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Abstract

The set of random sequences is large in the sense of measure, but small in the sense of category. This is the case when w
regard the set of infinite sequences over a finite alphabet as a subset of the usual Cantor space. In this note we will show that the
above result depends on the topology chosen. To this end we will use a relativization of the Cantor topolgéytaieiogy
introduced by Staiger [RAIRO Inform. Théor. 21 (1987) 147-173]. This topology is also metric, but the distance between two
sequences does not depend on their longest common prefix (Cantor metric), but on the number of their common prefixes in a
given languagé/. The resulting space is complete, but not always compact. We will show how to derive a comput#ble set
from a universal Martin-L&f test such that the set of non-random sequences is nowhere dense itoj@ogy. As a byproduct
we obtain a topological characterization of the set of random sequences. We also show that the Law of Large Numbers, which
fails with respect to the usual topology, is true for #i&-topology.
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1. Introduction tellectual inspiration and connectivity as well as tool
(see, for example, [4,5,2]). The aim of this note is to
Algorithmic information theory plays many central  study from a topological point of view the set of ran-
roles in theoretical computer science, and, in particu- dom sequences. This problem is interesting in itself
lar, in the theory of computation, both in terms of in-  (because the set of random sequences has constructive
Lebesgue measure one, but it is constructively meagre
" Corresponding author. with respect to Cantor’s topology) and has connections
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tive answer to the above question (the set of random
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For our purposes it is convenient to use the following

sequences is co-nowhere dense) and leads to a topoequivalent metric (cf. [18,15]):

logical analogue of Martin-L6f's measure-theoretical

characterization of random sequences (the role of con-

structive null sets is played by nowhere dense sets). Fi-
nally, the Law of Large Numbers is topologically true
in this space.

2. Notation

By N={0,1,2,...} we denote the set of nat-
ural numbers. The cardinality of the sétis denoted
by cardA). Let us fix X an alphabet of cardinality
cardX)=r>2,e.0.,.X={0,...,r —1}. By X* we
denote the set of finite strings (words) an includ-
ing theemptystring e. The length of the string is
denoted bylw|. We consider the space® of infinite
sequencesaef-words) overX. If x = x1x2---x,--- €
X, thenx(n) = x1x2-- - x,, is the prefix of length
of x. Strings and sequences will be denoted respec-
tively by u, v, w, ... andx, y,.... Forw,v € X* and
x e X®letw-v,w-x (simply wv, wx) be the con-
catenation ofw and v, x, respectively. The concate-
nation product extends naturally to subséfsC X*
(languages) an@ € X* U X®. By “C” we denote the
prefix relation between strings: C v if there is av’
such thatwv’ = v. The relation =" is similarly de-
fined forw € X* andx € X“: w C x if there is a
sequencer’ such thatwx’ = x. The sets prék) =
{w: we X*, wC x}andpretB) =, prefx) are
the languages of prefixes ofe X andB C X“, re-
spectively. Finallyw X® = {x € X®: w € pref(x)}.

The unbiased discrete measure ¥ris the prob-
abilistic measuréi(A) = card A)/r, for every subset
A of X. It induces the product measuredefined on
all Borel subsets ok®. This measure coincides with
the Lebesgue measure on the unit interval, it is com-
putable anqu(wX®) = r~1*!, for everyw € X*. For
more details see [9,10,2].

3. The Cantor space

The setX® is a compact metric space (Cantor
space) with the metric

s weprefx)N pref(y)}.

(x,y) inf{ 1
X, = :
p1lx, y 1+ [w]

p(x, y) =inf{r~1"!: w e prefix) N pref(y)}
— rl—carc{pref(x)ﬂpref(y))'

1)

The open balB,(y) of radiuse € (0, 1] and centely
in (X®, p) can be described as

B (y) = {x: p(y,x) <<9} =wye - X,

where w, . is the unique prefix ofy with length
lwy.el = |—log,e] + 1. Thus the open sets in the
Cantor spacegX®, p) are sets of the fornw X
Upew wX®. The setsv X are both open and closed.
Thes-limit of a languagé/ € X* is the setl/® of
all sequences iX® having infinitely many prefixes in
U, U ={y e X®: pref(y) N U is infinite}. This no-
tion is useful in obtaining the following characteriza-
tion of Gs-sets, i.e., countable intersections of open
sets (cf. [18,14,15]):

Theorem 1. In the Cantor space, a subsét C X
is a Gs-set iff there is a languag& € X* such that
F=U°’

4. The U®-topology

A new metric topology orX® has been introduced
in [14] in connection with the study of sequential
mappings. In this section we define this topology and
relate it to the usual topology in the Cantor space.

Definition 2. Fix a languagd/ € X* and letx, y €
X®. Then we define

ifx=y,
otherwise.

It is easy to see thapy is a metric; its induced
topology onx® will be called theU®-topology

07
Py (x’ y) = { rl—carc{pref(x)ﬂpref(y)ﬂu)

The metricoy resembles, in some sense, the metric
p in the Cantor space; in fach = px+. In contrast
with p, py counts only those common prefixes of
and y contained inU. Further on, sincey(x,y) >
p(x,y), the U’-topology refines the topology of the
Cantor space. In particular, every closed (open) set
in the Cantor space is also closed (open) in tHe
topology of X.



C.S. Calude et al. / Information Processing Letters 88 (2003) 245-250

The following result shows when two languages
U, V induce the same topology oYf®; hence, a great
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Theorem 5 [16,17]. Let U € X*. Thenx € U’ is
an accumulation point of" in (X?, py) iff x is an

variety of languages induce the same topology (see accumulation point of” in (X, p).

[14,15] for examples).

Theorem 3 [17]. The U?-topology and the/?-topol-
ogy of X® coincide iff U% = V4.
The open ball inX®, py) is given by the formula:

{x}, if PU(&J’)?S,

forall y #x,
Be.v (x) = X if e >r
wye - X®, otherwise.

Herewy . is the unique prefix ok in U with
cardpref(wy ) NU) = |- log, e] + 2.

The following topological properties afX*, py)
will be useful. Recall that a point is called araccu-
mulation point of a sefF in the metric spacéX®, d)
provided for eacls > O there exists a sequenge F,
x # y such that/(x, y) < ¢. Invoking Definition 2 we
obtain:

Corollary 4. A pointx € X® is an accumulation point
of the whole spaceX®, py) iff x € U°.

As (X%, py) is a metric space, the smallest closed
(with respect topy) subset of X* containing F,
Cy (F), is given by the formula

Cu(F)=F U{x: x € X”, x is an accumulation point
of Fin (X, py)}. (2)

A point x € F which is not an accumulation point
of F is called anisolated pointof F. Thus,x is an
isolated point ofX“ iff there is ane > 0 such that
B..v(x) ={x}. Theset of isolated pointsef (X, py)
will be denoted by = X \ U°.

An arbitrary set of isolated points of® is open.
In caseU? = @, in particular ifU is finite, every point
of (X%, py) is isolated. Thus, in generalX®, py) is

From (2) we obtain:

Corollary 6. Let C(F) = Cx«(F) be the smallest
closed set containing in the Cantor space. Then

Cy(F)=FU(C(F)NU®) =C(F)N (FUU®).

In particular, every sef containingU? is closed in
(X?, pu).

As it was mentioned above, every sktcC Iy of
isolated points is an open set (X“, py), and every
set of the formWX® is open in the Cantor space.
Consequently, Corollary 6 yields

Corollary 7. A setE C X? is open in(X®, py) iff
E=WX®UJ, forsomeW C X*andJ C 1.

Recall that a seF is nowhere densm (X?, py) if
its closure,Cy (F), does not contain any non-empty
open set, that is, iCy(X® \ Cy(F)) = X?; F is
densdf it intersects any non-empty open set, that is, if
Cuy(F)=X®.

The next result is simple but very useful:

Lemma 8. The setU? is the union of all nowhere
dense sets iNX?, py).

Proof. We take a nowhere dense getc X“ and we
show thatF € U?. To this aim we prove that every
sequence € F isin U°: thisis true becauseif ¢ U?,
then the singleton sefx} is non-empty and open,
hence it cannot be nowhere dense, a contradictian.

Of course,U® may or may not be itself nowhere
dense. The next theorem gives a necessary and suffi-
cient condition forU? to be nowhere dense.

a complete metric space, not necessarily compact (asTheorem 9. Let U € X*. Then the following condi-

the Cantor space). More precisely, the sp@ce, o)
is not compact whenevéy, # ¢, cf. [17], Theorem 9.
The close relationship between tti€’-topology

tions are equivalent

(1) The sefly is dense in the Cantor spac¢&®, p).

and the topology of the Cantor space is visible in the (2) The set/° is nowhere dense (X, py).

case of accumulation points and closed sets.

(3) The set/? is a maximal nowhere dense set.
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Proof. For the implication {1) = (2)” we observe
that U? is closed in(X®, p). If U% = X®\ 1y is
not nowhere dense iX®, py), then in view of
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ilis a universal Martin-Lof test, thef), . Vi - X“ C

ﬂieN Ui- X,
The set of random sequenceand, is defined as

Corollary 7 it contains a non-empty open set of the rand = X“ \ [,y Ui - X, wherei is a universal

form E = WX® U J, J CIy. Due to the inclusion
E C U® we haveJ = #, that is, E = WX®. Since
Iy is dense in the Cantor spac¢¥X®, p), we have
Iy N WX® £ @ unlessWX® =@, so E =0, a
contradiction.

The implication {2) = (3)” follows from Lemma 8.

For “(3) = (1)” we assume that/? is nowhere
dense in(X®, py), henceCy (Iy) = Cy (X® \ U%) =
X®. According to Corollary 6 we hav&® = Cy (Iy)
=C(Iy)N Iy UU?), henceC(Iy) = X®. O

5. A U’-topology for random sequences

Martin-Lof test. Of course, the definition does not
depend upon the choice gf

A set S C X is constructive nullif there exists
a computably enumerable s#tC X* x N such that
SC o1 Am - X2, (A is themth section of2), and
liMy,— 00 L(A, - X?) = 0, constructively.

The following result follows immediately from the
existence of the universal Martin-Lof test:

Theorem 10 [9]. The setX® \ rand equals the union
of all constructive null sets, hence it is a maximal
constructive null set.

From Theorem 10 it follows thak® \ rand is a

There are various equivalent definitions of random constructive null set, soand is large in the sense of
sequences, complexity-theoretic (see [4,5]), measure-measure:

theoretic (see [9]), topological; for a proof of their
equivalence see [5,2]. In what follows we will use the
definition based on Martin-Lof tests.

We briefly recall the necessary facts on Martin-Lof

tests; a more thorough treatment can be found in the

textbooks [2,13].
A subset5 C X* x N is called Martin-Lof test
provided

(1) B is computably enumerable,

(2) V1 C V- X*, forallm > 1,

3) cardX"NV,,-X*) <r"™/(r—21),foralln,m >
1, whereV,, = {v € X*: (v, m) € U} is themth
section off andX” = {v: v € X*, |v|=n}.

It is seen thatu(V;X®) < r~'/(r — 1), for all
i >1,s0lim_ s u(V; - X?) =0, constructively, that
is, there exists a computable functidh such that
w(Vi - X9y <27™ forall i > H(m). Moreover, it is
possible to choos&J in such a way that each; is
prefix-free, that isp, w € V; andv C w imply v = w
(cf. [13, Corollary 4.10]).

A Martin-Lof test 4 is called universal if for
every Martin-Lof testy there exists a constant> 0
(depending upotl and®) such thatv,,,. € U, - X*,
for all m > 1. In [9] Martin-L6f has proved the
existence of universal Martin-Lof tests (see also [2]). If

Corollary 11 [9]. The setrand has constructivex
measure one.

However, in the Cantor space, the gend is
small in the sense of category [3,2]. A sgtC X?
is constructively meagrén the Cantor set if there
exist a computably enumerable S#tC X* x N and
a computable functiory : X* x N — X* such that
SCUm_1 X?\ Ap - X, forallm > 1, and for every
v#ewe havev C f(v,m)andf(v,m) € Ay,.

Theorem 12 [3]. The setrand is constructively
meagre in the Cantor space.

Next we will explore similarities between Theo-
rem 9 (see also Lemma 8) and Theorem 10. First,
we obtain a topological characterization of random se-
guences:

Theorem 13. Letil be a universal Martin-L6f test and
assume that every section9f U; = {u: (u,i) € U},
is prefix-free. Then

5
rand:X“’\ (UUi) .
ieN

3
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Proof. If x e rand, thenx ¢ U; - X%, for almost all
i e N (asUy+1 C Uy - X*). Since allU; are prefix-
free, prefx) N (U, Us) is finite.

Conversely, lex ¢ rand, thatisx € (), oy Ui - X*.
From the inequality.(U; - X©) <r~/(r — 1) we de-
duce that the minimum string length I, min{|u|:
u € U;}, tends to infinity ag — oo. Thusx has infi-
nitely many prefixes iy ), Ui. O

From the well-known fact thatand is dense in the
Cantor space (see [2]) and Theorem 9 we obtain:

Corollary 14. Let 4l be a universal Martin-Lof test
and assume that eadt; = {u: (u,i) € U} is prefix-
free. DefineU = ;. Ui. Then the seU is com-
putable andX® \ rand is nowhere dense in the space
(X, pv)-

Proof. We need to prove only the computability of
U. To this aim we fix an arbitrary universal Martin-
Lof test & such that each sectioti; is prefix-free.

Furthermore, let us fix a computable enumeration of

this Martin-Lof test. A decision algorithm fot/ =
Ui en Ui works as follows:

Given a stringw, letk be the smallest positive integer
such thatu(wX®) > r~%/(r — 1). Then,w ¢ U;, for

anyi > k. Start the computable enumeration of the

universal Martin-L6f testll and wait until for each
i < k some elementv;, i) of the Martin-Lo6f test has
been enumerated such thatC v; or v; C w. If one
of the v; is equal tow, then the answer affirmative;
otherwise, the answer negative.

First we show that the algorithm will stop after

finitely many steps. Note that set of non-random el-

ements is dense. Hence,X“ contains some non-
random sequence. Since the Martin-Lof test is
assumed to be universal, the d&t must contain a
prefix of z, for everyi. Hence, the algorithm will stop
after finitely many steps.
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It should be noted that the spac¢&®, py) is
induced by the computable sEt in spite of the fact
that the universal Martin-Lof test is not computable.

With reference to the seU in Corollary 14,
we recall that in the spaceX?, py) every random
sequence is an isolated point, whereas Corollary 14
shows that every non-random sequencecan be
topologically approximated by random sequences.
This situation parallels the measure-theoretical one
(see also [6,8,7,2]). It is interesting to note that
the union of all null sets is not a null set, but
the union of nowhere dense sets (K, py) is a
(maximal) nowhere dense set. So, nowhere dense sets
in (X“, py) are analogous to constructive null sets.
The space(X®, py) is residual (see [19]) as each
nowhere dense set has measure zero.

We close the paper with a short discussion of the
Law of Large Numbers. In [12,11] it was proved that
the Law of Large Numbers fails to hold true in the
sense of category, i.e., the set LLN of binary sequences
x such that lim_oo(x1 + x2 + -+ 4+ x3)/n = 1/2
is meagre with respect to the natural topology of the
unit interval; a similar situation occurs with the set of
random sequences with respect to the Cantor topology
(see Theorems 10 and 12). As every random sequence
satisfies the Law of Large Numbers (see [1,2]) we
obtain:

Corollary 15. The complement of the séLN is
nowhere dense {0, 1}*, py), that is, the Law of
Large Numbers holds true in the sense of category in
the space&{0, 1}, pp).
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Secondly, we prove the correctness of the algo-
rithm. The affirmative answer is certainly correct when
it is given. The negative answer is correct when it is
given, because in that casecannot be contained in
anyU;, for everyi < k sinceU; is prefix-free, and we
have already seen that¢ U;, foreveryi > k. O
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