
A Simple Universal Logic Element and
Cellular Automata for Reversible Computing

Kenichi Morita

Hiroshima University, Faculty of Engineering,
Higashi-Hiroshima, 739-8527, Japan
morita@ke.sys.hiroshima-u.ac.jp

http://www.ke.sys.hiroshima-u.ac.jp/˜morita

Abstract. Reversible computing is a paradigm of computation that re-
flects physical reversibility, and is considered to be important when de-
signing a logical devices based on microscopic physical law in the near
future. In this paper, we focus on a problem how universal computers
can be built from primitive elements with very simple reversible rules.
We introduce a new reversible logic element called a “rotary element”,
and show that any reversible Turing machine can be realized as a circuit
composed only of them. Such reversible circuits work in a very differ-
ent fashion from conventional ones. We also discuss a simple reversible
cellular automaton in which a rotary element can be implemented.

1 Introduction

Recently, various computing models that directly reflect laws of Nature have
been proposed and investigated. They are quantum computing (e.g., [2,4]), DNA
computing (e.g., [11]), reversible computing (e.g., [1,2,3]), and so on. Reversible
computing is a model reflecting physical reversibility, and has been known to play
an important role when studying inevitable power dissipation in a computing
process. Until now, several reversible systems such as reversible Turing machines,
reversible cellular automata, and reversible logic circuits have been investigated.

A logic gate is called reversible if its logical function is one-to-one. A reversible
logic circuit is a one constructed only of reversible gates. There are “universal”
reversible gates in the sense that any logic circuit (even if it is irreversible) can
be embedded in a circuit composed only of them. A Fredkin gate [3] and a Toffoli
gate [12] are typical universal reversible gates having 3 inputs and 3 outputs.

A rotary element (RE), which is also a reversible logic element, was intro-
duced by Morita, Tojima, and Imai [8]. They proposed a simple model of 2-D
reversible cellular automaton called P4 in which any reversible two-counter ma-
chine can be embedded in a finite configuration. They showed that an RE and
a position marker as well as several kinds of signal routing (wiring) elements
can be implemented in this cellular space, and gave a construction method of a
reversible counter machine out of these elements. An RE is a 4-input 4-output
reversible element, and has two states. It is a kind of switching element that
changes the path of an input signal depending on its state.

M. Margenstern and Y. Rogozhin (Eds.): MCU 2001, LNCS 2055, pp. 102–113, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

A Universal Logic Element for Reversible Computing 103

In this paper, we show that any reversible Turing machine can be realized as
a circuit composed only of REs in a systematic manner. In spite of the simplicity
of an RE, the circuit obtained here is relatively concise and its operation is easy
to be understood. Especially, there is no need to supply a clock signal to this
circuit, and it contrasts sharply with a conventional logic circuit. We also discuss
a simple reversible cellular automaton called P3 proposed in [10], in which an
RE can be embedded.

2 Preliminaries

2.1 A Reversible Sequential Machine

We first give a definition of a reversible sequential machine (RSM). As we shall
see below, a reversible logic circuit composed of REs, as well as an RE itself, can
be formulated as an RSM.

A reversible sequential machine (RSM) is a system defined by

M = (Q,Σ, Γ, q1, δ),

where Q is a finite non-empty set of states, Σ and Γ are finite non-empty sets
of input and output symbols, respectively, and q1 ∈ Q is an initial state. δ :
Q×Σ → Q×Γ is a one-to-one mapping called a move function (hence |Σ| ≤ |Γ |).

We can see that an RSM is “reversible” in the sense that, from the present
state and the output of M , the previous state and the input are determined
uniquely. A variation of an RSM M = (Q,Σ, Γ, δ), where no initial state is
specified, is also called an RSM for convenience.

2.2 A Rotary Element and a Reversible Logic Circuit

A rotary element (RE) is a logic element depicted in Fig. 1. It has four input
lines {n, e, s, w} and four output lines {n′, e′, s′, w′}, and has two states called
H-state and V-state. All the values of inputs and outputs are either 0 or 1, i.e.,
(n, e, s, w), (n′, e′, s′, w′) ∈ {0, 1}4. However, we restrict the input (and output)
domain as {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}, i.e., at most
one “1” appears as an input (output) at a time. Hence, the operation of an RE
is left undefined for the cases that signal 1’s are given to two or more input lines.
In order to explain its operation, we employ the following intuitive interpretation
for it. Signals 1 and 0 are interpreted as existence and non-existence of a par-
ticle. An RE has a “rotating bar” to control the moving direction of a particle.
When no particle exists, nothing happens on the RE. If a particle comes from
a direction parallel to the rotating bar, then it goes out from the output line
of the opposite side (i.e., it goes straight ahead) without affecting the direction
of the bar (Fig. 2 (a)). On the other hand, if a particle comes from a direction
orthogonal to the bar, then it makes a right turn, and rotates the bar by 90
degrees counterclockwise (Fig. 2 (b)).

We can define an RE as an RSM MRE. Since the input (0, 0, 0, 0) has no
effect on an RE, we omit it from the input alphabet for convenience. Further,

104 Kenichi Morita

H-state V-state

�

✲ ✲
✛✛

✻

✻❄

❄

n n′

e

e′

s′ s

w′

w
�

✲ ✲
✛✛

✻

✻❄

❄

n n′

e

e′

s′ s

w′

w

Fig. 1. Two states of a rotary element.

t = 0

�

✲ ✲
✛✛

✻

✻❄

❄
�

t = 1

�

✲ ✲
✛✛

✻

✻❄

❄
�

t = 0

�

✲ ✲
✛✛

✻

✻❄

❄
�

t = 1

�

✲ ✲
✛✛

✻

✻❄

❄
�

(a) (b)

Fig. 2. Operations of a rotary element: (a) the parallel case (i.e., the coming direction
of a particle is parallel to the rotating bar), and (b) the orthogonal case.

we denote the sets of input and output alphabets of MRE as {n, e, s, w} and
{n′, e′, s′, w′} instead of {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}.

MRE is defined by

MRE = ({ � , � }, {n, e, s, w}, {n′, e′, s′, w′}, δRE),

where the move function δRE is shown in Table 1 (for instance, if the present state
is � and a particle comes from the input line n, then the state becomes � and a
particle goes out from w′). We can see that the operation of an RE is reversible.
It has also a bit-conserving property, i.e., the number of 1’s is conserved between
inputs and outputs, since a particle is neither annihilated nor newly created.

Table 1. The move function δRE of a rotary element MRE.

Input
Present state n e s w

H-state: � � w′ � w′ � e′ � e′

V-state: � � s′ � n′ � n′ � s′

An RE-circuit is a one composed only of REs satisfying the following condi-
tion: each output of an RE can be connected at most one input of some other
(or may be the same) RE, i.e., “fan-out” of an output is not allowed. It is also
easy to formulate each RE-circuit as an RSM.

A Universal Logic Element for Reversible Computing 105

2.3 Logical Universality of a Rotary Element

It has been shown that a Fredkin gate can be realized by an RE circuit as in in
Fig.3 [9]. Since a Fredkin gate is logically universal [3], an RE is also universal.
However, in the following, we do not use this construction method.

2

2 4

❄

❄

❄
✻

✻

✻

✻

❄

✲

✛
✲ ✲

✲

✛
✲

✻

2

2 4

❄

❄

❄
✻

✻

✻

✻

❄

✲

✛
✲ ✲

✲

✛
✲

✻

2

4 2

❄

❄

❄
✻

✻

✻

✻

❄

✲

✛
✲ ✲

✲

✛

✲

✻

2

4 2

❄

❄

❄
✻

✻

✻

✻

❄

✲

✛
✲ ✲

✲

✛

✲

✻

24

12 12 12 12

c

p

q

c

cp + c̄q

cq + c̄p

cp

c̄p

cq

c̄q

cq

c̄p

cp

c̄q

Fig. 3. Realization of a Fredkin gate as an RE circuit [9]. Small triangles are delay
elements, where the number written inside of each triangle indicates its delay time.
(Note that delay elements can also be implemented by using REs as in Fig.2(a).)

3 A Reversible Turing Machine Composed of REs

3.1 A Reversible Turing Machine

We first define a one-tape Turing machine and its reversible version. We use
quadruple formalism [1] of a Turing machine in order to define a reversible one.

Definition 1. A one-tape Turing machine (TM) is a system defined by

T = (Q,S, q0, qf , s0, δ),

where Q is a non-empty finite set of states, S is a non-empty finite set of symbols,
q0 is an initial state (q0 ∈ Q), qf is a final state (qf ∈ Q), s0 is a special blank
symbol (s0 ∈ S), and δ is a move relation which is a subset of (Q×S ×S ×Q)∪
(Q×{/}×{−, 0,+}×Q). Each element of δ is called a quadruple, and either of the
form [qr, s, s

′, qt] ∈ (Q×S×S×Q) or [qr, /, d, qt] ∈ (Q×{/}×{−, 0,+}×Q). The
symbols “−”, “ 0”, and “+” denote “left-shift”, “zero-shift”, and “right-shift”,
respectively. [qr, s, s

′, qt] means that if T reads the symbol s in the state qr, then
write s′ and go to the state qt. [qr, /, d, qt] means that if T is in the state qr, then
shift the head to the direction d and go to the state qt.

Let α1 = [p1, b1, c1, p′
1] and α2 = [p2, b2, c2, p′

2] be two quadruples in δ. We
say α1 and α2 overlap in domain iff

p1 = p2 ∧ [b1 = b2 ∨ b1 = / ∨ b2 = /].

We say α1 and α2 overlap in range iff

p′
1 = p′

2 ∧ [c1 = c2 ∨ b1 = / ∨ b2 = /].

106 Kenichi Morita

A quadruple α is said to be deterministic (in δ) iff there is no other quadruple in δ
with which α overlaps in domain. On the other hand, α is said to be reversible (in
δ) iff there is no other quadruple in δ with which α overlaps in range. T is called
deterministic (reversible, respectively) iff every quadruple in δ is deterministic
(reversible). (In what follows, we consider only deterministic Turing machines.)

Theorem 1. [1] For any one-tape Turing machine, there is a reversible three-
tape Turing machine which simulates the former.

Theorem 2. [6] For any one-tape Turing machine, there is a reversible (semi-
infinite) one-tape two-symbol Turing machine which simulates the former.

Theorem 1 shows computation-universality of deterministic reversible three-
tape Turing machines. Theorem 2 is useful for giving a simple construction
method of a reversible TM out of REs.

3.2 Constructing a Tape Unit

In order to construct a reversible one-tape two-symbol Turing machine out of
REs, we first deign a tape cell module (TC-module) as an RE-circuit. A TC-
module simulates one tape square of a two-symbol reversible TM. It can store a
symbol 0 or 1 written on the square and an information whether the tape head
is on the square or not. It is formulated as an RSM MTC defined below.

MTC = (QTC, ΣTC, ΓTC, δTC)
QTC = {(h, s) |h, s ∈ {0, 1}}
ΣTC = {R,Rc0, Rc1,W,Wc, SR, SRI, SRc, SL, SLI, SLc,E0, E1, Ec}
ΓTC = {x′ |x ∈ ΣTC}

δTC is defined as follows, where s ∈ {0, 1} and y ∈ ΣTC − {SRI, SLI}:

δTC((0, s), y) = ((0, s), y′) (1)
δTC((0, s), SRI) = ((1, s), SRc′) (2)
δTC((0, s), SLI) = ((1, s), SLc′) (3)
δTC((1, 0), R) = ((1, 0), Rc0′) (4)
δTC((1, 1), R) = ((1, 1), Rc1′) (5)
δTC((1, 0),W) = ((1, 1),Wc′) (6)
δTC((1, 1),W) = ((1, 0),Wc′) (7)
δTC((1, s), SR) = ((0, s), SRI ′) (8)
δTC((1, s), SL) = ((0, s), SLI ′) (9)
δTC((1, 0), E0) = ((1, 0), Ec′) (10)
δTC((1, 1), E1) = ((1, 1), Ec′) (11)

MTC has the state set {(h, s) | h, s ∈ {0, 1}}. The state (h, s) represents that
the symbol s is written on the tape square, and that the tape head is on this
cell (if h = 1) or not (if h = 0). There are 14 input and 14 output symbols.
In the following construction of an RE-circuit, there are also 14 input and 14

A Universal Logic Element for Reversible Computing 107

Table 2. Fourteen input lines of an RSM MTC.

Signal Line Meaning of a Signal
R Read the symbol at the head position.

Rc0 A read operation is completed with the result 0.
Rc1 A read operation is completed with the result 1.
W Write a complementary symbol at the head position (i.e.,

if the current symbol is 1, then write 0, else write 1).
Wc A write operation is completed.
SL Shift the head position to the left.
SLI Set the head position at the cell immediately to the left.
SLc A left-shift operation is completed.
SR Shift the head position to the right.
SRI Set the head position at the cell immediately to the right.
SRc A right-shift operation is completed.
E0 Reversibly erase the information 0 kept by the finite-state

control by referring the symbol 0 at the head position.
E1 Reversibly erase the information 1 kept by the finite-state

control by referring the symbol 1 at the head position.
Ec A reversible erasure (i.e., merge) operation is completed.

output lines corresponding to these symbols. The roles of the 14 input lines are
shown in Table 2. To each input line x ∈ ΣTC there corresponds an output line
x′ ∈ ΓTC in the one-to-one manner.

MTC acts as follows according to the move function δTC.
(I) The case h = 0: (i) If a signal 1 arrives at the input line y ∈ ΣTC −

{SRI, SLI}, then it simply goes out from y′ without affecting the state of MTC
by (1). (ii) If a signal arrives at the line SRI (or SLI, respectively), then the
head position is set to this tape cell, and a completion (i.e., response) signal for
the shift-right (shift-left) operation goes out from the line SRc′ (SLc′) by (2)
(or (3)).

(II) The case h = 1: (i) If a signal 1 arrives at the line R and if s = 0 (or
s = 1, respectively), then a response signal goes out from Rc0′ (Rc1) by (4) (or
(5)), performing a read operation. (ii) If a signal arrives at the line W and if
s = 0 (or s = 1, respectively), then s is set to 1 (or 0) and a response signal goes
out from W ′ by (6) (or (7)), performing an operation of writing a complementary
symbol. (iii) If a signal arrives at the line SR (or SL, respectively), then h is
set to 0 and a response signal goes out from SRI ′ (or SLI ′) by (8) (or (9)). (iv)
If a signal arrives at the line E0 (or E1, respectively) and s = 0 (s = 1), then
a response signal goes out from Ec′ by (10) (or (11)), performing a “reversible
erasure” of one bit of information by referring the symbol at the head position
(usage of this operation is explained later).

Fig. 4 shows a TC-module, a realization of a tape cell MTC as an RE-circuit.
In order to explain the operations of a TC-module, it is convenient to consider
an RE-column shown in Fig. 5 (a). It consists of k+1 REs, and has 2k input lines
and 2k output lines (k ∈ {1, 2, · · ·}). We assume all REs except the bottom one
(indicated by x) are initially set to V-states (the bottom RE may be either H- or

108 Kenichi Morita

V-state). Further assume a signal 1 is given to at most one input line. Then, an
RE-column acts like an RSM shown in Fig. 5 (b), where the input and output
alphabets are {l1, · · · , lk, r1, · · · , rk} and {l′1, · · · , l′k, r′

1, · · · , r′
k}, respectively, and

the state set is { � , � } which matches that of the bottom RE. Though there
are k+1 REs, we can consider the RE-column as if a two-state machine. Because
all the REs except the bottom one are reset to V-states when a signal 1 goes
out from some output line. For example, if it is in the state � and the input is
lj , then after some time steps the state becomes � and gives an output l′j . In
what follows, we write x = 1 (or marked) if it is � , and x = 0 (or unmarked) if
it is � .

Wc′

W

Rc1′

Rc0′

R

SRI
SRc′

SR

SLc′

SL
SLI ′

Ec′

E0

E1

�

�

�

�

�

�

�

�

�

�

�

�

h

�

�

�

�

�

s

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

❄

✛

✻

❄

❄

❄

❄

❄
✻

✻

✻

✻

✻

❄

✛

✻

✛✛

✲ ✲

✛✛

✛✛

✲ ✲

✲ ✲
✛✛

✲ ✲

✛✛

✲ ✲
✛✛

✛✛

✲ ✲

✲ ✲

✲ ✲ ✛✛

✲ ✛

✲ ✛

✛

✲

✛✲

✲ ✛

✲ ✛
✲

✲

✛

Wc

W ′

Rc1

Rc0

R′

SRI ′

SRc

SR′

SLc

SL′

SLI

Ec

E0′

E1′

Fig. 4. A TC-module: a realization of a tape cell MTC as an RE-circuit.

A TC-module consists of two RE-columns, i.e., left and right ones which
correspond to h and s respectively. We can verify that the TC-module acts as
MTC by testing all the cases of inputs and states. For example, consider the case
that a signal is given to R. If h = 0 then the signal eventually goes out from R′

without affecting the states h and s. If h = 1, the signal first sets the state h to 0,
and then enters the third RE of the right RE-column. There are two sub-cases:
s = 0 and s = 1. If s = 0, the signal goes out from the right side of the third RE
without affecting s, and enters the fourth RE of the left RE-column. It then sets
h to 1, and finally goes out from Rc0′. If s = 1, the signal first goes out from the
left side of the third RE setting s to 0, and enters the second RE of the right

A Universal Logic Element for Reversible Computing 109

�

�

�

x

···

···
❄

❄

❄

❄

❄

✻

✻

✻

✻

✻

❄

✛

✻

✲
✛

✲
✛

✲
✛

✲
✛

✲
✛

✲
✛l′1

l1

l′j
lj

l′k
lk

r1
r′
1

rj

r′
j

rk

r′
k

Input
State x lj rj

H-state: � � l′j � l′j
V-state: � � r′

j
� r′

j

(a) (b)

Fig. 5. (a) An RE-column, and (b) its move function (j ∈ {1, · · · , k}).

RE-column. It restores both s and h to 1 and finally goes out from Rc1′. It is
also easy to verify other cases.

An entire circuit for a tape unit can be obtained by placing infinite num-
ber of TC-modules in a row, and connecting input and output lines between
adjacent TC-modules as shown in the right-half of Fig. 8. From the move func-
tion of the TC-module, we can see that by giving a signal 1 to one of the lines
R,W,SL, SR,E0, or E1 of the leftmost TC-module in the semi-infinite array, it
can correctly simulate each operation on the tape unit.

3.3 Constructing a Finite-State Control

We now design an RE-circuit that simulates a finite-state control of a given one-
tape two-symbol reversible Turing machine T . This circuit is called a finite-state
control module (FC-module). It is constructed in a similar manner given in [8].

Each quadruple of T performs either a read/write (i.e., R and/or W) opera-
tion, or a head-shift (SL or SR) operation to a tape unit. In addition, in order to
realize a FC-module as an RE-circuit, we need a “reversible erasure” operation
that erases an information kept by the FC-module. This is due to the following
reason. When a read operation is performed, the information of the read symbol
(0 or 1) is distinguished by some different states of the FC-module of T . If such
an information is never erased, then the total amount of the information grows
indefinitely, and thus an FC-module needs infinite number of states. Hence, such
information should be reversibly erased (i.e., merged) by referring the read sym-
bol itself each time a read operation is performed. This operation is done by
giving a signal to the line E0 or E1 of the leftmost TC-module.

To explain a construction method of an FC-module, we consider a simple
example of a one-tape two-symbol reversible Turing machine

T2n = ({q1, · · · , q16}, {0, 1}, q1, q16, 0, δ2n)

110 Kenichi Morita

having the following quadruples as δ2n.

[q1, 0, 0, q2]
[q2, /, +, q3]
[q3, 0, 0, q16]
[q3, 1, 0, q4]

[q4, /, +, q5]
[q5, 0, 0, q6]
[q5, 1, 1, q4]
[q6, /, +, q7]
[q7, 0, 1, q8]
[q7, 1, 1, q6]

[q8, /, +, q9]
[q9, 0, 1, q10]
[q10, /, +, q11]
[q11, 0, 0, q12]

[q12, /, −, q13]
[q13, 0, 0, q14]
[q13, 1, 1, q12]
[q14, /, −, q15]
[q15, 0, 1, q2]
[q15, 1, 1, q14]

It is easy to verify that T2n is reversible. It computes the function f(n) = 2n for
a unary input as shown in Fig. 6.

t = 0 :

✻
q1

0 1 1 1 0 0 0 0 0 0 0 0 0 · ·
t = 93 :

✻
q16

0 1 1 1 0 1 1 1 1 1 1 0 0 · ·

Fig. 6. Computing the function f(n) = 2n by a reversible Turing machine T2n.

An FC-module for T2n is shown in Fig. 7. The quadruples of T2n are executed
and controlled by a matrix of REs. Namely, each column corresponds to each
state of T2n, and five rows correspond to five operations of write, read, shift-
right, shift-left, and reversible erasure. At first, all the REs of the FC-module
are in H-states.

� � � �

� � � � � � � �

� � � � �

� �

� � � � �

✛✛✛✛
✲ ✲ ✲ ✲

✲
✛✛✛✛✛✛✛✛

✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲

✛✛✛✛✛
✲ ✲ ✲ ✲ ✲

✛✛
✲ ✲

✛✛✛✛✛
✲ ✲ ✲ ✲ ✲

✲

✻

✻

✻

❄

✻

✻

✻

✻

✻

✻

✻

❄

✻

✻

✻

✻ ✻

✻

❄

✻

✻

✻

✻

✻ ✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

❄
✻

✻

✻

✻ ✻

✻

❄
✻

✻

✻

✻

✻ ✻

✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻

q02 q3 q16 q04 q5 q06 q14 q7 q8 q16 q9 q10 q11 q012 q13 q014q
1
12q15 q12 q114

q1 q02 q12 q3 q04 q14 q5 q06 q16 q7 q8 q9 q10 q11 q012q
1
12q13 q014q

1
14q15

Wc

W ′

Rc1
Rc0
R′

SRc

SR′

SLc

SL′

Ec

E0′

E1′

Begin

End ✛

Fig. 7. The finite-state control module (FC-module) for T2n.

A Universal Logic Element for Reversible Computing 111

The FC-module executes an operation as follows. First, consider the case of
a shift-right operation. If the present state of T2n is, e.g., q8, then a signal 1 is
put on the line q8 in the lower part of Fig. 7. The signal goes upward to the RE
on the row of a shift-right operation. After changing the RE to the V-state, the
signal turns right and goes out from SR′. If a signal returns back from SRc, it
restores the state of the RE to the H-state, and goes upward on the column.

Next, consider the case of a read operation. For example, if the present state
is q13, a signal 1 goes upward along the line up to the RE on the row of a read
operation. Changing the RE to the V-state as in the previous case, it turns right
and goes out from R′. A signal will return back from Rc0 or Rc1. It then restores
the state of the RE, and goes upward taking a different path depending on the
completion signal Rc0 or Rc1.

Generally, just after a read operation, a reversible erasure operation should
be performed. It is in fact an inverse of a read operation. The bottom row of
REs shown in Fig. 7 realizes this operation.

Appropriately connecting the vertical lines in the upper part of the figure to
the ones in the lower part, state transition of T2n is also realized. Further, the
input line “Begin” is connected to the line of the initial state q1, and the line of
the final state q16 is to the output line “End”. (From the method given in [6] we
can assume that an initial state of a constructed reversible TM does not appear
as the fourth element of a quadruple (hence it appears only at time 0)).

3.4 An RE-circuit Realizing an RTM

By connecting an FC-module with the tape module appropriately, we can obtain
the whole circuit of a given reversible Turing machine. Fig. 8 shows the RE-circuit
for T2n. By giving a signal 1 to the “Begin” input it starts to compute.

� � � �

� � � � � � � �

� � � � �

� �

� � � � �

✛✛✛✛
✲ ✲ ✲ ✲

✲
✛✛✛✛✛✛✛✛

✲ ✲ ✲ ✲ ✲ ✲ ✲ ✲
✛✛✛✛✛

✲ ✲ ✲ ✲ ✲
✛✛

✲ ✲
✛✛✛✛✛

✲ ✲ ✲ ✲ ✲
✲

✻

✻

✻

❄
✻

✻

✻

✻

✻

✻

✻

❄
✻

✻

✻

✻✻

✻

❄
✻

✻

✻

✻

✻✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

❄✻

✻

✻

✻✻

✻

❄✻

✻

✻

✻

✻✻

✻ ✻✻✻ ✻✻✻ ✻✻✻ ✻ ✻ ✻ ✻ ✻✻✻ ✻✻✻•Begin

✛End

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

❄

✛

✻

❄

❄

❄

❄

❄
✻

✻

✻

✻

✻

❄

✛

✻

✛✛

✲ ✲

✛✛

✛✛

✲ ✲

✲ ✲
✛✛

✲ ✲

✛✛

✲ ✲
✛✛

✛✛

✲ ✲

✲ ✲

✲ ✲
✛✛

✲
✛

✲
✛

✛

✲

✛
✲

✲
✛

✲
✛

✲

✲

✛

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

❄

✛

✻

❄

❄

❄

❄

❄
✻

✻

✻

✻

✻

❄

✛

✻

✛✛

✲ ✲

✛✛

✛✛

✲ ✲

✲ ✲
✛✛

✲ ✲

✛✛

✲ ✲
✛✛

✛✛

✲ ✲

✲ ✲

✲ ✲
✛✛

✲
✛

✲
✛

✛

✲

✛
✲

✲
✛

✲
✛

✲

✲

✛

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄

❄✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

✻

❄

✛

✻

❄

❄

❄

❄

❄
✻

✻

✻

✻

✻

❄

✛

✻

✛✛

✲ ✲

✛✛

✛✛

✲ ✲

✲ ✲
✛✛

✲ ✲

✛✛

✲ ✲
✛✛

✛✛

✲ ✲

✲ ✲

✲ ✲
✛✛

✲
✛

✲
✛

✛

✲

✛
✲

✲
✛

✲
✛

✲

✲

✛

· · ·

Fig. 8. The whole RE-circuit realizing T2n.

112 Kenichi Morita

4 A Simple Universal Reversible Cellular Automaton

In [10], a 34-state reversible partitioned cellular automaton (RPCA) P3 was
proposed, and it was shown that any reversible counter machine can be embedded
in the P3 space. This improves the previous result in [8] on the number of states.
Each cell of P3 has four parts, and each part has a state set {0, 1, 2}4 (0, 1
and 2 are indicated by a blank, ◦ and •). Its local transition function is shown
in Fig. 9. Reversibility of P3 is verified by checking there is no pair of distinct
rules having the same right-hand side. Fig. 10 shows an RE embedded in P3
space, where a single • acts as a signal. Hence, the function of an RE can be
decomposed into much simpler reversible local rules of P3.

��

��❅❅

❅❅
◦

→ ��❅❅◦ (a)

��

��❅❅

❅❅
•

→ ��❅❅• (b)

��

��❅❅

❅❅
•

• → ��❅❅
•• (c)

��

��❅❅

❅❅
•

•• → ��❅❅
•
•• (d)

��

��❅❅

❅❅
◦

•
→ ��❅❅•◦ (e)

��

��❅❅

❅❅
◦

•
•

→ ��❅❅••◦ (f)

��

��❅❅

❅❅
◦

•
• → ��❅❅

◦•◦◦ (g)

��

��❅❅

❅❅
•

◦◦ → ��❅❅◦•◦ (h)

��

��❅❅

❅❅
•

◦
◦

→ ��❅❅◦◦• (i)

��

��❅❅

❅❅
•

◦
◦ → ��❅❅•◦◦ (j)

��

��❅❅

❅❅
◦

•
•

• → ��❅❅
•••◦ (k)

��

��❅❅

❅❅
•

◦
◦

◦ → ��❅❅◦•• (l)

��

��❅❅

❅❅
w

x
y

z → ��❅❅
w
xyz (m)

Fig. 9. The set of 13 rule schemes (representing 81 rules) of the rotation-symmetric 34-
state RPCA P3. Each rule scheme of (a)–(l) stands for four rules obtained by rotating
the left- and right-hand sides of it by 0, 90, 180 and 270 degrees. The rule scheme (m)
represents 33 rules not specified by (a)–(l) (w, x, y, z ∈{blank, ◦, •}).

(a)
t = 0
◦◦ •◦ ◦• ◦◦◦• •◦◦• ◦◦ ••◦◦ ◦•

◦◦◦ ◦◦◦
•◦ ◦◦•• ◦◦ ◦••◦ ◦•◦◦ •◦ •◦ ◦◦

•
✻

t = 1
◦◦ •◦ ◦• ◦◦◦• •◦◦• ◦◦ ••◦◦ ◦•

◦◦ ◦◦ ◦◦
•◦ ◦◦•• ◦◦ ◦••◦ ◦•◦◦ •◦ •◦ ◦◦•

t = 2
◦◦ •◦ ◦• ◦◦◦• •◦◦• ◦◦ ••◦◦ ◦•

◦◦◦ ◦◦◦
•◦ ◦◦•• •◦◦ ◦••◦ ◦•◦◦ •◦ •◦ ◦◦

t = 3
◦◦ •◦ ◦• ◦◦◦• •◦◦• ◦◦ ••◦◦ ◦•

◦◦ •◦◦ ◦◦
•◦ ◦◦•• ◦◦ ••◦ ◦•◦◦ •◦ •◦ ◦◦

t = 4
◦◦ •◦ ◦• ◦◦◦• •◦◦• •◦◦ ••◦◦ ◦•

◦◦◦ ◦◦◦
•◦ ◦◦•• ◦◦ ◦••◦ ◦•◦◦ •◦ •◦ ◦◦

t = 5
◦◦ •◦ ◦• ◦◦◦• •◦◦• ◦◦ ••◦◦ ◦•

◦◦ ◦◦ ◦◦
•◦ ◦◦•• ◦◦ ◦••◦ ◦•◦◦ •◦ •◦ ◦◦

•✻

(b)
t = 0
◦◦ •◦ ◦• ◦◦◦• •◦◦• ◦◦◦ ••◦◦ ◦•

◦◦ ◦◦
•◦ ◦◦•• ◦◦◦ ◦••◦ ◦•◦◦ •◦ •◦ ◦◦

•
✻

t = 1
◦◦ •◦ ◦• ◦◦◦• •◦◦• ◦◦ ••◦◦ ◦•

◦◦ ◦◦ ◦◦
•◦ ◦◦•• ◦◦ ◦••◦ ◦•◦◦ •◦ •◦ ◦◦•

t = 2
◦◦ •◦ ◦• ◦◦◦• •◦◦• ◦◦◦ ••◦◦ ◦•

◦◦ ◦◦
•◦ ◦◦•• ••◦ ◦••◦ ◦•◦◦ •◦ •◦ ◦◦

t = 3
◦◦ •◦ ◦• ◦◦◦• •◦◦• ◦◦ ••◦◦ ◦•

◦◦ •◦ ◦◦
•◦ ◦◦•• ◦◦ •••◦ ◦•◦◦ •◦ •◦ ◦◦

t = 4
◦◦ •◦ ◦• ◦◦◦• •◦◦• ◦◦ ••◦◦ ◦•

◦◦◦ ◦•◦◦
•◦ ◦◦•• ◦◦ ◦••◦ ◦•◦◦ •◦ •◦ ◦◦

t = 5
◦◦ •◦ ◦• ◦◦◦• •◦◦• ◦◦ ••◦◦ ◦•

◦◦ ◦◦ ◦◦
•◦ ◦◦•• ◦◦ ◦••◦ ◦•◦◦ •◦ •◦ ◦◦

•✲

Fig. 10. An RE in the P3 space: (a) the parallel case, and (b) the orthogonal case.

A Universal Logic Element for Reversible Computing 113

5 Concluding Remarks

In this paper, we showed that any reversible Turing machine can be realized as a
circuit composed only of rotary elements. If we use logic gates such as AND, OR,
Fredkin gate, or Toffoli gate, some synchronization mechanism should be pro-
vided to make two or more incoming signals interact properly. In a conventional
circuit, it is solved by giving a clock signal. However, in the case of a rotary
element, there is only one incoming signal to each element, which interacts with
rotating bar of the element. Therefore it acts in a somewhat asynchronous man-
ner, and thus there is no need to provide a clock signal. Hence, construction of
a whole circuit becomes relatively simple.

There have been known several simple universal models of reversible cellular
automata (e.g., [5,7,8,10]). For example, a Fredkin gate can be embedded in
the cellular spaces in the references [5] and [7]. Though these models have very
small number of states, they need an infinite configuaraion to realize a universal
computer. On the other hand, in the models proposed in [8,10], a reversible
counter machine can be realized as a finite configuration by using rotary elements
and some other elements implemented in these cellular spaces. It is left for the
future study whether there are still other methods to implement a universal
computer in a simple reversible cellular space, and whether further simplification
of a rotary element is possible.

References

1. Bennett, C.H., Logical reversibility of computation, IBM J. Res. Dev., 17, 525–532
(1973).

2. Feynman, R.P., Feynman Lectures on Computation (eds., A.J.G. Hey and R.W.
Allen), Perseus Books, Reading, Massachusetts (1996).

3. Fredkin, E. and Toffoli, T., Conservative logic, Int. J. Theoret. Phys., 21, 219–253
(1982).

4. Gruska, J., Quantum Computing, McGraw-Hill, London (1999).
5. Margolus, N., Physics-like model of computation, Physica, 10D, 81–95 (1984).
6. Morita, K., Shirasaki, A. and Gono, Y., A 1-tape 2-symbol reversible Turing ma-
chine, Trans. IEICE Japan, E-72, 223–228 (1989).

7. Morita, K., and Ueno, S., Computation-universal models of two-dimensional 16-state
reversible cellular automata, IEICE Trans. Inf. & Syst., E75-D, 141–147 (1992).

8. Morita,K., Tojima,Y. and Imai,K., A simple computer embedded in a reversible and
number-conserving two-dimensional cellular space,Multiple-Valued Logic, (in press).
Movie: http://www.ke.sys.hiroshima-u.ac.jp/˜morita/p4/

9. Morita, K., A new universal logic element for reversible computing, Technical Report
of IEICE Japan, COMP99-94 (2000).

10. Morita, K. and Ogiro T., Embedding a counter machine in a simple reversible 2-D
cellular space, Proc. Int. Workshop on Cellular Automata, Osaka, 30–31 (2000).
Movie: http://www.ke.sys.hiroshima-u.ac.jp/˜morita/p3/

11. Păun, Gh., Rozenberg, G. and Salomaa, A., DNA Computing, Springer-Verlag,
Berlin (1998).

12. Toffoli, T., Reversible computing, in Automata, Languages and Programming,
Springer-Verlag, LNCS-85, 632–644 (1980).

	1 Introduction
	2 Preliminaries
	2.1 A Reversible Sequential Machine
	2.2 A Rotary Element and a Reversible Logic Circuit
	2.3 Logical Universality of a Rotary Element

	3 A Reversible Turing Machine Composed of REs
	3.1 A Reversible Turing Machine
	3.2 Constructing a Tape Unit
	3.3 Constructing a Finite-State Control
	3.4 An RE-circuit Realizing an RTM

	4 A Simple Universal Reversible Cellular Automaton
	5 Concluding Remarks
	References

