IA, xi.. .x i ) )  

(the k-th place of the operator itA,, is conA(Z A. . .ZA,  x i . . . x j )  with r concatenations of ZA 
and k concatenations of x i ;  1 5 k 5 r ) .  

i) ai (w)  = u iff w = uaja i...aj and u does not terminate with a; (1 5 i 5 r ) :  

a; = subA(mir, Sub,( i t , i ,e(succt,  . . . , succ9- 1, 

conA(IA, sgf), SUCC:+ 1, . . . , SUCC:), mi r ) ) )  . 

j) b j ( w )  = aiaj..  .a; iff w = a ( w )  ajai. ..ai 

k) @ 4 ( e )  = ai, 

(1 5 i 5 r ) :  pi = itA,,(C?, ... , Succ?, . . . , Ct)  . 

Sg:(w) = e ,  for w * e ( 1  5 i 5 r ) :  
-A sgj - - subA(sgr, subA(B,, CoIIA(sUCCt,  s g : ) ) ) .  

1) y i ( e )  = ai+ 1,  yi (w)  = a;, for w * e (1 5 i < r ) :  y; = conA&?+ 1, sg4)  ; 

y r ( e ) = a l ,  y r ( w ) = a r ,  for w * e :  y r = c o n A & : , s g t ) .  

m)x(e) = e ,  x(uai)  = for 15 i <  r,  x(uar)  = ual :  

x = subA(mir, subA(itA,e(conA(zA, y J , .  . . , conA(ZA, yr)) ,  rnir)) . 

We are now in a position to prove (i): g c  F. Indeed, 

g = conA(subA@E? 9 a r )  > conA(subAk a r )  1 subA(x1, A))) . 
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Passing to (ii) we note that 

(8) a - i f A , e ( f )  = s u b A ( i f A , e ( i  . . . , f ) , Y l ) ,  

i.e. F is closed under the operator 

To finish the proof we recall that, for every f E Fnc, and n E N,, f o  = Z A  and 
f" = S U ~ A ( ~  subA(f,. . ., subAdf;f). . .)), n times. Using a double lexicographical induction 
one proves the equality 

&w)(u) = E(diff(c(u), c ( w ) ) )  for u, w E A*, 

which enables us to write the formula 

(9) s(diff> cf; g )  = subA( irA,e(@j n, I A ,  ..., IA) > conA(subA(yl ,f> 7 subA(y2 > g))) 7 

for all f, g E FncA, thus proving (iii). This ends the proof of (7). 

Our second Robinson algebra is the following: 

(10) Prim: = [{q n}; {sub,, itA,e, COnA}]. 

In view of (6)  we must prove that the right-hand side of (10) is closed under a-ifA,e  and 

Again we proceed with displaying a sequence of primitive recursive string-functions be- 
s(diff). 

longing to the right-hand side of (10): 

a) Z A  = subA(n, a). 

b) C: = i fAJn,  . .., n) . 

c) xi = SUbA( a, sub,( 4 . . . , SubA(  a, c:))) , 
where the operator subA appears i times (1 5 i s r )  . 

d) Yi = ~ ~ A , A c o ~ A ( M A Z ~ ) ,  M,(xi))  conA(M,(ZA), M*(xi)) ,  . . ., conA(MAZA), M,(xi))) ,  

with Mj(f) = conA(f, C O ~ A ( ~ ;  . . ., conA(Af)). . .) , where f is any string-function and the operator 
C O n A  appears j 2 1 times. 

The proof of (10) is complete in view of (8) and (9). 

Finally, we conjecture the validity of the following formula: 

(11) Prim:= [{a,n}; {sUbA,U- ' i fA ,e ,COnA}] .  

In view of (2) and n(SuccT) (x) = Succ'(x), 1 5 i d  r,  (11) holds iff its right-hand side is 
closed under the operator itA+. 

3. Final remarks 

After finishing this paper we have learnt the following new characterizations of Prim: due 
to G. ASSER [3]: 

Prim: = [ {SUCC?, . . . , SUCC:, A }  ; {subA, itA,e, conA}] 

= [ { S u c c ~ , . . . , S u c c : , @ } ;  {SubA,ifA,e,COnA)], 

where A, Q are the component functions of the pairing function 
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y(u, u )  = a:C"B"'"'a2uva2a~"p'~'"', 

i.e., if w = y(u, v )  for some strings u,  u, then A(w)  = u and e ( w )  = u, else A(w)  = e ( w )  = e.  

function n can be replaced by the function 6, i.e. 
Furthermore G.ASSER (communication of July 13, 1989) has perceived that in (7) the 

(12) prim: = [ {SUCC:, .. . , SUCC;, a} ,  {sub,, ~ z A , ~ ,  COnA}]. 

c: = i f A , e ( a ,  . . ., a) , 

d d i f f )  (A g> 

The proof is essentially the same as for (7). Only a) must be replaced by 

and (9) must be replaced by 

= SUbA(itA,e(c ...) (T),SubA(ifA,e(SuCC:, a, .-.) 61, (conA(subA(yl,f),SubA(y2,8)))). 
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