
AUTHOR C
OPY

Computability 7 (2018) 259–271 259
DOI 10.3233/COM-170073
IOS Press

A probabilistic anytime algorithm for the halting problem

Cristian S. Calude
Department of Computer Science, University of Auckland, Auckland, New Zealand
cristian@cs.auckland.ac.nz
www.cs.auckland.ac.nz/~cristian

Monica Dumitrescu
Faculty of Mathematics and Computer Science, Bucharest University, Romania
mdumi@fmi.unibuc.ro
http://goo.gl/txsqpU

The first author dedicates his contribution to this paper to the memory of his collaborator and friend S. Barry
Cooper (1943–2015).

Abstract. The Halting Problem, the most (in)famous undecidable problem, has important applications in theoretical and applied
computer science and beyond, hence the interest in its approximate solutions.

Experimental results reported on various models of computation suggest that halting programs are not uniformly distributed –
running times play an important role. A reason is that a program which eventually stops but does not halt “quickly”, stops at a
time which is algorithmically compressible.

In this paper we work with running times to define a class of computable probability distributions on the set of halting programs
in order to construct an anytime algorithm for the Halting problem with a probabilistic evaluation of the error of the decision.

Keywords: Halting Problem, anytime algorithm, running time distribution

1. Introduction
The Halting Problem asks to decide, from a description of an arbitrary program and an input, whether the

computation of the program on that input will eventually stop or continue forever. In 1936 Alonzo Church, and
independently Alan Turing, proved that (in Turing’s formulation) an algorithm to solve the Halting Problem for
all possible program-input pairs does not exist; two equivalent models have been used to describe computa-
tion by algorithms (an informal notion), the lambda calculus by Church and Turing machines by Turing. The
Halting Problem is historically the first proved undecidable problem; it has many applications in mathematics,
logic and theoretical as well as applied computer science, mathematics, physics, biology, etc. Due to its prac-
tical importance approximate solutions for this problem have been proposed for quite a long time, see [2,5–
7,9,14,16,19,21,26].

Anytime algorithms trade execution time for quality of results [13]. These algorithms can be executed in two
modes: either by a given contract time to execute or an interruptible method. Instead of correctness, an anytime
algorithm returns a result together with a “quality measure” which evaluates how close the obtained result is to the
result that would be returned if the algorithm ran until completion (which may be prohibitively long). To improve the
solution, anytime algorithms can be continued after they have halted. That is similar to the use of iterative processes
in numerical computing in which, after the process has been halted, if the output is not considered to be acceptable,
then it can be refined by resuming the iterative process.

Following Manin [21] we use a more general form of anytime algorithm as an approximation for a computation
which may never stop. An anytime algorithm for the Halting Problem works in the following way: to test whether a
program eventually stops on a given input we first effectively compute a threshold time – the interruptible (stopping)
condition – and then run the program for that specific time. If the computation stops, then the program was proved
to halt; if the computation does not stop, then we declare that: (a) the program will never stop and (b) evaluate the

2211-3568/18/$35.00 © 2018 – IOS Press and the authors. All rights reserved

mailto:cristian@cs.auckland.ac.nz
http://www.cs.auckland.ac.nz/~cristian
mailto:mdumi@fmi.unibuc.ro
http://goo.gl/txsqpU

AUTHOR C
OPY

260 C.S. Calude and M. Dumitrescu / A probabilistic anytime algorithm for the halting problem

probability of error, i.e. the probability that the program may eventually stop. The goal is to prove that the probability
of error can be made as small as we wish. By running the program a longer time we can improve its performance
either by getting to the halting time or by decreasing the probability of error. Another important goal is to develop
feasible anytime algorithms for the Halting Problem.

In [6,7] anytime algorithms for the Halting Problem have been developed using the fact – proved in [7] – that
programs which take a long time to halt stop at “algorithmically compressible times”, i.e. times which a computer
can generate from “smaller” inputs. Although the set of algorithmically compressible times has constructive density
zero, the stopping times obtained using this method are very large and the theoretical bounds cannot be improved
in general [6]. However, experimental results in [30] for small Turing machines indicate much smaller stopping
times. Furthermore, the experimental results in [27,30,31] and theoretical results in [14,15] show that halting pro-
grams are not uniformly distributed and their distributions depend on the running times of the specific model of
computation.

In this paper we construct a class of computable probability distributions on the set of halting programs based
on their running times. Each computable probability distribution induces a probability space on the set of halting
programs. Using this probabilistic framework we construct an anytime algorithm for the Halting problem with a
probabilistic evaluation of the error of the decision.

The paper is organised as follows. We start with a section on basic notation. Section 3 presents the computability
and complexity part while Section 4 is dedicated to probability and statistics. Section 5 is dedicated to the presenta-
tion of the probabilistic framework for the anytime algorithms. We start by examining two plausible a priori halting
probabilities. The analysis of their inadequacy leads to the introduction of running time probability spaces on the
set of halting programs which, as their names indicate, are constructed using computable probability distributions
on the set of running times. In Section 6 describe the anytime algorithm and prove its correctness. In Section 8 we
propose methods to improve the performance of the algorithm and evaluate it power and limits. Finally, we discuss
some open problems.

2. Notation
In the following we will denote by Z

+ the set of positive integers {1, 2, . . . } and let Z+ = Z
+ ∪{∞}; R is the set

of reals. The domain of a partial function F : Z+ −→ Z+ is denoted by dom(F): dom(F) = {x ∈ Z
+ | F(x) < ∞}.

We denote by #S the cardinality of the set S and by P(X) the power set of X.
We assume familiarity with elementary computability theory and algorithmic information theory [4,11,20].
For a partially computable function F : Z+ −→ Z+ we denote by F(x)[t] < ∞ the statement “the algorithm

computing F has stopped exactly in time t”. For t ∈ Z
+ we consider the computable set Stop(F, t) = {x ∈ Z

+ |
F(x)[t] < ∞}, and note that

dom(F) =
⋃

t∈Z+
Stop(F, t). (1)

3. Complexity and universality

The algorithmic complexity relative to a partially computable function F : Z+ −→ Z+ is the partial func-
tion ∇F : Z+ −→ Z+ defined by ∇F (x) = inf{y ∈ Z

+ | F(y) = x}. If F(y) �= x for every y � 1, then
∇F (x) = ∞. That is, the algorithmic complexity of x is the smallest description/encoding of x with respect to the
interpreter/decoder F , or infinity if F cannot produce x.

A partially computable function U is called universal if for every partially computable function F : Z+ −→ Z+
there exists a constant kU,F such that for every x ∈ dom(∇F) we have

∇U(x) � kU,F · ∇F (x). (2)

AUTHOR C
OPY

C.S. Calude and M. Dumitrescu / A probabilistic anytime algorithm for the halting problem 261

Theorem 3.1 ([6]). A partially computable function U is universal iff for every partially computable function
F : Z+ −→ Z+ there exists a constant cU,F such that for every x ∈ dom(F) we have

∇U
(
F(x)

)
� cU,F · x. (3)

The difference between (2) and (3) is in the role played by F : in the traditional condition (2), F appears through
∇F (which for some F can be incomputable), while in (3) F appears as argument of ∇U, making the second member
of the inequality always computable.

A universal partially computable function U “simulates” any other partially computable function F in the fol-
lowing sense: if x ∈ dom(F), then from (3) we deduce that ∇U(F (x)) � cU,F · x, hence there exists an y � cU,F · x
in dom(U) such that U(y) = F(x). In particular, ∇U(x) < ∞, for all x ∈ Z

+.
The set dom(U) (see (1) for U = F) is computably enumerable, but not computable (the undecidability of

the Halting Problem), its complement dom(U) is not computably enumerable, but the sets (Stop(U, t))t�1 are all
computable.

To solve the Halting Problem means to determine for an arbitrarily pair (F, x), where F is a partially computable
function and x ∈ Z

+, whether F(x) stops or not, or equivalently, whether x ∈ dom(F), that is, x ∈ Stop(F, t), for
some t ∈ Z

+. In view of (2) or (3) solving the Halting Problem for a fixed universal U is enough to solve the Halting
Problem. From now on we fix a universal U and study the Halting Problem U(x) < ∞, for x ∈ Z

+.

4. A glimpse of probability theory
In this section we define the main notions from probability theory used in this paper. For more details see [10,25].
A measurable space (�,B(�)) consists of a non-empty set � and a Borel field of subsets of �, B(�) ⊆ P(�).

A probability space is a triple (�,B(�), Pr), where (�,B(�)) is a measurable space and Pr : B(�) −→ [0, 1]
is a probability measure, that is, Pr satisfies the following two conditions: (a) the probability of a countable union
of mutually-exclusive sets in B(�) is equal to the countable sum of the probabilities of each of these sets, and
(b) Pr(�) = 1. We interpret B(�) as “the family of events” and � as “the certain event”.

Consider a probability space (�,B(�), Pr) and a measurable space (A,B(A)). A random variable is a mea-
surable function X : � −→ A, that is, for every B ∈ B(A) we have X−1(B) ∈ B(�). In this case X induces a
probability (called probability distribution of X) PX : B(A) −→ [0, 1] defined by

PX(B) = Pr
(
X−1(B)

) = Pr
({

ω | X(ω) ∈ B
})

, B ∈ B(A),

which identifies the probability space (A,B(A), PX).
The random variable X has a discrete probability distribution if A is at most countable. If we denote by PX({x})

the probability of the event {X = x} = {ω ∈ � | X(ω) = x}, then the discrete probability distribution of X is
completely defined by the numbers PX({x}) ∈ [0, 1], x ∈ A, with

∑
x∈A PX({x}) = 1. A computable probability

distribution PX is a discrete probability distribution such that the function x ∈ A ↪→ PX({x}) is computable (in
particular, PX({x}) is a computable real for each x ∈ A [23, p. 159]; see also [24,29]).

In what follows we assume that A ⊆ R.
The Cumulative Distribution Function of a random variable X is the function CDFX : R −→ [0, 1] defined

by CDFX(y) = Pr(X � y), y ∈ R. In case X is a random variable with a discrete distribution, CDFX is the
stair-function (with piecewise-constant sections) given by

CDFX(y) =
∑

{x∈A|x�y}
PX(x), y ∈ R.

For example, the generally accepted model for “the time-to-the-first-success” is the geometric distribution –
the discrete probability distribution that expresses the probability that the first occurrence of an event (“success”)
requires k independent trials, each with the same success probability θ . More precisely, the random variable X that

AUTHOR C
OPY

262 C.S. Calude and M. Dumitrescu / A probabilistic anytime algorithm for the halting problem

takes values in A = Z
+ has a geometric distribution with the rate of success θ ∈ (0, 1) if PX(k) = (1 − θ)k−1 · θ ,

k � 1. In this case

CDFX(y) =
∞∑

k=1,k�y

(1 − θ)k−1 · θ, y ∈ R,

and limy→∞ CDFX(y) = 1.
The Quantile Function of the random variable X with a discrete distribution is the function qX : [0, 1] −→ A

defined by qX(p) = inf{y ∈ A | p � CDFX(y)}. By definition, CDFX(qX(p)) � p, for all p ∈ [0, 1].
For fixed r ∈ [0, 1], the value (number) qX(r) is called the rth quantile of the random variable X. Quantiles are

important indicators that give information about the location and clustering of the probability values {PX(x), x ∈ A}.
For example, if the data being studied are not actually distributed according to an assumed underlying probability
distribution or if there are outliers far removed from the mean, then quantiles may provide useful information. Beside
the classical quartiles – first, second (median), third – the lower and upper εth quantiles, qX(ε) and qX(1 − ε), give
important informations about the “tails” of the probability distribution (for small ε > 0). For more details see [1].

Proposition 4.1. For every ε ∈ (0, 1) we have PX({x ∈ A | x > qX(1 − ε)}) � ε, hence limε→0 PX({x ∈ A | x >

qX(1 − ε)}) = 0.

Proof. Indeed, we have:

PX

({
x ∈ A | x > qX(1 − ε)

}) = 1 − PX

({
x ∈ A | x � qX(1 − ε)

})
= 1 − CDFX

(
qX(1 − ε)

)
� ε. �

5. A probabilistic framework
In this section we describe a probabilistic framework for developing two anytime algorithms based on an analysis

of the finite running times of all halting computations U(x), x ∈ dom(U).

5.1. Halting probability
Both approaches discussed in this paper depend – directly or indirectly – on a computable probability which has
to model the informal notion of “halting probability” for programs for a universal U, that is, the probability that U
stops on input x. Which probability measure should we choose?

First, various studies of concrete probability distributions for halting programs in different models of computa-
tions (see [15,27,30,31]) show that halting programs are not uniformly distributed and their probability distributions
depend on the running times on the specific model of computation. This experimental evidence is reflected also
in the theoretical result stating that programs which take a long time to halt stop at “algorithmically compressible
times”, a set of constructive density zero [7].

Second, if we interpret the event “U stops on input x” as a “success” in a sequence of trials, then the running
time of the computation U(x) becomes “the-time-to-the-first-success”. In this setting, the event “U(x) stops exactly
in time t”, that is “x ∈ Stop(U, t)”, is interpreted as “t is the achieved time-to-the-first success”. Then, the truncated
geometric distribution is a candidate for the halting probability. Is the geometric distribution probability a “natural”
model for the halting probability? Can it be used for developing anytime algorithms for the Halting Problem? The
answer to the first question is negative. Indeed, the phenomenon modelled by the geometric distribution requires a
sequence of independent trials in which each trial has the same probability of success – a strong condition hardly
satisfied by any U. For the second question we note that the computability of the probability – an essential property
for evaluating the stopping condition of the anytime algorithm – depends on the computability of θ and

∑
t∈TU

(1 −
θ)t−1, which may be problematic even if TU is computable, see [28].

This brief analysis suggests that instead of “assuming” an a priori halting probability we should instead construct
a model for the halting probability based on the running times TU.

AUTHOR C
OPY

C.S. Calude and M. Dumitrescu / A probabilistic anytime algorithm for the halting problem 263

5.2. A running time probability space
Recall that the finite running times1 of the computations U(x) are the set of exact stopping times for the halting
programs of U:

TU = {
t ∈ Z

+ | there exists x ∈ Z
+ such that x ∈ Stop(U, t)

}
= {

t ∈ Z
+ | there exists x ∈ Z

+ such that U(x)[t] < ∞}
.

Lemma 5.1. The set TU is infinite.

Proof. The statement in the lemma is true because for every M ∈ Z
+ there is a program x ∈ dom(U) which

stops in time larger than M: indeed, otherwise all programs would stop in time at most M , hence dom(U) would be
decidable, a contradiction. �

The undecidability of the Halting Problem casts a “computational uncertainty” on the membership problem of
the set dom(U). In what follows we model this phenomenon by introducing a probabilistic structure on dom(U).

From (1) we have

dom(U) =
⋃

t∈Z+
Stop(U, t) =

⋃
t∈TU

Stop(U, t). (4)

Next we note that

Stop(U, t) ∩ Stop
(
U, t ′

) =
{

∅, if t �= t ′,
Stop(U, t), otherwise.

Let us consider the family of (finite and countable) unions of sets Stop(U, t), t ∈ Z
+. This family includes

dom(U) and is closed under complement

Stop(U, t) =
⋃

t ′∈TU\{t}
Stop

(
U, t ′

)
,

and countable unions; accordingly, it is a Borel field of subsets of dom(U), which we denote by B(dom(U)). To
define the discrete probability measure on the measurable set (dom(U),B(dom(U))) we fix a computable probability
distribution ρ on TU (see Section 5.3). Then, we put

Pr = Prρ : B(
dom(U)

) −→ [0, 1], Pr
(
Stop(U, t)

) = ρ(t), t ∈ TU. (5)

Now we can introduce a probability structure on the set TU via a random variable. Let B(TU) be the family of
all subsets of TU. The function

RT = RTU : dom(U) −→ TU, RT(x) = min
{
t > 0 | x ∈ Stop(U, t)

}
(6)

has the property that for every t ∈ TU, RT−1({t}) = Stop(U, t) ∈ B(dom(U)). Consequently, RT is a random
variable – in fact a stopping time – which will be called the running time associated with U. As described in
Section 4, the random variable RT induces the probability space (TU,B(TU), PRT) on TU in which the probability
is defined as follows:

PRT
({t}) = Pr

(
RT−1({t})), t ∈ TU.

1See [12] for modelling running times.

AUTHOR C
OPY

264 C.S. Calude and M. Dumitrescu / A probabilistic anytime algorithm for the halting problem

It is seen that for every t ∈ TU:

PRT
({t}) = Pr

(
Stop(U, t)

) = ρ(t).

In what follows a computable probability space (dom(U),B(dom(U)), PrρU) of the form defined in (5) will be
called a running time probability space.

The random variable RT is completely specified by a computable probability distribution on the set of finite
running times of programs of U,{

ρ(t) | t ∈ TU
}
. (7)

Of course, we need to prove that a computable probability distribution (7) exists: this will be done in Section 5.3.
The cumulative distribution function CDFRT : TU −→ [0, 1] of the discrete random variable RT : dom(U) −→

TU is then defined by the formula:

CDFRT(k) = PRT
({t ∈ TU | 1 � t � k}) =

k∑
t=1,t∈TU

PRT(t), k ∈ TU,

and the quantile function of RT is

qRT(r) = inf
{
k ∈ TU | CDFRT(k) � r

}
, r ∈ (0, 1).

For ε ∈ (0, 1) we now use the (1 − ε)-quantile qRT(1 − ε) as a probabilistic threshold separating the “the upper
ε-tail” of the distribution, i.e. those very large running times t making the event “U(x)[t] < ∞” negligible according
to PRT.

5.3. Running time computable probability distributions
We now discuss examples of finite running time computable probability distributions for (7).

Every computable probability on dom(U) is defined on a computably enumerable, but not computable set and
has to satisfy the equality ρU(t) = Pr(Stop(U, t)), for all t ∈ TU, so it has to depend on U. Furthermore, to construct
ρU we need:

• a computable function prU : Z+ × Z
+ → [0, 1] such that prU(x, t) > 0 iff x ∈ Stop(U, t) (the probability

that U(x) stops on time t),
• a computable sequence of computable reals υU(t) = ∑∞

x=1 pr(x, t).

If
∑∞

t=1 υU(t) = 1, then we can set ρU(t) = υU(t) = Pr(Stop(U, t)). If
∑∞

t=1 υU(t) < 1, we need to normalise
with ϒU = ∑∞

t=1 υU(t), hence ϒU has to be computable. In this case

ρU(t) = 1

ϒU

· υU(t) = Pr
(
Stop(U, t)

)
.

As an example we construct the computable probability distribution ρU by using the function pr = prU : Z+ ×
Z

+ → [0, 1] defined by

pr(x, t) =
{

2−x

t
, if x ∈ Stop(U, t),

0, otherwise.
(8)

The function pr is computable because the sets Stop(U, t) are computable for every t ∈ Z
+.

AUTHOR C
OPY

C.S. Calude and M. Dumitrescu / A probabilistic anytime algorithm for the halting problem 265

Theorem 5.2. The real numbers

υ(t) = υU(t) =
∞∑

x=1

pr(x, t), t ∈ Z
+, (9)

ϒ = ϒU =
∞∑
t=1

υ(t) (10)

are computable and 0 � υ(t) < ϒ < 1.

Proof. To prove that υ(t) is computable we use Theorem 4.2.3 in [29] which says that the limit of a computable
sequence of rationals having a computable modulus of convergence is a computable real. To this aim we need to
prove that the modulus of convergence of the series (9) is computable. Indeed, for every positive integers i < j and
n we have

j∑
x=1,x∈Stop(U,t)

2−x

t
−

i∑
x=1,x∈Stop(U,t)

2−x

t
=

j∑
x=i+1,x∈Stop(U,t)

2−x

t

�
∞∑

x=i+1

2−x

t
= 2−i

t
� 2−n,

for i � �log2(
2−i

t
)
, a computable convergence modulus.

A similar argument works for the series (10) because the set {(t, x) ∈ Z
+ × Z

+ | x ∈ Stop(U, t)} is com-
putable. �

Note that if x /∈ dom(U), then for every t ∈ Z
+ we have pr(x, t) = 0, so υ(t) = 0.

Using Theorem 5.2 we construct the following computable probability distribution ρ on the set of finite running
times TU:

ρ(t) = ρU(t) = υ(t)

ϒ
= 1

ϒ

∞∑
x=1

pr(x, t), t ∈ TU. (11)

Indeed, from (11) and (10) we have:

∑
t∈TU

ρ(t) =
∞∑
t=1

ρ(t) =
∞∑
t=1

1

ϒ

∞∑
x=1

pr(x, t) = 1.

As described in Section 4, using ρ we define the computable discrete probability space (TU,B(TU), Pρ), where
B(TU) is the set of all subsets of TU and Pρ(t) = ρ(t).

The series (9) is a semi-measure [18, Section 4] with a computable sum2 – by Theorem 5.2, (10) – an essential
property for the computability of the probability Pρ .

The above probability space – inspired from [7] – is “natural” because the discrete probability distribution
combines the uniform distribution assumed in the halting probability � number, see [4], with the time complexity of
halting programs (normalised by the computable number ϒ , see (10)). In detail, the function (8) biases the programs
x – assumed to be uniformly distributed – by dividing 2−x to the program’s stopping time t .

2The sum of a computable semi-measure may be not computable as Specker theorem [28] indicates.

AUTHOR C
OPY

266 C.S. Calude and M. Dumitrescu / A probabilistic anytime algorithm for the halting problem

A program which eventually stops but does not halt “quickly” stops at an algorithmically compressible time,
hence the probability of a program, that doesn’t stop for a long time, to halt tends to zero, see [6,7]. More precisely,
if x ∈ Stop(U, t), then the longer t is, the smaller the halting probability of x is; if the program never halts, that is
x /∈ Stop(U, t), for all t , then the halting probability of x tends to zero when t → ∞. Any computable probability
distribution not reflecting this phenomenon is “un-natural”.

To further justify the “naturalness” of the probability Pρ we now show that it reflects the behaviour of both
halting and non-halting programs. To this aim we use the series (9) to define a variation of ρ, namely a semi-
computable probability distribution r on the set of all running times, finite or infinite, TU ∪ {∞} as follows:

r(t) =
{

υ(t), if t ∈ TU,

1 − ϒ, t = ∞.

As by (10) and (11)

∞∑
t=1

r(t) + r(∞) =
∞∑
t=1

∞∑
x=1

pr(x, t) + r(∞) = 1,

we can define Pr({t}) = r(t) for t ∈ TU ∪{∞} to obtain the semi-computable probability space (TU ∪{∞},B(TU ∪
{∞}), Pr), where B(TU ∪ {∞}) is the set of all subsets of TU ∪ {∞}.

In contrast with Pρ – which deals only with finite running times – Pr handles also the infinite running time, the
running time of non-halting programs. The normalisation factor ϒ makes Pρ “reflect” the behaviour of non-halting
programs too as the restriction of Pr to TU is

Pρ(t) = Pr({t})
ϒ

, t ∈ TU.

In (8) t can be replaced with log(t + 1) or, more generally, with g(t), where g is a non-decreasing, unbounded,
computable function: in this way we obtain a class of computable probabilistic distributions on TU.

In what follows, a computable probability distribution ρ on TU will be extended to Z
+ by setting ρ(t) = 0 for

every t ∈ Z
+ \ TU.

Finally, we note that the problem whether a concrete computable probability distribution is “natural” depends
on various factors, some objective, others subjective. There are a few ways to mitigate subjectivity, in particular, to
make (11) more “practical”. One possibility is to use instead of t a very slow increasing computable function g(t).
A more substantial improvement can be obtained using Proposition 1.5.2 in [22]. Yet another way will be discussed
in Section 7.

6. The probabilistic anytime algorithm
As we mentioned in Section 3, to solve the Halting Problem is enough to fix a universal U and to decide, for an

arbitrary program x, whether U(x) < ∞ or U(x) = ∞.
Our aim is to construct tan anytime algorithm for testing the incomputable predicate “U(x) < ∞”. The decision

to accept/reject the hypothesis “U(x) < ∞” will be based on the running time of the computation U(x). A decision
made by the anytime algorithm is erroneous when it returns the output “U(x) = ∞”, when, in fact, U(x) < ∞ (that
is, U(x) eventually stops after a very long time).

The Halting Problem will be re-formulated within the probabilistic framework presented in Section 5 as follows:

For arbitrary x ∈ Z+, test the hypothesis Hx : {U(x) < ∞} against the alternative H ′
x : {U(x) = ∞}.

The decision of rejecting Hx will be taken on the basis of a critical time region Bx . In both proposed anytime
algorithms, the critical regions will not depend on x, that is, B = Bx , for every x ∈ Z

+.

AUTHOR C
OPY

C.S. Calude and M. Dumitrescu / A probabilistic anytime algorithm for the halting problem 267

An erroneous decision occurs when we reject Hx on the basis of B, but Hx is true. The quality of this decision
is expressed by the probability of an erroneous decision, i.e. the probability that a halting program x stops in a time
t ∈ B.

In what follows we will work with an a priori running time probability space (TU,B(TU), PRT) defined in (7)
and the running time random variable RT defined in (6). Our main example is PRT = Pρ , where ρ comes from (8).

In what follows we fix a computable probability distribution PRT.
First we apply Proposition 4.1 to the random variable RT:

Corollary 6.1. For every ε ∈ (0, 1) we have

PRT
({

t ∈ TU | t > qRT(1 − ε)
})

� ε, (12)

hence limε→0 PRT({t ∈ TU | t > qRT(1 − ε)}) = 0.

We now use the inequality (12) in Corrolary 6.1 to propose the following probabilistic anytime algorithm for
the Halting Problem:3

Fix ε = 1
M

with M ∈ Z
+. Let x be an arbitrary program for U. If the computation U(x) does not stop in time

less than or equal to qRT(1 − ε), then declare that U(x) = ∞.

If the computation U(x) stops in time less than or equal to qRT(1 − ε), then obviously U(x) < ∞. Otherwise,
the answer to the question whether U(x) < ∞ is unknown and algorithmically unknowable. The above anytime
algorithm gives an approximate answer. To analyse the quality of the answer produced by this anytime algorithm we
choose the computable critical time region4

B(PRT, ε) = {
t ∈ TU | t > qRT(1 − ε)

}
,

and the critical program region

C(PRT, ε) = {
x ∈ Z

+ | U(x)[t] = ∞, for some t ∈ B(PRT, ε)
}

= {
x ∈ dom(U) | RT(x) ∈ B(PRT, ε)

}
.

Note that

Z
+ \ dom(U) ⊆ C(PRT, ε) ⊂ Z

+.

The first inclusion above is not necessarily an equality as there may exist t1 > t0 > qRT(1 − ε) such that U(x)[t0] =
∞ and U(x)[t1] < ∞.

The anytime algorithm may output the answer “U(x) = ∞” when in fact U(x) < ∞. To evaluate the quality of
the anytime algorithm we need to “compare” the set C(PRT, ε) – which gives the “anytime” answers “U(x) = ∞” –
with the exact set Z+ \ dom(U) – giving the correct answers “U(x) = ∞”. To this aim we evaluate the “size” of the
set C(PRT, ε) with Pr.

Corollary 6.2. For every M ∈ Z
+

Pr

(
C

(
PRT,

1

M

))
= PRT

(
B

(
PRT,

1

M

))
� 1

M
.

3A probabilistic anytime algorithm is different from a Monte Carlo algorithm. For such an algorithm there is no need of amplification as the
quality measure is fixed a priori by the bound on the probability of error.

4BPRT,ε is independent of x; recall that ε = 1
M

, M ∈ Z
+.

AUTHOR C
OPY

268 C.S. Calude and M. Dumitrescu / A probabilistic anytime algorithm for the halting problem

Proof. As C(PRT, ε) = RT−1(B(PRT, ε)), we have

Pr
(
C(PRT, ε)

) = PRT
(
B(PRT, ε)

)
so from Corrolary 6.1 we deduce that for every M ∈ Z

+ we have:

Pr

(
C

(
PRT,

1

M

))
= PRT

(
B

(
PRT,

1

M

))
= 1 − CDFRT

(
qRT

(
1 − 1

M

))
. �

Comment. Corollary 6.2 is stronger than the ones obtained in [6,7] where the probability and the stopping decision
depend on the program x.

To implement the anytime algorithm above we need an algorithm to compute

qRT

(
1 − 1

M

)
= min

{
t ∈ TU

∣∣ CDFRT(t) � 1 − 1

M

}
.

As the set TU is only computably enumerable, we will not be able to compute exactly qRT(1 − 1
M

), but an upper
bound for it. To this aim we consider a computably enumeration of TU = {t1, t2, . . . , ti , . . . } and compute the
following new bound:

q̃RT

(
1 − 1

M

)
=

k∑
i=1

ρ(ti) � qRT

(
1 − 1

M

)
,

where

k = min

{
s ∈ Z

+
∣∣∣ s∑

i=1

ρ(ti) � 1 − 1

M

}
.

Obviously, the anytime algorithm will work correctly with the larger bound, but this will increase its time
complexity.

7. Testing the quality of the running time distribution
Inference-based-decisions are made using statistical procedures based on sets of observations. An inference-

based-decision of a hypothesis results in one of two outcomes: the hypothesis is accepted or rejected. The outcome
can be correct or erroneous. The set of observations leading to the decision “reject the hypothesis” is called the
critical region.

Fix the probability space (A,B(A), PX) induced by a random variable X. Consider a critical region B ⊂ A,
B ∈ B(A) and an observed value x ∈ A. For every x ∈ A, a hypothesis Hx is a statement such that “Hx is true” and
“Hx is false” are measurable sets from B(A).

An inference-based-decision has the following form:

If the observed value x ∈ A belongs to B, then decide to reject the hypothesis Hx.

An error occurs if we reject Hx on the basis of B, when Hx is true. The probability of error, that is, the probability
of an erroneous decision, is PX({x ∈ B | “Hx is true”}). Of course, only decisions with (very) low probability of
error are of genuine interest.

AUTHOR C
OPY

C.S. Calude and M. Dumitrescu / A probabilistic anytime algorithm for the halting problem 269

Making the “right” choices for the running time computable probability distributions is essential for successful
applications. There are a few ways to guide and improve the quality of these choices. One possibility is to test how
“natural” is a particular computable probability distribution for some universal U using the sampling algorithm. For
example we can use the two-sample Kolmogorov–Smirnov goodness-and-fit test (see [8, pp. 309–314]) to test how
“natural” is a particular computable probability distribution, say Pρ , for a given universal U.

We randomly sample TU to obtain a long sequence of independent, identically distributed running times
(t1, . . . , tN) according to the discrete random variable RT . This can be achieved by a dovetailing method to generate
sufficiently many L halting programs POSL = (x1, . . . , xL) and their running times TPOSL

= (τ1, . . . , τL). Then
we implement a random sampling (see, for example, [3,17]) to extract N identically distributed running times from
TPOSL

, (t1, . . . , tN), which represent N independent, identically distributed replicates of the random variable RT .
We can now use the associated Empirical Cumulative Distribution Function defined by

ECDFRT,N (t) = #{1 � i � N | ti � t}
N

, t ∈ TU. (13)

The two-sample Kolmogorov–Smirnov test compares these two empirical distribution functions in order to
accept/reject the null hypothesis that the two datasets were drawn from “the same stochastic source”. The null
hypothesis, denoted by H0 : {PRT = Pρ}, states that the data produced by the sampling algorithm for the particular
universal U fits the computable probability distribution Pρ . The decision of accepting/rejecting H0 is taken on the
basis of numerical comparison of ECDFRT,N and ECDFρ,N .

8. Conclusions
In this paper we have proposed a probabilistic anytime algorithm for the Halting Problem. The anytime algorithm

depends on the model of computation U; its quality depend on the computable probability distribution on the set
stopping times.

The main motivation comes from experimental results reported in [27,30,31] and the theoretical results in [14,
15]: they all suggest that halting programs are not uniformly distributed and depend on the running times of the
specific model of computation.

We have used the fact that programs which take a long time to halt stop at “algorithmically compressible times”
[7] to construct a class of computable probability distributions on the set stopping times of halting programs. Each
computable probability distribution induces a running time probability space on the set of halting programs, the
probabilistic framework for our anytime algorithms.

Next we discuss some features of the proposed anytime algorithm. We start with positive features. (P1) The cut-
off temporal bound does not depend on programs. (P2) The a priori class of computable probabilities distributions
presented in Section 5.3 are not arbitrarily pre-imposed: they reflect the halting behaviour of the chosen universal
machine through its running times. (P3) We can test empirically the choice of the computable probability distribution
and sampling, hence adopt parameters suiting different universal machines.

However, the approach has limits. (L1) Because of (P1) and the use of a universal machine, the cut-off temporal
bound could be large. This can be mitigated to some extent by (P3). (L2) Working with a fixed universal machine
and programs x instead of pairs (program, y) increases the computational time as the simulation of the computation
program(y) on U takes longer than running program(y).

It is a natural follow-up to study the computational complexity of the proposed anytime algorithms and, compli-
mentary, to test experimentally their performance for classes of interesting programs.

Acknowledgements
We thank N. Allen, M. Holmes, Yu. Manin, L. Staiger and G. Tee for useful comments and suggestions. Special

thanks to the anonymous referee for excellent critical remarks and suggestions that improved the paper. This work
has been supported in part by the Quantum Computing Research Initiatives at Lockheed Martin.

AUTHOR C
OPY

270 C.S. Calude and M. Dumitrescu / A probabilistic anytime algorithm for the halting problem

References
[1] B.C. Arnold, N. Balakrishnan and N.N. Nagaraja, A First Course in Order Statistics, John Wiley, New York,

2008.
[2] L. Bienvenu, D. Desfontaines and A. Shen, What percentage of programs halt?, in: Automata, Languages,

and Programming I, M.M. Halldórsson, K. Iwama, N. Kobayashi and B. Speckmann, eds, LNCS, Vol. 9134,
Springer, 2015, pp. 219–230.

[3] K. Bringmann and K. Panagiotou, Efficient sampling methods for discrete distributions, Algorithmica (2016),
1–25. doi: 10.1007/s00453-016-0205-0.

[4] C.S. Calude, Information and Randomness: An Algorithmic Perspective, 2nd edn, Springer, Berlin, 2002.
[5] C.S. Calude and D. Desfontaines, Universality and almost decidability, Fundamenta Informaticae 138(1–2)

(2015), 77–84.
[6] C.S. Calude and D. Desfontaines, Anytime algorithms for non-ending computations, International Journal of

Foundations of Computer Science 26(4) (2015), 465–475. doi:10.1142/S0129054115500252.
[7] C.S. Calude and M.A. Stay, Most programs stop quickly or never halt, Advances in Applied Mathematics 40

(2008), 295–308. doi:10.1016/j.aam.2007.01.001.
[8] W.J. Conover, Practical Nonparametric Statistics, John Wiley, New York, 1971.
[9] B. Cook, A. Podelski and A. Rybalchenko, Proving program termination, Communications ACM 54(5) (2011),

88–98. doi:10.1145/1941487.1941509.
[10] A. DasGupta, Probability for Statistics and Machine Learning, Springer, New York, 2011.
[11] R. Downey and D. Hirschfeldt, Algorithmic Randomness and Complexity, Springer, Heidelberg, 2010.
[12] C.A. Furia, D. Mandrioli, A. Morzenti and M. Rossi, Modeling Time in Computing, Springer, Berlin, 2012.
[13] J. Grass, Reasoning about computational resource allocation. An introduction to anytime algorithms, Magazine

Crossroads 3(1) (1996), 16–20. doi:10.1145/332148.332154.
[14] J.D. Hamkins and A. Miasnikov, The halting problem is decidable on a set of asymptotic probability one, Notre

Dame Journal of Formal Logic 47(4) (2006), 515–524. doi:10.1305/ndjfl/1168352664.
[15] S. Köhler, C. Schindelhauer and M. Ziegler, On approximating real-world halting problems, in: Fundamentals

of Computation Theory 2005, M. Liskiewicz and R. Reischuk, eds, LNCS, Vol. 3623, Springer, 2005, pp.
454–466. doi:10.1007/11537311_40.

[16] R.H. Lathrop, On the learnability of the uncomputable, in: Proceedings International Conference on Machine
Learning, L. Saitta, ed., Morgan Kaufmann, 1996, pp. 302–309.

[17] P.S. Levy and S. Lemeshow, Sampling of Populations. Methods and Applications, 3rd edn, John Wiley, NJ,
1999.

[18] M. Li and P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and Its Applications, 3rd edn, Springer
Verlag, New York, 2008.

[19] N. Lynch, Approximations to the halting problem, Journal of Computer and System Sciences 9 (1974), 143–
150. doi:10.1016/S0022-0000(74)80003-6.

[20] Y.I. Manin, A Course in Mathematical Logic for Mathematicians, 2nd edn, Springer, Berlin, 2010.
[21] Y.I. Manin, Renormalisation and computation II: Time cut-off and the halting problem, Mathematical Struc-

tures in Computer Science 22 (2012), 729–751. doi:10.1017/S0960129511000508.
[22] Y.I. Manin, Zipf’s law and L. Levin probability distributions, Functional Analysis and Its Applications 48(2)

(2014), 116–127. doi:10.1007/s10688-014-0052-1.
[23] M. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1967.
[24] T. Mori, Y. Tsujii and M. Yasugi, Computability of probability distributions and distribution functions, in: 6th

International Conference on Computability and Complexity in Analysis, Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, A. Bauer, P. Hertling and K.-I. Ko, eds, Dagstuhl, 2009, pp. 185–196.

[25] P. Olofsson, Probability, Statistics, and Stochastic Processes, Wiley-Interscience, New York, 2005.
[26] A. Rybalov, On the generic undecidability of the halting problem for normalized Turing machines, Theory of

Computing Systems 60 (2017), 671–676.
[27] F. Soler-Toscano, H. Zenil, J.-P. Delahaye and N. Gauvrit, Calculating Kolmogorov complexity from the output

frequency distributions of small Turing machines, PLoS ONE 9(5) (2014), e96223.

http://dx.doi.org/10.1007/s00453-016-0205-0
http://dx.doi.org/10.1142/S0129054115500252
http://dx.doi.org/10.1016/j.aam.2007.01.001
http://dx.doi.org/10.1145/1941487.1941509
http://dx.doi.org/10.1145/332148.332154
http://dx.doi.org/10.1305/ndjfl/1168352664
http://dx.doi.org/10.1007/11537311_40
http://dx.doi.org/10.1016/S0022-0000(74)80003-6
http://dx.doi.org/10.1017/S0960129511000508
http://dx.doi.org/10.1007/s10688-014-0052-1

AUTHOR C
OPY

C.S. Calude and M. Dumitrescu / A probabilistic anytime algorithm for the halting problem 271

[28] E. Specker, Nicht konstruktiv beweisbare Sätze der Analysis, The Journal of Symbolic Logic 14 (1949), 145–
158. doi:10.2307/2267043.

[29] K. Weihrauch, Computable Analysis. An Introduction, Springer, Berlin, 2000.
[30] H. Zenil, Computer runtimes and the length of proofs, in: Computation, Physics and Beyond, M.J. Dinneen,

B. Khoussainov and A. Nies, eds, LNCS, Vol. 7160, Springer, 2012, pp. 224–240. doi:10.1007/978-3-
642-27654-5_17.

[31] H. Zenil and J.-P. Delahaye, On the algorithmic nature of the world, in: Information and Computation. Essays
on Scientific and Philosophical Understanding of Foundations of Information and Computation, G. Dodig-
Crnkovic and M. Burgin, eds, World Scientific, Singapore, 2010, pp. 477–499.

http://dx.doi.org/10.2307/2267043
http://dx.doi.org/10.1007/978-3-642-27654-5_17
http://dx.doi.org/10.1007/978-3-642-27654-5_17

	Introduction
	Notation
	Complexity and universality
	A glimpse of probability theory
	A probabilistic framework
	Halting probability
	A running time probability space
	Running time computable probability distributions

	The probabilistic anytime algorithm
	Testing the quality of the running time distribution
	Conclusions
	Acknowledgements
	References

