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11..  IInnttrroodduuccttiioonn  

In this essay we propose that the fundamental philosophical
concept of conceptual complexity is captured mathematically by
the notion of algorithmic information content, and we discuss the
complexity of physical and mathematical theories, the complexity
of biological mutations, and the most complex system in biology,
the human brain. These are steps in the direction of a mathemati-
cal philosophy, by which we mean a mathematical approach to
philosophical questions, not a philosophy of mathematics. For as
Leibniz said: 

Without mathematics we cannot penetrate deeply into philosophy. 
Without philosophy we cannot penetrate deeply into mathematics. 
Without both we cannot penetrate deeply into anything. 

Sans les mathématiques on ne pénètre point au fond de la philosophie. 
Sans la philosophie on ne pénètre point au fond des mathématiques. 
Sans les deux on ne pénètre au fond de rien. 
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22..  OOrriiggiinnss  ooff  tthhee  CCoonncceepptt  ooff  CCoommpplleexxiittyy  
iinn  tthhee  PPhhiilloossoopphhyy  ooff  SScciieennccee  aanndd  iinn  BBiioollooggyy  

22..11  CCoommpplleexxiittyy  iinn  tthhee  wwoorrkk  ooff  LLeeiibbnniizz
We begin the intellectual history of the concept of complexi-

ty with Leibniz’s brilliant Discours de métaphysique (1686). In par-
ticular, we are interested in Sections V and VI of the Discours, in
which Leibniz explains why science is possible and what it means
for facts to be governed by law rather than be random. Let’s para-
phrase Sections V and VI of the Discours. 

God has created the best of all possible worlds, in that the
richness and diversity – including us! – that we see in the world
around us is the consequence of a small, simple set of concepts
and laws. God maximizes the richness of the world and at the
same time minimizes the complexity of the laws that determine
this world. In other words, the world is comprehensible, science is
possible, there are elegant theories. God’s perfection resides in the
fact that He uses the smallest possible number of bricks, the sim-
plest possible tools, in order to create the world. 

By the way, this excludes miracles, which would be like
amendments to the constitution, exceptions that have to be
added to the constitution and unnecessarily complicate it, and
analogously would unnecessarily complicate the fundamental
laws of physics. 

Furthermore, what is a law, how can we distinguish the law-
less from the lawful? Well, said Leibniz, if we have a finite set of
points on a graph representing the behavior of a physical system,
there is aallwwaayyss an equation passing precisely through those points.
Hence the mere existence of a mathematical law is not enough.
Real laws have to be simple, because anything can be explained if
one allows sufficiently complicated, ad hoc laws.3

In our modern reading of Leibniz, Sections V and VI both
assert that the essence of explanation is compression. An explana-
tion has to be much simpler, more compact, more concise, than
what it explains. 
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22..22  CCoommpplleexxiittyy  aanndd  eevvoolluuttiioonn  
Leibniz is a tremendously deep thinker. We now turn to bi-

ology, a more obvious source of the notion of complexity. Please
see Peter Bowler’s book Darwin Deleted for an analysis of the
many threads in the development of ideas on evolution and
progress in Nature. 

One of these threads was Lamarck, who proposed the inheri-
tance of acquired characteristics in order to explain the evolution,
the increase in the complexity of organisms, that was becoming in-
creasingly apparent in the fossil record. Another precursor of Dar-
win was his own grandfather, Erasmus Darwin. Even before
Charles Darwin, many realized that evolution was taking place.
The problem was to find a mechanism, to explain how evolution
works. That it was taking place was not at issue. Many even as-
sumed that Nature’s goal was to progress, a notion that is rather
submerged – but not entirely eliminated – in Darwin’s theory. 

22..33  CCoommpplleexxiittyy  aanndd  ssppoonnttaanneeoouuss  ggeenneerraattiioonn  
A further impetus to the crystallization of the concept of

complexity in biology was provided by the dispute over sponta-
neous generation. Spontaneous generation is immediately seen to
be impossible once the enormous complexity of an individual cell
was properly grasped. 

22..44  TThhee  iimmmmeennsseellyy  ccoommpplliiccaatteedd  hhuummaann  bbrraaiinn  
Later in this essay, we shall attempt to analyze human intelli-

gence and the brain. That’s also connected with complexity, be-
cause the human brain is the most complicated thing there is in
biology. Indeed, our brain is presumably the goal of biological
evolution, at least for those who believe that evolution has a goal.
Not according to Darwin! For others, however, evolution is mat-
ter’s way of creating mind. 
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Fundamental ideas that have inspired us may be discredited
and slip out of sight, but they have a way of reemerging years lat-
er in more modern dress. Bowler sees this process at work in Dar-
winism and it certainly applies to our next topic, the search for
the perfect language. 

33..  TThhee  SSeeaarrcchh  ffoorr  tthhee  PPeerrffeecctt  LLaanngguuaaggee  

In the previous section, we discussed four important appli-
cations of the concept of complexity but neglected to specify
what complexity is. The time has come to define complexity rig-
orously with mathematical precision. 

To show how that’s done, let’s review the saga of The Search
for the Perfect Language. Umberto Eco’s book with this title re-
minds us that in the Middle Ages it was thought that knowing
the language used by God to create the universe – perhaps He-
brew – would give us a way to analyze ideas into their basic con-
ceptual components and provide a path to all truths. An early ef-
fort in this direction was the Ars magna of Ramon Llull. Inspired
by Llull, Leibniz converted this project into the search for a char-
acteristica universalis. 

This project is mocked by Jonathan Swift in Gulliver’s Trav-
els, in his account of Gulliver’s visit to Laputa. A later version of
this dream is Hilbert’s program for a single consistent, complete
formal system for all of mathematics which would solve the
entscheidungsproblem by providing an algorithm for deciding if
any mathematical statement were true or false, merely by running
through all possible proofs in the formal system until finding a
proof of correctness or a refutation. 

Thanks to Gödel and Turing we know that this cannot be
done: There is no universal language for formalizing all possible
mathematical proofs. However, Turing also showed that there are
universal languages for formalizing all possible mathematical algo-
rithms, and algorithmic information theory tells us which are the
most concise, the most expressive such languages. 
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Clearly these would be the languages of choice for creating
the world! In this essay we define the conceptual complexity of an
object X to be the size in bits of the most compact program for
calculating X, presupposing that we have picked as our complexi-
ty standard a particular fixed, maximally compact, concise univer-
sal programming language U. This is technically known as the al-
gorithmic information content of the object X, denoted HU(X), or
simply H(X) since U is assumed fixed. In medieval terms, H(X) is
the minimum number of yes/no decisions that God would have
to make to create X. 

As Leibniz said, “As God calculates, so the world is made,”
“Cum Deus calculat, fit mundus.”4

44..  MMaatthheemmaattiiccaall  DDeeffiinniittiioonn  ooff  CCoonncceeppttuuaall  CCoommpplleexxiittyy  

Whence cometh this definition? Who invented the neces-
sary mathematics? Here is a brief summary. If we sum 

Alan Turing (1936) + Claude Shannon (1948) 
ccoommppuuttaattiioonn iinnffoorrmmaattiioonn

this gives us 

aallggoorriitthhmmiicc  iinnffoorrmmaattiioonn  
[R. Solomonoff, A. N. Kolmogorov, G. J. Chaitin (1960’s)] 
[G. J. Chaitin, L. A. Levin (1970’s)] 

And the concept of algorithmic information in turn gives
us a handle on the deep notion of conceptual complexity, which
is fundamental in epistemology. (In contrast, I think of the more
practical topic of time complexity as a branch of software engi-
neering.) To illustrate the power of this new intellectual toolkit,
we shall now discuss applications in metaphysics, in metamathe-
matics, and in a new research program that I have dubbed
metabiology. 
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55..  CCoonncceeppttuuaall  CCoommpplleexxiittyy  iinn  SSooffttwwaarree  MMooddeellss  
ooff  PPhhyyssiiccss,,  MMaatthheemmaattiiccss  aanndd  BBiioollooggyy  

Now you know how to define conceptual complexity math-
ematically and a little about its history. In this section, we start by
examining the complexity of physical theories, take a detour to
consider the complexity of mathematical theories, and then final-
ly arrive at a model of biological evolution. In later sections we
shall present some thoughts on the brain and consciousness. 

55..11  CCoommpplleexxiittyy  ooff  aa  pphhyyssiiccaall  tthheeoorryy
A physical theory T is a computer program that calculates and
exactly reproduces a finite set of experimental data by using
the equations of physics and the initial conditions of the phys-
ical system in question. Then T halts. The data must be re-
produced precisely; no errors are allowed. 
Thus we can only deal with ddeetteerrmmiinniissttiicc physical theories in
this model, not with ssttaattiissttiiccaall theories, which necessarily can-
not exactly reproduce the experimental data. 
The conceptual complexity H(T) of the theory T is the size in
bits of the program T. 

Why is this definition of complexity of any value? Because it
enables us to formalize and study mathematically the idea that the
best theory is the simplest theory. 

Following Ray Solomonoff, there are numerous practical ap-
plications of this criterion in machine intelligence, in Bayesian
statistics, and in data mining, but in this essay I am interested in
philosophy and not in practical applications. 

55..22  CCoommpplleexxiittyy  ooff  aa  ffoorrmmaall aaxxiioommaattiicc  tthheeoorryy  
A formal axiomatic theory T is an unending computer pro-
gram that calculates one by one the infinite set of all theorems
that follow from the axioms by applying the rules of symbolic
logic [David Hilbert, Emil Post]. T does this by systematically
running through all possible proofs. 
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The conceptual complexity H(T) of the theory T is the size in
bits of the program T. 

The surprising fact that you can almost never prove that you
have the best – the simplest possible – physical theory, gives us a
new kind of Gödel incompleteness, an information-theoretic in-
completeness theorem in fact. 

To be able to prove that an N-bit physical theory is the most
concise computer program that calculates the output that it does
(which I like to refer to as an “elegant” physical theory or an “ele-
gant” program), you need to use a formal axiomatic theory T
whose conceptual complexity H(T) is at least N bits. 

Proof Sketch: Given a formal axiomatic theory T with con-
ceptual complexity H(T), consider the paradoxical program P
that calculates the output of the first large provably elegant pro-
gram Q produced by T – the first such Q you find when system-
atically running through all possible proofs that programs are ele-
gant in theory T. More precisely, P searches for a provably elegant
Q with the property that the size in bits of Q is greater than the
size in bits of P. P calculates the same output as Q, which is sup-
posed to be the smallest program that produces the output that it
does, but P is smaller than Q! 

This easily shows that in a given formal axiomatic theory T
a provably elegant computer program Q cannot be larger than the
size in bits of P. And what is the size of P? One can show that it’s
H(T) + c bits, where c is a constant independent of T and is negli-
gible if H(T) is large. 

55..33  CCoommpplleexxiittyy  ooff  aann  aallggoorriitthhmmiicc  mmuuttaattiioonn
An algorithmic mutation M is a computer program that cal-
culates the new organism from the old organism. 
The conceptual complexity H(M) of the mutation M is the
size in bits of the program M. 

Note that in the toy model of evolution given below the or-
ganisms are also software, but we are not too concerned with their
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conceptual complexity. We concentrate on the conceptual com-
plexity of the mutations.

Defining a mutation in this very general and somewhat ab-
stract way is the key idea that we shall use to model Darwinian
evolution mathematically. It’s crucial for the success of our model.
It’s what enables us to prove that Darwinian evolution works in
this model and yields open-ended, endless evolution. 

66..  MMooddeelliinngg  DDaarrwwiinniiaann  EEvvoolluuttiioonn  

Since this is a little-known, new area of application of the
notions of conceptual complexity and algorithmic information,
we shall sketch here some of the basic features of our highly-sim-
plified toy model of evolution. 

66..11  HHooww  ddoo  wwee  ppiicckk  aa  rraannddoomm  mmuuttaattiioonn??  
As we stated before, in our model an algorithmic mutation

M is a computable function that takes as input the original organ-
ism A and produces as output the mutated organism A': 

AA' ==  MM((AA))

Here M, A and A' all consist of binary software, of bit strings: 

MM == aallggoorriitthhmmiicc  mmuuttaattiioonn
AA == oorriiggiinnaall  oorrggaanniissmm  
AA' == mmuuttaatteedd  oorrggaanniissmm  

But what is the probability of the mutation M? What proba-
bility distribution shall we use over this very rich space of possible
mutations? 

In our model, simple mutations are much more probable
than complex mutations. In fact, if the conceptual complexity of
the mutation M is H(M), then its probability is 2−H(M). In other
words, if the binary software for the mutation M has K bits, then
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its probability is 1/2K, for each bit of the program for M is chosen
by using an independent toss of a fair coin. 

IIff  MM iiss  aa  KK--bbiitt  pprrooggrraamm,,  tthheenn  pprroobbaabbiilliittyy  ooff  MM ==  22−−KK..  
IIff  tthhee  ccoonncceeppttuuaall  ccoommpplleexxiittyy ooff  MM iiss  KK bbiittss,,  

tthheenn  tthhee  pprroobbaabbiilliittyy  ooff  MM ==  22−−KK..  

This is a very natural way of assigning probabilities to pro-
grams and it has been used in theoretical computer science since
the 1970’s. 

(Although there is an important technical proviso: The pro-
gram for M must be “self-delimiting” – otherwise the total proba-
bility for all possible mutations is infinite instead of being less than
one as a probability should be. We shall encounter self-delimiting
programs again later when discussing the halting probability Ω.) 

Please note that for any A and A' there is a non-zero proba-
bility that the mutation M will transform A into A'. But most
mutations are extremely unlikely. The fact that we allow arbitrary
algorithmic mutations M has some surprising consequences. For
example, the global change M that consists of inverting each bit
of a program A yielding the complementary bit string A' is a very
simple and therefore a highly probable mutation. 

Furthermore, M’s probability does not depend on the size of
A and A', since the same program M will work for inverting arbi-
trarily large bit strings A. Unfortunately M will probably com-
pletely wreck the program A. This is not a useful mutation, even
though it is a highly probable one. 

We’ve explained the mutational model we’re using. We are
now ready to talk about the evolution of mutating software. 

66..22  LLiiffee  aass  eevvoollvviinngg  ssooffttwwaarree  
Now let’s explain the rest of our evolutionary model. It’s just

a hill-climbing random walk in software space, for our organisms
are programs too, and a mutation is accepted if and only if it in-
creases the fitness of the organism. 
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In fact, our organisms are programs that calculate a single
positive integer, and the bigger the integer, the fitter the program.
In other words, the well-known computer science Busy Beaver
problem consisting of naming the largest possible integer is the
challenge that will force our organisms to evolve.

There is just a single software organism A at a time, and we try
mutating it at random using algorithmic mutations as previously de-
scribed, until we obtain a fitter organism A', one that calculates a
bigger number. Then everything continues as before but with this
new fitter organism A' replacing the previous software organism A. 

Darwinian evolution has been described as 

“DDeessiiggnn  wwiitthhoouutt  aa  DDeessiiggnneerr!!””

Here what we have instead is

“PPrrooggrraammmmiinngg  wwiitthhoouutt  aa  PPrrooggrraammmmeerr!!” 

In other words, our organisms consist only of hereditary ma-
terial, they do not have bodies or a metabolism. And in our mod-
el, instead of randomly mutating DNA, which is the actual soft-
ware of life, we are mutating computer programs that are working
on an extremely difficult computational problem, the Busy
Beaver problem. 

Simple as it is, this model exhibits some of the features of
Darwinian evolution, in fact provably so. If it weren’t so simple,
we would not be able to prove anything. One important concept
that emerges from this analysis is mutation distance. 

66..33 MMuuttaattiioonn  ddiissttaannccee  
We are modeling evolution as a random walk in software

space. How far does one have to walk to get from the organism A
to the organism A' ? Is there a distance measure associated with
this model? Yes indeed, the mutation distance. What is mutation
distance? Well, there are several different but ultimately equiva-
lent ways of defining this important concept: 
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MMuuttaattiioonn  ddiissttaannccee == HH((AA' ||  AA))
= the relative information content of A' given A
= the number of bits of algorithmic information needed to

transform A into A'
= the conceptual complexity of the mapping from A to A'
= −log2 of the probability that a random mutation M carries

A into A'

For more information about this model of evolution and
its remarkable properties, please see the book Proving Darwin or
my article “Life as evolving software” in Hector Zenil’s Turing
centennial volume A Computable Universe. Now let’s change
topic. 

77..  DDeessiiggnniinngg  aa  BBrraaiinn

We have discussed applications of the concept of conceptual
complexity in metaphysics, in metamathematics, and in a toy
model for Darwinian evolution. Now let’s turn to the most com-
plicated object there is, the human brain. 

What we present here may or may not be how our brain
works, but I believe it is a possible design for a brain. 

77..11  CClluueess  ffoorr  ssoollvviinngg  tthhee  ppuuzzzzllee  
Our analysis of the brain will follow John von Neumann’s

posthumous classic The Computer and the Brain (1958) and will
be based primarily on considering processing power and memory
capacity, the two key parameters in a computer. 

And the RNA/DNA molecular biology level has much
greater memory capacity and processing power than the neuronal
level, so why not use it? 

We also take into account some intriguing experiments with
planaria that were formerly dismissed but which have recently re-
ceived a certain amount of confirmation. 
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There is a deep remark in von Neumann, The Computer and
the Brain, that in computers the technology used for memory and
for logic is always different, so maybe the same is true in the
brain. 

Von Neumann also makes this anti-connectionist remark in
the question and answer discussion at the end of his paper “The
general and logical theory of automata” (presented 1948, pub-
lished 1951), the paper in which he proposes thinking of DNA as
software. 

Following von Neumann, we shall explore anti-connection-
ist models for a brain, ones in which logic may be encoded in the
connections of neurons but perhaps a different encoding is used
for memory, especially long-term memory, which has a huge ca-
pacity, as illustrated by von Neumann himself, who reportedly
had a photographic memory. 

In a nutshell, we propose that 

llooggiicc == nneeuurroonnss == ccoonnsscciioouuss  mmiinndd,,  

whilst

mmeemmoorryy == RRNNAA//DDNNAA  lleevveell == uunnccoonnsscciioouuss  mmiinndd..  

This proposal is also inspired by some old but intriguing
planaria learning through cannibalism experiments which were
greeted with skepticism by the scientific community but have
just received some confirmation. Please see the following pa-
pers: 

“Planaria: Memory transfer through cannibalism reexamined”
Science 114466, 9 October 1964: 274–275. 

“An automated training paradigm reveals long-term memory in
planarians and its persistence through head regeneration”
J. Exp. Biol. 1155, October 2013: 3799–3810. 
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77..22  IIss  tthhee  bbrraaiinn  aa  ttwwoo--lleevveell  ssyysstteemm??  
Here then is our two-level proposal:

• Conscious, Rational, Serial, Sensual Front-End Mind:
NNeeuurroonnss  ((FFaasstt))  

• Unconscious, Intuitive, Parallel, Combinatorial Back-End
Mind: MMoolleeccuullaarr  BBiioollooggyy  ((SSllooww))
(much greater compute and memory capacity) 

This proposal was also inspired by three other works, which
we now list. 

On the hugeness of human memory capacity and the fact
that people seem to remember everything even if they can’t recall
it, see Borges and Memory by Rodrigo Quian Quiroga. 

See also Dissertatio de arte combinatoria, an early work by
Leibniz (1666). Following Llull, the Dissertatio considers intelli-
gence and the power of invention as the ability to quickly search
through all possible combinations of a set of ideas. 

And see Jacques Hadamard, The Psychology of Invention in
the Mathematical Field (1945). This book emphasizes the funda-
mental role of the unconscious in mathematical creation. Having
a problem in your research? Sleep on it! Consult with your pillow! 

On the basis of these readings, we tentatively conclude that
the processing power and memory capacity of the unconscious
mind is much greater than that of the conscious mind. 

77..33  DDiissccuussssiioonn  ooff  tthhee  mmooddeell  
After all, the immune system does information processing at

the molecular level. If the brain worked only at the neuronal lev-
el, for example by storing one bit per neuron, it would have
roughly the capacity of a pen drive, far too low to account for hu-
man intelligence. But at the RNA/DNA molecular biology level,
the total information capacity is quite immense. 
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In the life of a research mathematician it is frequently the
case that one works fruitlessly on a problem for hours then wakes
up the next morning with many new ideas. The intuitive mind
has much, much greater information processing capacity than the
rational mind. Indeed, it seems capable of exponential search. 

We can connect the two levels postulated here by having a
unique molecular “name” correspond to each neuron, for example
to the proverbial “grand-mother cell.” In other words, we postu-
late that the unconscious “mirrors” the associations represented in
the connections between neurons. Connections at the upper con-
scious level correspond at the lower unconscious level to enzymes
that transform the molecular name of one neuron into the molec-
ular name of another. In this way, a chemical soup can perform
massive parallel searches through chains of associations, some-
thing that cannot be done at the conscious level. 

When enough of the chemical name for a particular neuron
forms and accumulates in the unconscious, that neuron is stimu-
lated and fires, bringing the idea into the conscious mind. 

And long-chain molecules can represent memories or se-
quences of words or ideas, i.e., thoughts. 

To end this discussion, I should repeat that whether or not
the human brain actually works this way, it seems to me that this
is a design for a brain that just possibly might be made to work.
At any rate, I think it is important to escape from the current cul-
de-sac and propose new lines of research. 

88..  TThhee  MMyysstteerryy  ooff  CCoonnsscciioouussnneessss  

We talked about consciousness above. Now we discuss some
ideas about consciousness put forth by other authors, ideas that
are totally unrelated to – and perhaps even contradict – the brain
design speculations that were just presented. 

I once fell asleep at the wheel while driving, then woke up
and wondered where I was and “who” had continued driving
while my conscious mind was asleep. Fortunately someone had
continued driving! 
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According to Christof Koch’s book Consciousness, the level of
my brain that continued driving was aallssoo conscious. Similarly,
Koch believes the immune system must be conscious. In fact, he
believes that everything is conscious; this is called panpsychism.
What’s important is the degree of consciousness. 

According to Giulio Tononi’s book PHI, consciousness can
be measured in terms of the integrated information Φ. (Tononi’s
Φ is also discussed in Koch’s book.) The greater a system’s Φ, the
more integrated and conscious it is. A binary switch has one bit
of consciousness. 

I suspect Φ has something to do with what in algorithmic
information theory is called mutual information 

HH((XX ::  YY)) == HH((XX)) ++ HH((YY)) −− HH((XX,,  YY))  

which is the extent to which X and Y are simpler when seen to-
gether than when seen separately. 

In a 1979 paper “Toward a mathematical definition of ‘life’” I
discuss using the mutual information of the parts of a system to de-
termine the extent to which the parts are integrated into a whole. 

These ideas might also help with the question of “the cre-
ation of the self:” what it means to isolate a certain physical sys-
tem from the rest of the world and declare it to be a unity. How
do we decompose the world into things? How do I distinguish
you from me? And how can we define this mathematically? 

99..  DDiiggiittaall  OOnnttoollooggyy  

We have discussed epistemology (of physics and mathemat-
ics), evolution, the brain and consciousness. Our final topic is on-
tology. 

99..11  TThhee  nneeww  PPyytthhaaggoorreeaannss  
The digital, algorithmic approach inspired by the computer

suggests that everything is discrete, everything is 0’s and 1’s. The
continuum is deemphasized, dethroned. Is the world a computer? 
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Instead of having a world built of number (Pythagoras) we
now have a world built of information, aa  nneeww  ssuubbssttaannccee. This
view of the world is also known as digital philosophy, and other
practitioners are Stephen Wolfram and Edward Fredkin. See Lon-
go and Vaccaro, Bit Bang: La nascita della filosofia digitale. 

99..22  DDiiggiittaall  pphhyyssiiccss  
There are also hints from physics.
The so-called “holographic principle” has emerged in the

field of quantum gravity, as a consequence of results on the ther-
modynamics and entropy of black holes. According to this princi-
ple, the total number of bits of information in any physical sys-
tem is finite, and moreover grows only as the surface area of its
boundary, not with its volume. 

These tentative results – quantum gravity is a relatively new
field – suggest both that the physical world is in some sense discrete,
and that perhaps at some level space is more two-dimensional than
three-dimensional. See Lee Smolin, Three Roads to Quantum Gravity.

99..33  TThhee  hhaallttiinngg  pprroobbaabbiilliittyy  ΩΩ
In order to continue our discussion of ontology we have to

define the number Ω and say a few words about why it is so in-
teresting. Ω is the total probability of all the self-contained (with-
out any input) programs p that eventually halt, assuming that the
bits of p are picked using independent tosses of a fair coin: 

ΩΩ ==    ∑∑pp hhaallttss 22––||pp|| ==      ∑∑UU ((pp))  hhaallttss 22––((ssiizzee  iinn  bbiittss  ooff  pprrooggrraamm  pp))

This infinite sum defines Ω, but does not enable us to calcu-
late its numerical value, because in fact Ω is wildly, extravagantly
uncomputable. 

Technical Note: For this infinite sum to converge and be be-
tween zero and one it is essential that we stipulate that the pro-
grams p for our universal computer U be “self-delimiting” so that



17Conceptual Complexity and Algorithmic Information

U knows by itself where to stop reading the bits of p and no ex-
tension p' of a p that halts is ever included in the sum for Ω.
Otherwise this sum will diverge to infinity. For a full explanation
of this please consult any treatise on algorithmic information
theory. 

Imagine writing the numerical value of Ω in base-two nota-
tion. This would give us its binary expansion, for example, 

ΩΩ ==    ..0011111100......  

Knowing the first N bits of this expansion would enable us
to discover all the programs up to N bits in size that ever halt, see
what output they produce before halting, and output something
different. Therefore the algorithmic information content of the
first N bits of the binary expansion of Ω is greater than N − c: 

HH((ffiirrsstt  NN bbiittss  ooff  ΩΩ))    >>    NN  −−  cc

Leibniz in his Monadolology, Sections 33-35, says that math-
ematical proof consists in analyzing a complex statement into the
consequence of simpler statements, continuing this analysis until
one reaches statements that are so simple that their truth is self-
evident and no longer requires any proof – otherwise there is an
infinite regress. 

However, it takes an N-bit theory – a formal axiomatic theo-
ry whose conceptual complexity is N – for us to be able to deter-
mine N bits of Ω. To be able to prove what are the precise values
of N bits of the binary expansion of Ω, we must use a formal ax-
iomatic theory which itself has at least N bits of complexity. 

Therefore the precise values of the successive bits of Ω are ir-
reducible mathematical facts, mathematical facts that are true for
no reason, more precisely, true for no reason simpler than them-
selves. They thus violate Leibniz’s principle of sufficient reason and
seem to be contingent rather than necessary truths. 

Does the number Ω exist? Does anything with infinite com-
plexity exist? If we can never know something, why should we be-
lieve it exists? Well, we ccaann prove lovely theorems about Ω. For
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example, Ω is Borel normal, which means that in the binary ex-
pansion for Ω, in the limit we encounter 0’s and 1’s with exactly
the same relative frequency. And hopefully Ω gives us some intu-
ition about more down-to-earth situations and how things may
behave in somewhat more realistic contexts. Remember, the
world of pure mathematics is much simpler and much more un-
derstandable than the messy real world! 

All by itself, Ω shows that pure mathematics is biological.
Because one of the defining characteristics of the field of biology
– as opposed to the field of theoretical physics which is based on
equations – is that there are few simple organizing principles in
biology. In other words, biology is very complicated. That may be
so, but Ω is infinitely complicated, and therefore, in a sense, more
biological than biology itself. 

Furthermore, the Platonic world of pure mathematics has
infinite conceptual complexity, whilst if Hilbert had been correct,
the world of pure mathematics would only have finite complexity,
namely the complexity of the universal consistent, complete for-
mal axiomatic theory that Hilbert was searching for. Mathematics
is open-ended, creative, not closed as Hilbert thought. And this
makes mathematical truth more tentative and not as totally black
or white as Hilbert thought it would be. 

This complexity-based point of view also emphasizes the
similarities between pure mathematics and theoretical physics
rather than the differences, and suggests, as I have argued else-
where, a quasi-empirical view of mathematics. Mathematics and
physics may be different, but they are not tthhaatt different – at least
not from an information-theoretic point of view. 

1100..  SSuummmmaarryy  

We have used the program size H(T) to measure the concep-
tual complexity of a physical or a mathematical theory T. The fact
that you can never prove that you have the simplest physical theo-
ry yields a new version of Gödel’s theorem on the limitations of
formal axiomatic mathematical theories. 
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In modeling Darwinian evolution, we have used relative pro-
gram size H(A' | A) to measure the conceptual complexity of an A
to A' mutation. We can prove that our model evolves. We have a
Pythagorean world in which life provably evolves. 

What about the brain and consciousness? Following von
Neumann, maybe a computer engineering approach is relevant.
And following Tononi and Koch, maybe mutual program size
complexity H(X : Y) is related to integrated information as mea-
sured by Φ. 

We now have a new fundamental substance, information,
that comes together with a digital world-view. 

And – most ontological of all – perhaps with the aid of these
concepts we can begin again to view the world as consisting of
both mind and matter. The notion of mind that perhaps begins to
emerge from these musings is mathematically quantified, which is
why we declared at the start that this essay pretends to take addi-
tional steps in the direction of a mathematical form of philosophy.

The eventual goal is a more precise, quantitative analysis of
the concept of “mind.” Can one measure the power of a mind like
one measures the power of a computer? 

NOTES

1 Invited talk at IACAP 14: Conference of the International Association
for Computing and Philosophy, Thessaloniki, July 2-4, 2014. 

2 Federal University of Rio de Janeiro, Brazil, https://ufrj.academia.edu/
GregoryChaitin. The author is grateful to the Brazilian government for sup-
porting this research with a CAPES PVE grant. 

3 As Hermann Weyl put it, if arbitrarily complex laws are permitted,
then the concept of law becomes vacuous because there is always a law. See
Weyl, The Open World (1932). 

4 The actual statement by Leibniz seems to be “Cum Deus calculat et cogi-
tationem exercet, fit mundus” (When God thinks things through and calculates,
the world is made). But the abbreviated version is more to the point, or at least
more to our point.
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