
Lectures on Philosophy and Computation

Cristian S. Calude

March–April 2014

Lectures on Philosophy and Computation 1 / 70

Leibniz

Sans les mathématiques on ne pénètre point au fond de
la philosophie.
Sans la philosophie on ne pénètre point au fond des
mathématiques.
Sans les deux on ne pénètre point au fond de rien.

Without mathematics one cannot understand the
fundamentals of philosophy.
Without philosophy we cannot reach the foundation of
mathematics.
Without both (mathematics and philosophy) one cannot
reach anything that is fundamental.

Lectures on Philosophy and Computation 2 / 70

Bibliography (books)

J. Barrow. Impossibility—The Limits of Science and the
Science of Limits, Oxford University Press, Oxford, 1998.

J. M. Borwein, D. Bailey, R. Girgensohn. Experimentation in
Mathematics: Computational Paths to Discovery, A.K.
Peters, Natick, MA, 2004.

C. S. Calude. Information and Randomness – An Algorithmic
Perspective, Springer-Verlag, 2002.

Lectures on Philosophy and Computation 3 / 70

The paradox of randomness 1

In early times, the concepts of chance and randomness were
intertwined with that of fate.

Ancient peoples threw dice to determine fate.

The Chinese formalised odds and chance about 3,000 years ago.

The Greek philosophers discussed randomness at length, but only
in non-quantitative forms.

It was only in the sixteenth century that Italian mathematicians
began to formalise the odds associated with various games of
chance.

Lectures on Philosophy and Computation 4 / 70

The paradox of randomness 2

Randomness means lack of pattern or predictability; it suggests a
non-order or non-coherence in a sequence of symbols or steps, such
that there is no intelligible pattern or combination.

Symptoms of randomness:

typicality,

lack of patterns,

unpredictability,

incompressibility,

. . .

Lectures on Philosophy and Computation 5 / 70

The paradox of randomness 3

The string

00000000000000000000000000000000

is clearly non-random.

The string

00111100010001101101010001000010

seems random.

Lectures on Philosophy and Computation 6 / 70

The paradox of randomness 4

Which strings are random?

01100110011001100110011001100110

00111100010001100011110001000110

00000000000000000011110001000110

00001010101000000010000000101000

00100100010000101001010001000110

Lectures on Philosophy and Computation 7 / 70

The paradox of randomness 4

The French mathematician Émile Borel, a pioneer of probability
theory, argued that there is no way to formalise in an acceptable
way the concept of randomness. His argument is based only one
symptom of randomness, typicality and is known today as the
randomness paradox.

Lectures on Philosophy and Computation 8 / 70

The paradox of randomness 5

A random bit-string should be “typical”: it should not stand out
from the crowd of other bit-strings.

Here is Borel’s argument. Assume that there is a precise way to
distinguish between “random bit-strings” and bit-strings which are
“non-random”. It does not matter how this criterion was found or
operates.

Lectures on Philosophy and Computation 9 / 70

The paradox of randomness 6

Operationally, we have a precise criterion which can be applied to
any bit-string and once a bit-string is given, we can say whether
the bit-string is random or non-random.

Can the adopted criterion be consistent? The answer is negative.

Indeed, choose the first bit-string which criterion asserts it is
random. This particular bit-string is

the first bit-string satisfying the property of being
random,

a property making it atypical, so non-random!

Lectures on Philosophy and Computation 10 / 70

The paradox of randomness 7

What are we left with?

randomness does not exist,

randomness is a matter of degree: we have a hierarchy of
definitions of randomness,

?

Lectures on Philosophy and Computation 11 / 70

Berry paradox

Name numbers in English.

Zero is the first number.

One is the first non-zero number.

One is the second number.

Find the value of the number defined by:

The first number not nameable in under ten words.

Lectures on Philosophy and Computation 12 / 70

Russell’s paradox 1

Russell’s paradox, discovered by Bertrand Russell in 1901, showed
that the naive set theory created by Georg Cantor leads to a
contradiction. This generated a crisis in the foundations of
mathematics.

According to naive set theory, any definable collection is a set.

Let R be the set of all sets that are not members of themselves.

If R is a member of itself, it would contradict its own definition as
the set containing all sets that are not members of themselves.

If R is not a member of itself, it would qualify as a member of
itself by the same definition, again a contradiction.

Lectures on Philosophy and Computation 13 / 70

Russell’s paradox 2

Give examples of:

1 sets which are not members of themselves,

2 sets which are members of themselves.

Lectures on Philosophy and Computation 14 / 70

Hilbert’s programme 1

The main goal of Hilbert’s program was to provide secure
foundations for all mathematics. This includes:

A formalisation of mathematics: all mathematical statements
should be written in a precise formal language, and
manipulated according to well defined rules (formal system).

Completeness: a proof that all true mathematical statements
can be proved in the adopted formal system.

Consistency: a proof—preferably reasoning about finite
mathematical objects only—that no contradiction can be
obtained in the formal system.

Lectures on Philosophy and Computation 15 / 70

Hilbert’s programme 2

Decidability: construction of an algorithm for deciding, in the
formal system, the truth or falsity of any mathematical
statement.

Conservation: a proof that any result about “real objects”
obtained using “ideal objects” (such as uncountable sets) can
be restated without using ideal objects.

Lectures on Philosophy and Computation 16 / 70

Incompleteness 1

By N(P, v) we mean that the (Turing) program P will never halt
when begun with input v .

For any particular program P and input v , N(P, v) is a perfectly
definite statement which is either true (in case P will never halt in
the described situation) or false (in case P will eventually halt).

Lectures on Philosophy and Computation 17 / 70

Incompleteness 2

When N(P, v) is false, this fact can always be demonstrated by
running P on v .

No amount of computation will suffice to demonstrate the fact
that N(P, v) is true. We may still be able to prove that a
particular N(P, v) is true by a logical analysis of P’s behaviour,
but, as we proved in the undecidability of the halting problem, no
such method works correctly in all cases.

Lectures on Philosophy and Computation 18 / 70

Incompleteness 3

What is a proof?

Suppose that certain strings of symbols (possibly paragraphs of a
natural language (English, for example)) have been singled
out—typically with the help of axioms and rules of inference—as
proofs of particular statements of the form N(P, v).

Operationally, we assume that we have an algorithm called
syntactic test that can test an alleged proof Π that N(P, v) is
true and determine whether Π is or is not actually such a proof.

Lectures on Philosophy and Computation 19 / 70

Incompleteness 4

There are two basic requirements which it is natural to demand of
our supposed rules of proof:

Soundness: If there is a proof Π that N(P, v) is true, then P
will in fact never halt when begun with v on its tape.

Completeness: If P will never halt when begun with v on its
tape, then there is a proof Π that N(P, v) is true.

Lectures on Philosophy and Computation 20 / 70

Incompleteness 5

Theorem [Gödel’s incompleteness theorem]

No rules of proof can be both sound and complete.

Obviously, soundness cannot be sacrificed.

If a given set of rules of proof is sound, then, according to Gödel’s
incompleteness theorem, there is some true statement N(P, v)
which has no proof Π according to the given rules of proof.

Such a true unprovable statement is called undecidable since it will
surely not be disprovable.

Lectures on Philosophy and Computation 21 / 70

Incompleteness 6

Suppose we had found rules of proof which were both sound and
complete.

Suppose “proofs” according to these rules were particular strings of
symbols on some specific finite alphabet.

Let Π1,Π2,Π3, . . . be the quasi-lexicographic computable
enumeration of all finite strings on this alphabet. This sequence
includes all possible proofs, as well as a lot of other things
(including a high percentage of total nonsense). But, hidden
among the nonsense, are all possible proofs.

Lectures on Philosophy and Computation 22 / 70

Incompleteness 7

Now we show how we can use our supposed rules of proof to solve
the halting problem—an impossibility.

So, we are given a program P and an input v and wish to test
whether or not P will eventually halt when begun on v .

We run in parallel two computations:

the computation of P on v ,

we generate the sequence Π1,Π2,Π3, . . . of possible proofs
and, as each Πi is generated, we use the syntactic test to
determine whether or not Πi is a proof of N(P, v).

Lectures on Philosophy and Computation 23 / 70

Incompleteness 8

If P will eventually halt on v we will find out in finite time.

If P will never halt on v , since our rules of proof are assumed to be
complete, there will be a proof Πi of N(P, v) which we will
discover via the enumeration Π1,Π2,Π3, . . . of possible proofs.

Having obtained this Πi we will be sure (because of soundness)
that P will indeed never halt.

Thus, we have described an algorithm which would solve the
halting problem, a contradiction!

Lectures on Philosophy and Computation 24 / 70

Incompleteness 9

Gödel’s theorem does not indicate any particular pair P, v for which
we will never be able to convince ourselves that N(P, v) is true!

It says that for any given sound rules of proof, there will be a pair
P, v for which N(P, v) is true, but not provable using the given
rules.

There may well be, and in fact there always are, other sound rules
which decide this “undecidable” statement. But these other rules
will in turn have their own undecidabilities.

Lectures on Philosophy and Computation 25 / 70

Hilbert’s programme after incompleteness 1

Incompleteness and its consequences showed that most of the
goals of Hilbert’s program were impossible to achieve, at least if
interpreted in the “most obvious way”.

However, much of it can be salvaged by changing its goals slightly,
and with the following modifications some of it was successfully
completed:

Although it is not possible to formalise all mathematics, it is
possible to formalise essentially all the mathematics that
“anyone uses”. Zermelo-Fraenkel set theory, combined with
first-order logic, gives a satisfactory and generally accepted
formalism for essentially all current mathematics.

Lectures on Philosophy and Computation 26 / 70

Hilbert’s programme after incompleteness 2

Although it is not possible to prove completeness for systems
at least as powerful as Peano arithmetic (if they have a
computable set of axioms), it is possible to prove forms of
completeness for many interesting systems.
Gödel proved the completeness theorem for first-order logic
before he proved the incompleteness theorems.

Lectures on Philosophy and Computation 27 / 70

Hilbert’s programme after incompleteness 3

The theory of algebraically closed fields of given characteristic
is complete.

Although there is no algorithm for deciding the truth of
statements in Peano arithmetic, Tarski found an algorithm
that can decide the truth of any statement in analytic
geometry (more precisely, the theory of real closed fields is
decidable). Given the Cantor-Dedekind axiom, this algorithm
can decide the truth of any statement in Euclidean geometry.

Lectures on Philosophy and Computation 28 / 70

Proof revisited

Proof: 1. a fact or thing that shows or helps to show that

something is true or exists; 2. a demonstration of the truth of

something, “in proof of my statement”; 3. the process of

testing whether something is true or good or valid, “put it to

the proof”. To prove: to give or be proof of; to establish the

validity of; to be found to be, “it proved to be a good theory”;

to test or stay out. To argue: 1. to express disagreement, to

exchange angry words; 2. to give reasons for or against

something, to debate; 3. to persuade by talking, “argued him

into going”; 4. to indicate, “their style of living argues that

they are well off”. Argument: 1. a discussion involving

disagreement, a quarrel; 2. a reason put forward; 3. a theme

or chain of reasoning. (Oxford American Dictionary)

Lectures on Philosophy and Computation 29 / 70

A critique of the definition of proof

In all these statements, nothing is said about the means used “to
show or help to show that something is true or exists”, about the
means used “in the process of testing whether something is true or
good or valid”.

In argumentation theory, various ways to argue are discussed,
deductive reasoning being only one of them. We use suggestions,
impressions, emotions, logic, gestures, mimicry, etc.

Lectures on Philosophy and Computation 30 / 70

Mathematics: informal proofs

An informal (pen-on-paper) proof is a rigorous argument expressed
in a mixture of natural language and formulae (for some
mathematicians an equal mixture is the best proportion) that is
intended to convince a knowledgeable mathematician of the truth
of a statement, the theorem. Routine logical inferences are
omitted. “Folklore” results are used without proof. Depending on
the area, arguments may rely on intuition. Informal proofs are the
standard of presentation of mathematics in textbooks, journals,
classrooms, and conferences. They are the product of a social
process.

Lectures on Philosophy and Computation 31 / 70

Mathematics: formal proofs

A formal proof is written in a formal language consisting of certain
strings of symbols from a fixed alphabet. Formal proofs are
precisely specified without any ambiguity because all notions are
explicitly defined, no steps (no matter how small) are omitted, no
appeal to any kind of intuition is made. They satisfy Hilbert’s
criterion of mechanical testing:

The rules should be so clear, that if somebody gives you
what they claim is a proof, there is a mechanical
procedure that will check whether the proof is correct or
not, whether it obeys the rules or not.

By making sure that every step is correct, one can tell once and for
all whether a proof is correct or not, i.e. whether a theorem has
been proved.

Lectures on Philosophy and Computation 32 / 70

Mathematical reality

Formal proof cannot be found in mathematical articles or books
(except for a few simple examples).

However, most mathematicians believe that almost all “real”
proofs, published in articles and books, can, with tedious work, be
transformed into Hilbertian proofs. Why?

Because “real” proofs look convincing for the mathematical
community. Going further, DeMillo, Lipton and Perlis argued that
“real proofs” should be highly non-monolithic because they aim to
be heard, read, assimilated, discussed, used and generalised by
mathematicians—they are part of a social process.

Lectures on Philosophy and Computation 33 / 70

Programming 1

Programming is the activity of solving problems with computers. It
includes the following steps:

a) developing the algorithm to solve the problem,

b) writing the algorithm in a specific programming language (that
is, coding the algorithm into a program),

c) assembling or compiling the program to turn it into machine
language,

d) testing and debugging the program,

e) preparing the necessary documentation.

Lectures on Philosophy and Computation 34 / 70

Programming 2

Ideally, at d) one should have written:

d) proving the correctness of the algorithm, testing and debugging
the program.

We said, ideally, because correctness, although desired, is only
practised in very few instances (for example, the programs involved
in the proof of the Four-Color Theorem were not proved correct!)

Lectures on Philosophy and Computation 35 / 70

Theorems and programs

It makes sense to prove the correctness of an algorithm, but not,
the correctness of a program. Programs are analogues of
mathematical models, they may be more or less adequate to code
algorithms.

Adequacy is a property which depends on many factors, from pure
formal/coding ones to physical and engineering ones.

One can even argue that a “correctness proof” for a program, if
one could imagine such a thing, adds very little to the confidence
in the program. In Knuth’s words:

Beware of bugs in the above code: I have only proved it
correct, not tried it.

Lectures on Philosophy and Computation 36 / 70

Mathematics = proof? 1

The role of proof in mathematical modelling is very small:
adequacy is the main issue! Here is an illustration from Jack
Schwartz:

. . . it may come as a shock to the mathematician to learn
that the Schrödinger equation for the hydrogen atom . . .
is not a literally correct description of this atom, but only
an approximation to a somewhat more correct equation
taking account of spin, magnetic dipole, and relativistic
effects; that this corrected equation is itself only an
ill-understood approximation to an infinite set of
quantum field-theoretical equations; and finally that the
quantum filed theory besides diverging, neglects a myriad
of strange-particle interactions whose strength and form
are largely unknown. . . .

Lectures on Philosophy and Computation 37 / 70

Mathematics = proof? 2

The modelling component of mathematics appears not only in
applications, but also in the way mathematics develops new
concepts.

Many important notions in mathematics reached an accepted
definition only after a long process of modelling, from an intuitive,
pre-mathematical notion to a more precisely defined, formal one.
In the end, the accepted definition is adopted as a “thesis”
claiming its adequacy.

For example, “Weierstrass’ thesis” is the statement that the
intuitive notion of continuity is extensionally equivalent to the
notions yielded by the now standard definitions of continuous
function.

Lectures on Philosophy and Computation 38 / 70

Mathematics = proof? 3

Other examples include:

“The function thesis”: identification of a function with a set
of ordered pairs,

“Tarski’s thesis”: identification of Tarski’s definition of truth
in a formalised language with the intuitive notion of truth,

“Church-Turing thesis”.

None of these “theses” can be proved, but various analyses can
conclude their degrees of plausibility/adequacy/applicability.
Mathematics in both its practice and development is an
“open-texture” .

Lectures on Philosophy and Computation 39 / 70

Checking proofs

There are many “new” types of proofs, probabilistic, experimental
or hybrid proofs (computation plus theoretical arguments).

Zeilberger has argued in favour of the transition from rigorous
proofs to an “age of semi-rigorous mathematics, in which identities
(and perhaps other kinds of theorems) will carry price tags”
measured in computer and human resources necessary to prove
them with a certain degree of confidence.

The real work of us mathematicians, from now until,
roughly, fifty years from now, when computers won’t
need us anymore, is to make the transition from
human-centric math to machine-centric math as smooth
and efficient as possible.

Lectures on Philosophy and Computation 40 / 70

Communication and understanding

No theorem is validated before it is “communicated” to the
mathematical community (orally and, eventually, in writing).
Manin:

Proof is not just an argument convincing an imaginary
opponent. Not at all. Proof is the way we communicate
mathematical truth.

However, as Rota pointed out:

One must guard, however, against confusing the
presentation of mathematics with the content of
mathematics.

Proofs have to be written on paper, which means proofs are
physical. From this perspective, proofs depend upon the physical
universe (Calude and Chaitin).

Lectures on Philosophy and Computation 41 / 70

Rigour: operational vs. conceptual 1

Standards of rigour have changed throughout the history of
mathematics and not necessarily from less rigour to more rigour.

B. Russell:

I wanted certainty in the kind of way in which people
want religious faith.

J.-P. Serre was quoted saying that mathematics is the only
producer of “totally reliable and verifiable” truths.

D. Knuth:

. . . programming demands a significantly higher standard
of accuracy. Things don’t simply have to make sense to
another human being, they must make sense to a
computer.

Lectures on Philosophy and Computation 42 / 70

Rigour: operational vs. conceptual 2

W. P. Thurston:

The standard of correctness and completeness necessary
to get a program to work at all is a couple of orders of
magnitude higher than the mathematical community’s
standard of valid proofs.
When one considers how hard it is to write a computer
program even approaching the intellectual scope of a
good mathematical paper, and how much greater time
and effort have to be put into it to make it “almost”
formally correct, it is preposterous to claim that
mathematics as we practice it is anywhere near formally
correct.

Lectures on Philosophy and Computation 43 / 70

Rigour: operational vs. conceptual 3

A conceptual period reaches its maturity under the form of an
operational one, which, in its turn, is looking for a new level of
conceptual attitude.

The whole treatise of Bourbaki is a conceptual reaction to an
operational approach. Dirichlet’s slogan asking to replace
calculations with ideas should be supplemented with another,
complementary slogan, requiring to detect an algorithmic level of
concepts.

Can we expect a similar alternation of attitudes in respect to
programming? Perhaps it is too early to answer, taking into
account that the whole field is still too young. The question is not
only academical as the project Flyspeck (to produce a formal proof
of the Kepler Conjecture) reminds us.

Lectures on Philosophy and Computation 44 / 70

Proof-assistants

In theory, each informal proof can be converted into a formal
proof. However, this is rarely, almost never, done in practice.

A proof assistant (interactive theorem prover) is a software tool to
assist with the development of formal proofs by man-machine
collaboration.

Proof-assistants can be used not only to check the validity of a
formalised proof of a known mathematical result, but also to
interactively help to “prove” new theorems.

Lectures on Philosophy and Computation 45 / 70

Hilbert’s standard of proof is practicable, it’s becoming reality

An impressive record of deep mathematical theorems formally
proved:

Gödel Incompleteness Theorem (1986),

the Fundamental Theorem of Calculus (1996),

the Fundamental Theorem of Algebra (2000),

the Four Colour Theorem (2004),

Jordan’s Curve Theorem (2005),

the Prime Number Theorem (2008).

The December 2008 issue of the Notices of AMS includes four
papers on formal proof.

Lectures on Philosophy and Computation 46 / 70

Coq

Produced by INRIA, free distributed under the GNU Lesser General
Public Licence, http://coq.inria.fr/, Coq is a formal proof
management system providing a formal language to write
mathematical definitions, executable algorithms and theorems
together with an environment for semi-interactive development of
machine-checked proofs.

Typical applications include the formalisation of programming
languages semantics, formalisation of mathematics (e.g. Four
Colour Theorem) and teaching.

Lectures on Philosophy and Computation 47 / 70

http://coq.inria.fr/

Isabelle

Isabelle is a generic proof assistant, free distributed under the BSD
license, http://www.cl.cam.ac.uk/research/hvg/Isabelle/,
allowing mathematical formulas to be expressed in a formal
language and provides tools for proving those formulas in a logical
calculus.

Isabelle is developed at the University of Cambridge, Technische
Universität München and Université Paris-Sud.

The first formal proofs in algorithmic information theory have been
developed in Isabelle at UoA (C. Calude and N. Hay).

Lectures on Philosophy and Computation 48 / 70

http://www.cl.cam.ac.uk/research/hvg/Isabelle/

Data science

George Box: All models are wrong, but some are useful.

Models have been able to consistently, if imperfectly, explain the
world around us.

Is there any choice?

Lectures on Philosophy and Computation 49 / 70

Data science

Sixty years ago, digital computers made information readable.

Twenty years ago, the Internet made it reachable.

Ten years ago, the first search engine crawlers made it a single
database.

Kilobytes are stored on floppy disks, megabytes are stored on hard
disks, terabytes are stored in disk arrays, and petabytes are stored
in the cloud. We leave in the Petabyte Age.

Lectures on Philosophy and Computation 50 / 70

Data science: Google philosophy

We don’t know why this page is better than that one. If the
statistics of incoming links say it is, that’s good enough. No
semantic or causal analysis is required.

Operationalising this philosophy, Google

can match ads to content without any knowledge or
assumptions about the ads or the content;

can translate languages without actually “knowing” them; it
can translate Maori into Farsi as easily as it can translate
French into English provided it has equal corpus data (see

WIKI-LINKS).

Lectures on Philosophy and Computation 51 / 70

https://code.google.com/p/wiki-links/

Data science: Data deluge

According to C. ANDERSON , Wired Magazine, Google’s research
director Peter Norvig offered an update to George Box’s dictum:

All models are wrong, and increasingly you can succeed
without them.

Unfortunately, Norvig DENIES :

That’s a silly statement, I didn’t say it, and I
disagree with it.

Lectures on Philosophy and Computation 52 / 70

http://www.wired.com/science/discoveries/magazine/16-07/pb_theory
http://norvig.com/fact-check.html

Data science: Data deluge

The big target here is science. The scientific method is built
around testable hypotheses. The models are then tested, and
experiments confirm or falsify theoretical models of how the world
works. This is the way science has worked for hundreds of years.

THE END OF THEORY: THE DATA DELUGE MAKES THE SCIENTIFIC METHOD OBSOLETE.

Welcome to data science! Long live the dead science!

Lectures on Philosophy and Computation 53 / 70

http://www.wired.com/science/discoveries/magazine/16-07/pb_theory

Data science: Data deluge

Operationalising the idea

THE END OF THEORY: THE DATA DELUGE MAKES THE SCIENTIFIC METHOD OBSOLETE.

In short, the more we learn about [[biology]], the further
we find ourselves from a model that can explain it.

There is now a better way. Petabytes allow us to say:
“Correlation is enough.” We can stop looking for models.
We can analyze the data without hypotheses about what
it might show. We can throw the numbers into the
biggest computing clusters the world has ever seen and let
statistical algorithms find patterns where science cannot.

Lectures on Philosophy and Computation 54 / 70

http://www.wired.com/science/discoveries/magazine/16-07/pb_theory

Data science: Data deluge

NSF : Computational and Data-Enabled Science and Engineering
(CDS & E) is a new program. CDS & E is now clearly recognizable
as a distinct intellectual and technological discipline lying at the
intersection of applied mathematics, statistics, computer science,
core science and engineering disciplines.. . . We regard CDS & E as
explicitly recognizing the importance of data-enabled,
data-intensive, and data centric science. CDS & E broadly
interpreted now affects virtually every area of science and
technology, revolutionizing the way science and engineering are
done. Theory and experimentation have for centuries been
regarded as two fundamental pillars of science. It is now widely
recognized that computational and data-enabled science forms a
critical third pillar.

Lectures on Philosophy and Computation 55 / 70

http://www.nsf.gov/mps/cds-e/

Data science: Data deluge

The “wave of the future”—as it was called—disposes of
experiment and theory in science. It affects everything from
astronomy to zoology, from medical sciences to social sciences.

History reminds us of similar exaggerations (recall chaos theory or
catastrophe theory in mathematics): the “wave of the future”
often washes away a number of worthy things and leaves a number
of questionable items littering the shore.

Lectures on Philosophy and Computation 56 / 70

Data science: Google cats

In June 2012, Google demonstrated the power of “data-oriented
deep learning” with one of the largest neural networks containing
more than a billion connections.

A Stanford University–Google team (lead by Andrew Ng and Jeff
Dean) showed the system images from 10 million randomly
selected YouTube videos. One simulated neuron in the model
fixated on images of cats. Others focused on human faces, yellow
flowers, and other discrete objects.

The model identified reasonable well these discrete objects even
though no humans had ever defined or labeled them.

Lectures on Philosophy and Computation 57 / 70

Data science: Deep learning...

in April 2013 JEFF DEAN PRESENTATION.

Lectures on Philosophy and Computation 58 / 70

http://www.technologyreview.com/featuredstory/513696/deep-learning/

Data science: The good

Imagine there are two papers somewhere in the literature, one of
which says that A implies B, and another that says B implies C.
With the incredible growth of the scientific literature, it is likely
that these two papers remain unrelated.

A program can find a way to stitch these two papers together,
showing that A implies C, potentially an important discovery.

Lectures on Philosophy and Computation 59 / 70

Data science: The price for the good

Is there a price in this finding? Cornell University program EUREQA

is a free tool for detecting equations and hidden mathematical
relationships in data with the goal “to identify the simplest
mathematical formulas which could describe the underlying
mechanisms that produced the data”.

A theorem may be proven in this way, but no one person actually
may understand the proof, though there may be reasons to believe
it is correct.

Lectures on Philosophy and Computation 60 / 70

http://creativemachines.cornell.edu/eureqa

Data science: The price for the good

So what does this all mean for the future of truth?

Is it possible for something to be true but not understandable? Is
this bad?

Believing without finding reasons is controversial. However, if
these findings motivate the search for more elegantly constructed,
human-understandable, versions of these proofs, then they are
good.

Lectures on Philosophy and Computation 61 / 70

Data science: The signal problem

Data are assumed to accurately reflect the “real world”; however,
significant gaps, with little or no signal coming from particular
parts may exist.

Boston has a problem with potholes, patching approximately
20,000 every year. STREETBUMP smartphone app passively detects
and instantly reports potholes to the City. A clever approach which
has a signal problem. People in lower income groups are less likely
to have smartphones, or to use StreetBump and this is particularly
true of older residents, where smartphone penetration is as low as
16%.

Smartphone data sets miss inputs from significant parts of the
population.

Lectures on Philosophy and Computation 62 / 70

http://streetbump.org

Data science: Ramsey theory or size vs content correlations

Ramsey theory, named after the British mathematician, logician
and philosopher Frank P. Ramsey, is a branch of mathematics that
studies the conditions under which order must appear.

Problems in Ramsey theory typically ask questions of the form:

How many elements of some structure must there be to
guarantee that a particular property will hold?

Lectures on Philosophy and Computation 63 / 70

Data science: Party theorem

Suppose a party has six people. Consider any two of them.

They might be meeting for the first time—in which case we will
call them mutual strangers; or they might have met before—in
which case we will call them mutual acquaintances.

Theorem (Paul Erdös, Alfréd Rényi, Vera T. Sós): In any party of
six people either

at least three of them are (pairwise) mutual strangers or

at least three of them are (pairwise) mutual acquaintances.

Lectures on Philosophy and Computation 64 / 70

Data science: Party theorem

Party graph

This is the complete graph with six vertices in which every pair of
vertices is joined by an edge. Every colouring of edges with red and
blue, cannot avoid having either a red triangle or a blue triangle.

Lectures on Philosophy and Computation 65 / 70

Data science: Party theorem

Proof. Choose any one vertex; call it P. There are five edges
leaving P. They are each coloured red or blue. The pigeonhole
principle says that at least three of them must be of the same
colour.

Let A,B,C be the other ends of these three edges, all of the same
colour, say blue. If any one of AB,BC ,CA is blue, then that edge
together with the two edges from P to the edge’s endpoints forms
a blue triangle. If none of AB,BC ,CA is blue, then all three edges
are red and we have a red triangle, namely, ABC .

Lectures on Philosophy and Computation 66 / 70

Data science: Partition regularity

When a set system is “quite big”?

Given a set X , a collection of subsets S ⊂ 2X is called partition
regular if every set A ∈ S has the property that, no matter how A
is partitioned into finitely many subsets A = C1 ∪ C2 ∪ · · · ∪ Cn, at
least one of the subsets Ci must belong to the collection S .

The infinite pigeonhole principle. Partition regularity asserts that
every finite partition of an infinite set contains an infinite set.
Proof: take S the collection of all infinite subsets of the infinite set.

Lectures on Philosophy and Computation 67 / 70

Data science: Ramsey theory

Ramsey theory proves that

Complete disorder is an impossibility. Every large set of
numbers, points or objects necessarily contains a highly
regular pattern.

R. Graham, J. H. Spencer. RAMSEY THEORY , Scientific American 262
no. 7 (1990), 112–117.

Lectures on Philosophy and Computation 68 / 70

http://www.math.ucsd.edu/~fan/ron/papers/90_06_ramsey_theory.pdf

Data science: Ramsey theory

How to distinguish correlation from causation?

How to distinguish content-correlations from Ramsey-type
correlations?

Lectures on Philosophy and Computation 69 / 70

Data science books

Two books on data science:

CALVIN ANDRUS (2012).DATA SCIENCE: AN INTRODUCTION.

JEFFREY M. STANTON (2012).INTRODUCTION TO DATA SCIENCE.

Lectures on Philosophy and Computation 70 / 70

http://en.wikibooks.org/wiki/Data_Science:_An_Introduction
http://jsresearch.net/wiki/projects/teachdatascience

