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Leibniz

Sans les mathématiques on ne pénètre point au fond de
la philosophie.
Sans la philosophie on ne pénètre point au fond des
mathématiques.
Sans les deux on ne pénètre point au fond de rien.

Without mathematics one cannot understand the
fundamentals of philosophy.
Without philosophy we cannot reach the foundation of
mathematics.
Without both (mathematics and philosophy) one cannot
reach anything that is fundamental.
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The halting problem

The problem of determining, from a description of an arbitrary
computer program and an input, whether the program will finish
running or continue to run forever is called the halting problem.

Alan Turing proved in 1936 that no algorithm can solve the halting
problem for all possible program-input pairs: the halting problem is
undecidable.

In what follows we will give an information-theoretic proof using
the informal notion of “program”.

Without restricting the generality of the proof we assume that all
programs incorporate inputs—which are coded as natural numbers.
A program may run forever or may just eventually stop, in which
case it prints a natural number.

Lectures on Philosophy and Computation 4 / 139



A troubling program

Assume that there exists a halting program deciding whether an
arbitrary program eventually halts. Construct the following
program Trouble(N):

1. read a natural N;

2. generate all programs up to N bits in size;

3. use the halting program to check for each

generated program whether it halts; remove

non-halting programs;

4. simulate the running of the above generated

programs, and

5. compute the biggest value output by these

programs, say o, and output 2o + 1.
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The proof

I The program Trouble(N) halts for every natural N.

I The program Trouble(N) about logN bits. Reason: to know
N we need log2N bits (in binary); the rest is a constant, so
Trouble(N) is logN + O(1) bits.

I For large enough N, Trouble(N) belongs to the set of
programs having less than N bits (because logN + O(1) < N).

I Trouble(N) generates itself at some stage of the computation.

I Contradiction!. Reason: on one hand, Trouble(N) outputs a
natural number no larger than o, but, on the other hand, it
outputs 2o + 1!
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Randomness

In early times, the concepts of chance and randomness were
intertwined with that of fate.

Ancient peoples threw dice to determine fate.

The Chinese formalised odds and chance about 3,000 years ago.

The Greek philosophers discussed randomness at length, but only
in non-quantitative forms.

It was only in the sixteenth century that Italian mathematicians
began to formalise the odds associated with various games of
chance.
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What is randomness?

Randomness means lack of pattern or predictability; it suggests a
non-order or non-coherence in a sequence of symbols or steps, such
that there is no intelligible pattern or combination.

Symptoms of randomness:

I typicality,

I lack of patterns,

I unpredictability,

I incompressibility,

I . . .
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Two examples

The string

00000000000000000000000000000000

is clearly non-random.

The string

00111100010001101101010001000010

seems random.
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More examples

Which strings are random?

01100110011001100110011001100110

00111100010001100011110001000110

00000000000000000011110001000110

00001010101000000010000000101000

00100100010000101001010001000110
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The paradox of randomness

The French mathematician Émile Borel, a pioneer of probability
theory, argued that there is no way to formalise in an acceptable
way the concept of randomness. His argument is based only one
symptom of randomness, typicality and is known today as the
randomness paradox.
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Borel’s argument

A random bit-string should be “typical”: it should not stand out
from the crowd of other bit-strings.

Assume that there is a precise way to distinguish between “random
bit-strings” and bit-strings which are “non-random”. It does not
matter how this criterion was found or operates.
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Random vs. random

Operationally, we have a precise criterion which can be applied to
any bit-string and once a bit-string is given, we can say whether
the bit-string is random or non-random.

Can the adopted criterion be consistent? The answer is negative.

Indeed, choose the first bit-string which criterion asserts it is
random. This particular bit-string is

the first bit-string satisfying the property of being
random,

a property making it atypical, so non-random!
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Options

What are we left with?

I randomness does not exist,

I randomness is a matter of degree: we have a hierarchy of
definitions of randomness,

I use a different paradox,

I ...
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Berry paradox

Name numbers in English.

Zero is the first number.

One is the first non-zero number.

One is the second number.

Find the value of the number defined by:

The first number not nameable in under ten words.

What is the reason of the “paradox”?
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Combining strings

Let x , y be two binary strings. Can we combine them into a single
string z in such a way that both x and y can be retrieved
algorithmically from z?

Here is a solution: use the prefix-free encoding of strings. Given
x = x1x2 . . . xn and y ,

z = 〈x , y〉 = x1x1x2x2 . . . xnxn01y .

It is seen that the length of |〈x , y〉| is 2|x |+ 2 + |y |.
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Formal descriptions

In what follows we use algorithms (for example, TM machines) to
describe strings.

Algorithms will be written in binary, i.e. they will be represented by
binary strings denoted M,N, . . .

We describe a string x with an algorithm M and a binary input w
such that

M(w) = x .

The length of the description is the combined length of M and w :

|〈M,w〉|.

Note that from 〈M,w〉 we can algorithmically extract the unique
components M and w , and |〈M,w〉| = 2|M|+ |w |+ 2.
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Minimal length descriptions

Let x be a binary string. The minimal description of x , written

d(x),

is the shortest string 〈M,w〉, where M is an algorithm which on
input w halts and produces x . If several such strings exist, we
select the lexicographically first among them.

The descriptive complexity or Kolmogorov-Chaitin complexity of x ,
written K (x), is

K (x) = |d(x)|.
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A bound on K

Theorem. ∃c ∀x [K (x) ≤ |x |+ c].

Proof. Consider an algorithm that computes the identity function,
M(x) = x .

A description of x is simply 〈M, x〉 which has the length:

|〈M,w〉| = 2|M|+ |x |+ 2 = |x |+ c ,

where c = 2|M|+ 2 is a fixed constant depending only on M (and
not on x).
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K is unbounded

Theorem. The function K is unbounded, that is,

∀M > 0 ∃x [K (x) > M].

Proof. Assume for a contradiction that K is bounded, that is,
there exists M0 > 0 such that for every x we have K (x) ≤ M0. As
the set

{x | K (x) ≤ M0}

is finite (why?), we have obtained a contradiction.
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Incomputability of K

Theorem. The function K is not computable.

Proof. Assume for a contradiction that K is computable. Fix
m ≥ 0 and define

fm = min[x | K (x) > m],

where min is taken according to the lexicographical order. As K is
unbounded, for every M there exists a string x such that

K (x) > M. (1)

Because K is computable, fm is also computable, say, by an
algorithm R. Clearly,

|R| ≤ log2(M) + constant < (M − 2)/2,

for large enough M and 〈R, ε〉 is a description of a string x with
K (x) > M, a contradiction with (1).
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Relative complexity

A general description language is a computable function
p : Σ∗ → Σ∗; the minimal description of x with respect to p,
written dp(x), is the lexicographically shortest string s where
p(s) = x and

Kp(x) = |dp(x)|.

For example, for LISP (encoded into binary) as the description
language, dL1SP(x) is the minimal LISP program that outputs x ,
and KL1SP(x) is the length of the minimal program producing x .
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Optimality of K

Theorem. For any descriptional language p, there exists a
constant c (that depends only on p) such that

∀x [K (x) ≤ Kp(x) + c].

Proof. Let p be a description language and consider the an
algorithm M such that M(w) = p(w), for all w .

Then 〈M, dp(x)〉 is a description of x and

|〈M, dp(x)〉| = 2|M|+ Kp(x) + 2 = Kp(x) + c ,

where c = 2|M|+ 2.
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Calibrating compressibility

A string’s minimal description is never much longer than the string
itself. Of course for some strings, the minimal description may be
much shorter if the information in the string appears sparsely or
redundantly.

But, are strings with no short descriptions?

A string x is c-compressible (1 ≤ c < |x |) if K (x) ≤ |x | − c .
If x is not c-compressible, we say that x is incompressible by c .
If x is incompressible by 1, we say that x is incompressible.

Do incompressible strings exist?
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Incompressible strings exist

Theorem. Incompressible strings of every length exist.

Proof. Each description is a binary string, so the number of
descriptions of length less than n is at most the sum of the number
of strings length 0, 1, . . . up to n − 1:

1 + 2 + 4 + · · ·+ 2n−1 = 2n − 1.

The number of short descriptions is less than the number of strings
of length n—which is 2n, so at least one string of length n is
incompressible.
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Most strings are incompressible

Corollary. At least 2n − 2n−c+1 + 1 strings of length n are
incompressible by c.

Proof. As in the proof above, at most 2n−c+1 − 1 strings of length
n are c-compressible (at most that many descriptions of length at
most n − c exist), hence the remaining

2n − (2n−c+1 − 1)

strings of length n are incompressible by c .

Incompressible strings have many properties of “random strings”,
i.e. in a long enough incompressible string the numbers of 0s and
1s are roughly equal, the length of its longest run of 0s is about
the log of the string’s length and the set of incompressible strings
is not computable.
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Incomputability of incompressible strings

Theorem. For every b > 0, the set Rb = {x | K (x) > |x | − b} is
incomputable.

Proof. Obviously, Rb is infinite (why?). Assume for the sake of a
contradiction that Rb is computable by M.
Construct the function (defined on a non-negative integer
represented in binary):

p(n) = min[x ∈ Rb | n − b < |x |],

where min is taken according to the fixed enumeration given by M.
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Incompressible strings and randomness

Proof continued.

1. For each n, p(n) ∈ Rb and from the definition of p we have:

K (p(n)) > |p(n)| − b > n − b.

2. There exists a constant d such that for every n we have:

Kp(p(n)) ≤ log2(n) + d .

3. In view of the optimality of K , there exists constant c such
that for all n:

n − b < K (p(n)) ≤ Kp(p(n)) + c ≤ log2(n) + c + d ,

a contradiction.
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Russell’s paradox 1

Russell’s paradox, discovered by Bertrand Russell in 1901, showed
that the naive set theory created by Georg Cantor leads to a
contradiction. This generated a crisis in the foundations of
mathematics.

According to naive set theory, any definable collection is a set.

Let R be the set of all sets that are not members of themselves.

If R is a member of itself, it would contradict its own definition as
the set containing all sets that are not members of themselves.

If R is not a member of itself, it would qualify as a member of
itself by the same definition, again a contradiction.
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Russell’s paradox 2

Give examples of:

1. sets which are not members of themselves,

2. sets which are members of themselves.
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Hilbert’s programme 1

The main goal of Hilbert’s program was to provide secure
foundations for all mathematics. This includes:

I A formalisation of mathematics: all mathematical statements
should be written in a precise formal language, and
manipulated according to well defined rules (formal system).

I Completeness: a proof that all true mathematical statements
can be proved in the adopted formal system.

I Consistency: a proof—preferably reasoning about finite
mathematical objects only—that no contradiction can be
obtained in the formal system.
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Hilbert’s programme (cont.)

I Decidability: construction of an algorithm for deciding, in the
formal system, the truth or falsity of any mathematical
statement.

I Conservation: a proof that any result about “real objects”
obtained using “ideal objects” (such as uncountable sets) can
be restated without using ideal objects.
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Hilbert’s “axiom” (1900)

Is the axiom of solvability of every problem a peculiar
characteristic of mathematical thought alone, or is it
possibly a general law inherent in the nature of the mind,
that all questions which it asks must be answerable?
. . . This conviction of the solvability of every
mathematical problem is a powerful incentive to the
worker. We hear within us the perpetual call: There is
the problem. Seek its solution. You can find it by pure
reason, for in mathematics there is no igorabimus.
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Incompleteness: the halting problem revisited

By N(P, v) we mean that the program P will never halt when
begun with input v .

For any particular program P and input v , N(P, v) is a perfectly
definite statement which is either true (in case P will never halt in
the described situation) or false (in case P will eventually halt).
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Incompleteness: a difficulty

When N(P, v) is false, this fact can always be demonstrated by
running P on v .

No amount of computation will suffice to demonstrate the fact
that N(P, v) is true. We may still be able to prove that a
particular N(P, v) is true by a logical analysis of P’s behaviour,
but, as we proved in the undecidability of the halting problem, no
such method works correctly in all cases.
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Incompleteness: a formal approach

What is a proof?

Suppose that certain strings of symbols (possibly paragraphs of a
natural language (English, for example)) have been singled
out—typically with the help of axioms and rules of inference—as
proofs of particular statements of the form N(P, v).

Operationally, we assume that we have an algorithm called
syntactic test that can test an alleged proof Π that N(P, v) is
true and determine whether Π is or is not actually such a proof.
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Incompleteness: rules of proof

There are two basic requirements which it is natural to demand of
our supposed rules of proof:

I Soundness: If there is a proof Π that N(P, v) is true, then P
will in fact never halt when begun with v on its tape.

I Completeness: If P will never halt when begun with v on its
tape, then there is a proof Π that N(P, v) is true.
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Incompleteness

Theorem [Gödel’s incompleteness theorem]

No rules of proof can be both sound and complete.

Obviously, soundness cannot be sacrificed.

If a given set of rules of proof is sound, then, according to Gödel’s
incompleteness theorem, there is some true statement N(P, v)
which has no proof Π according to the given rules of proof.

Such a true unprovable statement is called undecidable since it will
surely not be disprovable.
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Incompleteness: the proof

Suppose we had found rules of proof which were both sound and
complete.

Suppose that the “proofs” according to these rules were particular
strings of symbols on some specific finite alphabet.

Let Π1,Π2,Π3, . . . be the quasi-lexicographic computable
enumeration of all finite strings on this alphabet. This sequence
includes all possible proofs, as well as a lot of other things
(including a high percentage of total nonsense). But, hidden
among the nonsense, are all possible proofs.
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Incompleteness: the proof (cont.)

Now we show how we can use our supposed rules of proof to solve
the halting problem—an impossibility.

So, we are given a program P and an input v and wish to test
whether or not P will eventually halt when begun on v .

We run in parallel two computations:

I the computation of P on v ,

I we generate the sequence Π1,Π2,Π3, . . . of possible proofs
and, as each Πi is generated, we use the syntactic test to
determine whether or not Πi is a proof of N(P, v).
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Incompleteness: the proof (cont.)

If P will eventually halt on v we will find out in finite time.

If P will never halt on v , since our rules of proof are assumed to be
complete, there will be a proof Πi of N(P, v) which we will
discover via the enumeration Π1,Π2,Π3, . . . of possible proofs.

Having obtained this Πi we will be sure (because of soundness)
that P will indeed never halt.

Thus, we have described an algorithm which would solve the
halting problem, a contradiction!
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Incompleteness in context

Gödel’s theorem does not indicate any particular pair P, v for which
we will never be able to convince ourselves that N(P, v) is true!

It says that for any given sound rules of proof, there will be a pair
P, v for which N(P, v) is true, but not provable using the given
rules.

There may well be, and in fact there always are, other sound rules
which decide this “undecidable” statement. But these other rules
will in turn have their own undecidabilities.

Lectures on Philosophy and Computation 42 / 139



Hilbert’s programme after incompleteness

Incompleteness and its consequences showed that most of the
goals of Hilbert’s program are impossible to achieve, at least if
interpreted in the “most obvious way”.

However, much of it can be salvaged by changing its goals slightly,
and with the following modifications some of it was successfully
completed:

I Although it is not possible to formalise all mathematics, it is
possible to formalise essentially all the mathematics that
“anyone uses”. Zermelo-Fraenkel set theory, combined with
first-order logic, gives a satisfactory and generally accepted
formalism for essentially all current mathematics.
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Hilbert’s programme after incompleteness (cont.)

I Although it is not possible to prove completeness for systems
at least as powerful as Peano arithmetic (if they have a
computable set of axioms), it is possible to prove forms of
completeness for many interesting systems.
Gödel proved the completeness theorem for first-order logic
before he proved the incompleteness theorems.
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Hilbert’s programme after incompleteness (cont.)

I The theory of algebraically closed fields of given characteristic
is complete.

I Although there is no algorithm for deciding the truth of
statements in Peano arithmetic, Tarski found an algorithm
that can decide the truth of any statement in analytic
geometry (more precisely, the theory of real closed fields is
decidable). Given the Cantor-Dedekind axiom, this algorithm
can decide the truth of any statement in Euclidean geometry.

Lectures on Philosophy and Computation 45 / 139



Objective vs. subjective mathematics

I Objective mathematics consists of the body of mathematical
propositions, constructive or not, which hold true in an
absolute sense. Peano Arithmetic or Zermelo-Fraenkel set
theory are parts of it.

I Subjective mathematics consists of all mathematical truths
humanly demonstrable (or provable or knowable), in a
constructive manner or not.
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Does objective mathematics coincide with subjective mathematics?

Gödel accepted Hilbert’s rejection of the existence of absolutely
unsolvable problems because otherwise,

it would mean that human reason is utterly irrational by
asking questions it cannot answer, while asserting
emphatically that only reason can answer them

but found Turing’s argument inconclusive:

Turing gives an argument which is supposed to show
that mental procedures cannot go beyond mechanical
procedures. However, this argument is inconclusive.
What Turing disregards completely is the fact that mind,
in its use, is not static, but constantly developing, i.e., we
understand abstract terms more and more precisely as we
go on using them . . . though at each stage the number
and precision of the abstract terms at our disposal may
be finite, both . . . may converge toward infinity . . .
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Does objective mathematics coincide with subjective mathematics?

Gödel’s answer (Gibbs lecture “Some Basic Theorems on the
Foundations of Mathematics and their Implications”, [2]) based on
his incompleteness theorem is a disjunctive conclusion:

Either mathematics is incompletable in this sense, that
its evident axioms can never be comprised in a finite rule,
that is to say, the human mind (even within the realm of
pure mathematics) infinitely surpasses the powers of any
finite machine, or else there exist absolutely unsolvable
diophantine problems of the type specified.
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Does objective mathematics coincide with subjective mathematics?

Martin-Löf’s answer based on a constructive interpretation of the
notions of “true”, “false” and “can be known” [1]:

There are no propositions which can neither be known to
be true nor be known to be false.

For the non-constructive mathematician:

No propositions can be effectively produced (i.e. by an
algorithm) of which it can be shown that they can
neither be proved constructively nor disproved
constructively. There may be absolutely unsolvable
problems, but one cannot effectively produce one for
which one can show that it is unsolvable.
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Objective mathematics vs. subjective mathematics

Guided by Post [2, p. 200],[3]

A fundamental problem is the question of the existence
of absolutely undecidable propositions, that is,
propositions which in some a priori fashion can be said to
have a determined truth-value, and yet cannot be proved
or disproved by any valid logic

we will only require that the objective mathematics contains the
subjective mathematics.

Furthermore, in contrast with Feferman [1], we will include in
subjective mathematics all statements provable by any methods,
axiomatic (dynamic, not only static), constructive, computational
or by methods currently not yet discovered.
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Martin-Löf’s argument

Constructive logical interpretations:

I The proposition A can be known to be true if we have a proof
for A.

I The proposition A ∨ B can be known to be true if we have a
proof for A or we have a proof for B.

I The proposition A ∧ B can be known to be true if we have a
proof for A and we have a proof for B.

I The proposition A→ B can be known to be true if we have an
algorithm which converts any proof for A into a proof for B.

I The proposition ¬A can be known to be true if we have a
proof for A→ (0 = 1).
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Martin-Löf’s argument (cont.)

I The proposition A can be known to be false if we have a proof
for ¬A.

I The proposition A cannot be known to be true if we have an
algorithm which tests and rejects any given ‘proof’ which
purports to demonstrate A.

I If the proposition A can be known to be true, then A is true.

I Martin-Löf’s notions of can be known to be true/false are not
related to any fixed formal system.
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Martin-Löf’s argument (cont.)

Fact 1. [Unknowability of truth entails knowability of falsity] If the
proposition A cannot be known to be true, then A can be known
to be false.

Proof: To prove that A can be known to be false we have to show
that ¬A = A→ (0 = 1) can be known to be true. To this aim we
need an algorithm B to convert any proof of A into a proof of
(0 = 1). The algorithm B returns anything output by the
algorithm A provided by the hypothesis, i.e. noting: vacuously, the
implication holds.

Comment: The proof constructively produces positive information
from negative information.
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Martin-Löf’s argument (cont.)

Fact 2. If A can be known to be true and B can be known to be
true, then A ∧ B can be known to be true.

Fact 3. [Absolute consistency] The proposition (0 = 1) cannot to
be known to be true.

Proof: The proposition ¬(0 = 1) can be known to be true because
(0 = 1)→ (0 = 1) is provable using the identity algorithm, so
(0 = 1) can be known to be false, i.e. it is false. No proof can
demonstrate (0 = 1) because otherwise it would be true: the
algorithm rejects any proof candidate.
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Martin-Löf’s argument (cont.)

Fact 4. [Law of contradiction] One and the same proposition A
cannot both be known to be true and be known to be false.

Proof: By hypothesis we have a proof demonstrating A and a
proof demonstrating ¬A = A→ (0 = 1). Then we can
demonstrate (0 = 1), contradicting Fact 3.

Fact 5. [Law of excluded middle] There is no proposition which
can neither be known to be true nor be known to be false,
i.e. there is no absolutely unprovable proposition.

Proof: If A is a proposition which cannot be known to be true,
then by Fact 1, A can be known to be false, a contradiction.
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Proof revisited

Proof: 1. a fact or thing that shows or helps to show that

something is true or exists; 2. a demonstration of the truth of

something, “in proof of my statement”; 3. the process of

testing whether something is true or good or valid, “put it to

the proof”. To prove: to give or be proof of; to establish the

validity of; to be found to be, “it proved to be a good theory”;

to test or stay out. To argue: 1. to express disagreement, to

exchange angry words; 2. to give reasons for or against

something, to debate; 3. to persuade by talking, “argued him

into going”; 4. to indicate, “their style of living argues that

they are well off”. Argument: 1. a discussion involving

disagreement, a quarrel; 2. a reason put forward; 3. a theme

or chain of reasoning. (Oxford American Dictionary)
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A critique of the definition of proof

In all these statements, nothing is said about the means used “to
show or help to show that something is true or exists”, about the
means used “in the process of testing whether something is true or
good or valid”.

In argumentation theory, various ways to argue are discussed,
deductive reasoning being only one of them. We use suggestions,
impressions, emotions, logic, gestures, mimicry, etc.
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Mathematics: informal proofs

An informal (pen-on-paper) proof is a rigorous argument expressed
in a mixture of natural language and formulae (for some
mathematicians an equal mixture is the best proportion) that is
intended to convince a knowledgeable mathematician of the truth
of a statement, the theorem. Routine logical inferences are
omitted. “Folklore” results are used without proof. Depending on
the area, arguments may rely on intuition. Informal proofs are the
standard of presentation of mathematics in textbooks, journals,
classrooms, and conferences. They are the product of a social
process.
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Mathematics: formal proofs

A formal proof is written in a formal language consisting of certain
strings of symbols from a fixed alphabet. Formal proofs are
precisely specified without any ambiguity because all notions are
explicitly defined, no steps (no matter how small) are omitted, no
appeal to any kind of intuition is made. They satisfy Hilbert’s
criterion of mechanical testing:

The rules should be so clear, that if somebody gives you
what they claim is a proof, there is a mechanical
procedure that will check whether the proof is correct or
not, whether it obeys the rules or not.

By making sure that every step is correct, one can tell once and for
all whether a proof is correct or not, i.e. whether a theorem has
been proved.
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Mathematical reality

Formal proof cannot be found in mathematical articles or books
(except for a few simple examples).

However, most mathematicians believe that almost all “real”
proofs, published in articles and books, can, with tedious work, be
transformed into Hilbertian proofs. Why?

Because “real” proofs look convincing for the mathematical
community. Going further, DeMillo, Lipton and Perlis argued that
“real proofs” should be highly non-monolithic because they aim to
be heard, read, assimilated, discussed, used and generalised by
mathematicians—they are part of a social process.
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Programming 1

Programming is the activity of solving problems with computers. It
includes the following steps:

a) developing the algorithm to solve the problem,

b) writing the algorithm in a specific programming language (that
is, coding the algorithm into a program),

c) assembling or compiling the program to turn it into machine
language,

d) testing and debugging the program,

e) preparing the necessary documentation.
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Programming 2

Ideally, at d) one should have written:

d) proving the correctness of the algorithm, testing and debugging
the program.

We said, ideally, because correctness, although desired, is only
practised in very few instances (for example, the programs involved
in the proof of the Four-Color Theorem were not proved correct!)
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Theorems and programs

It makes sense to prove the correctness of an algorithm, but not,
the correctness of a program. Programs are analogues of
mathematical models, they may be more or less adequate to code
algorithms.

Adequacy is a property which depends on many factors, from pure
formal/coding ones to physical and engineering ones.

One can even argue that a “correctness proof” for a program, if
one could imagine such a thing, adds very little to the confidence
in the program. In Knuth’s words:

Beware of bugs in the above code: I have only proved it
correct, not tried it.
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Mathematics = proof? 1

The role of proof in mathematical modelling is very small:
adequacy is the main issue! Here is an illustration from Jack
Schwartz:

. . . it may come as a shock to the mathematician to learn
that the Schrödinger equation for the hydrogen atom . . .
is not a literally correct description of this atom, but only
an approximation to a somewhat more correct equation
taking account of spin, magnetic dipole, and relativistic
effects; that this corrected equation is itself only an
ill-understood approximation to an infinite set of
quantum field-theoretical equations; and finally that the
quantum filed theory besides diverging, neglects a myriad
of strange-particle interactions whose strength and form
are largely unknown. . . .
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Mathematics = proof? 2

The modelling component of mathematics appears not only in
applications, but also in the way mathematics develops new
concepts.

Many important notions in mathematics reached an accepted
definition only after a long process of modelling, from an intuitive,
pre-mathematical notion to a more precisely defined, formal one.
In the end, the accepted definition is adopted as a “thesis”
claiming its adequacy.

For example, “Weierstrass’ thesis” is the statement that the
intuitive notion of continuity is extensionally equivalent to the
notions yielded by the now standard definitions of continuous
function.
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Mathematics = proof? 3

Other examples include:

I “The function thesis”: identification of a function with a set
of ordered pairs,

I “Tarski’s thesis”: identification of Tarski’s definition of truth
in a formalised language with the intuitive notion of truth,

I “Church-Turing thesis”.

None of these “theses” can be proved, but various analyses can
conclude their degrees of plausibility/adequacy/applicability.
Mathematics in both its practice and development is an
“open-texture” .
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Checking proofs

There are many “new” types of proofs, probabilistic, experimental
or hybrid proofs (computation plus theoretical arguments).

Zeilberger has argued in favour of the transition from rigorous
proofs to an “age of semi-rigorous mathematics, in which identities
(and perhaps other kinds of theorems) will carry price tags”
measured in computer and human resources necessary to prove
them with a certain degree of confidence.

The real work of us mathematicians, from now until,
roughly, fifty years from now, when computers won’t
need us anymore, is to make the transition from
human-centric math to machine-centric math as smooth
and efficient as possible.
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Communication and understanding

No theorem is validated before it is “communicated” to the
mathematical community (orally and, eventually, in writing).
Manin:

Proof is not just an argument convincing an imaginary
opponent. Not at all. Proof is the way we communicate
mathematical truth.

However, as Rota pointed out:

One must guard, however, against confusing the
presentation of mathematics with the content of
mathematics.

Proofs have to be written on paper, which means proofs are
physical. From this perspective, proofs depend upon the physical
universe (Calude and Chaitin).
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Rigour: operational vs. conceptual 1

Standards of rigour have changed throughout the history of
mathematics and not necessarily from less rigour to more rigour.

B. Russell:

I wanted certainty in the kind of way in which people
want religious faith.

J.-P. Serre was quoted saying that mathematics is the only
producer of “totally reliable and verifiable” truths.

D. Knuth:

. . . programming demands a significantly higher standard
of accuracy. Things don’t simply have to make sense to
another human being, they must make sense to a
computer.
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Rigour: operational vs. conceptual 2

W. P. Thurston:

The standard of correctness and completeness necessary
to get a program to work at all is a couple of orders of
magnitude higher than the mathematical community’s
standard of valid proofs.
When one considers how hard it is to write a computer
program even approaching the intellectual scope of a
good mathematical paper, and how much greater time
and effort have to be put into it to make it “almost”
formally correct, it is preposterous to claim that
mathematics as we practice it is anywhere near formally
correct.
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Rigour: operational vs. conceptual 3

A conceptual period reaches its maturity under the form of an
operational one, which, in its turn, is looking for a new level of
conceptual attitude.

The whole treatise of Bourbaki is a conceptual reaction to an
operational approach. Dirichlet’s slogan asking to replace
calculations with ideas should be supplemented with another,
complementary slogan, requiring to detect an algorithmic level of
concepts.

Can we expect a similar alternation of attitudes in respect to
programming? Perhaps it is too early to answer, taking into
account that the whole field is still too young. The question is not
only academical as the project Flyspeck (to produce a formal proof
of the Kepler Conjecture completed in 2014) reminds us.
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Proof-assistants

In theory, each informal proof can be converted into a formal
proof. However, this is rarely, almost never, done in practice.

A proof assistant (interactive theorem prover) is a software tool to
assist with the development of formal proofs by man-machine
collaboration.

Proof-assistants can be used not only to check the validity of a
formalised proof of a known mathematical result, but also to
interactively help to “prove” new theorems.
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Hilbert’s standard of proof is practicable, it’s becoming reality

An impressive record of deep mathematical theorems formally
proved:

I Gödel Incompleteness Theorem (1986),

I the Fundamental Theorem of Calculus (1996),

I the Fundamental Theorem of Algebra (2000),

I the Four Colour Theorem (2004),

I Jordan’s Curve Theorem (2005),

I the Prime Number Theorem (2008).

The December 2008 issue of the Notices of AMS includes four
papers on formal proof.

Lectures on Philosophy and Computation 75 / 139



Coq

Produced by INRIA, free distributed under the GNU Lesser General
Public Licence, http://coq.inria.fr/, Coq is a formal proof
management system providing a formal language to write
mathematical definitions, executable algorithms and theorems
together with an environment for semi-interactive development of
machine-checked proofs.

Typical applications include the formalisation of programming
languages semantics, formalisation of mathematics (e.g. Four
Colour Theorem) and teaching.
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Isabelle

Isabelle is a generic proof assistant, free distributed under the BSD
license, http://www.cl.cam.ac.uk/research/hvg/Isabelle/,
allowing mathematical formulas to be expressed in a formal
language and provides tools for proving those formulas in a logical
calculus.

Isabelle is developed at the University of Cambridge, Technische
Universität München and Université Paris-Sud.

The first formal proofs in algorithmic information theory have been
developed in Isabelle at UoA (C. Calude and N. Hay).
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How many naturals are even?

As you have learnt, the set of set of naturals has the same
“number of elements” as the set of all even naturals.

However, we all “know” that, about half of naturals are even.

Can this statement be rigorously proved?
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Numbers and numerals

A numeral is a symbol or group of symbols that represents a
number.

A number is a concept that a numeral expresses.

A numeral can be written down, erased, copied. A number can be
expressed by different numerals. For example, the numerals

‘10’, ‘ten’, ‘1010’, ‘X’

represent the same number.

There exist various numeral systems, Babylonian, Roman, Arabic,
Chinese, etc. We now use a positional numeral system using the
base or radius 10, or 2, or 3, etc. Set theory deals with cardinal
numbers, which can be finite or infinite.
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Pirahã numeral system

A primitive tribe living in Amazon use a numeral system consisting
of three numerals:

one, two, many.

In this system we cannot talk about 3,7 or 9.The only rules are:

many + one = many,many + two = many. (2)
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Operating with large numbers

Imagine we are in a granary and we are asked to count how much
grains is inside. We can

1. count the grain seed by seed, or

2. use sacks, fill them with seeds, and count the number of sacks.

The first method is clearly impractical. The second one, which
consists in counting the number of number of sacks and the
remaining seeds (not enough to complete a sack) is approximate,
but gives a good estimation.

3. If the granary is very large, wagons could be used first, then
sacks and seeds.
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Grossone

A new infinite unit of measure expressed by the numeral

¬

called grossone is introduced as the number of elements of the set
of positive integers:

N = {1, 2, 3, . . . }. (3)
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Grossone axioms

1. Infinity: For every n ∈ N, n <¬.

2. Identity:

0 ·¬ = ¬ · 0 = 0,¬−¬ = 0, ¬
¬

= 1, 1¬ = 1, 0¬ = 0.

3. Divisibility: For every n ∈ N, 1 ≤ i ≤ n, the nth parts of ¬ are

¬

n
: {i , n + i , 2n + i , . . . }.
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Sets expressed with grossone

¬ : {1, 2, 3, . . . }
¬

2
: {1, 3, 5, . . . },

¬

2
: {2, 4, 6, . . . },

¬

3
: {1, 4, 7, . . . },

¬

3
: {2, 5, 8, . . . }

¬

n
: {1, n + 1, 2n + 1, . . . }.
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Sets expressed with grossone

¬ + 1,

¬− 2,

3¬ + 45,

6¬2 − 3¬ + 14.
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The set of positive integers with grossone

Recall that for every positive k , the set {1, 2, . . . , k} has exactly k
elements and k is the largest element. This happens for N as well:

N = {1, 2, 3, . . . ,¬− 2,¬− 1,¬}.

Infinite natural numbers that are “invisible” for the traditional
numeral system can now be “seen” with ¬:

· · · ,¬
2
− 2,

¬

2
− 1,

¬

2
,¬

2
+ 1,

¬

2
+ 2, · · · ,¬− 2,¬− 1,¬.
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The set of positive integers with grossone

We have:

N = {1, 2, · · · ,¬
2
−2,

¬

2
−1,

¬

2
,¬

2
+1,

¬

2
+2, · · · ,¬−2,¬−1,¬}.

(4)

The traditional representation N = {1, 2, · · · } and (4) refer to the
same set—the set of positive integers—they are both correct and
do not contradict each other. We have the same object—the set
N—that can be “observed” with different instruments (numeral
systems) with different accuracies.

Similarly, Pirahã are not able to see the finite natural numbers 3,
4, and 5; they reveal to a more powerful numeral system.
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Extending N with grossone

Ñ = {1, 2, 3, . . . ,¬− 1,¬,¬ + 1, . . . ,¬2 − 1,¬2,¬2 + 1, . . . }.
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Measuring infinite sets

Description of sets Cardinality
Number

of elements

N countable, ℵ0 ¬

N ∪ {0} countable, ℵ0 ¬+1

N \ {3, 5, 10, 23, 114} countable, ℵ0 ¬-5

the set of even numbers E countable, ℵ0 ¬
2

the set of odd numbers O countable, ℵ0 ¬
2

the set of integers Z countable, ℵ0 2¬+1

Z \ {0} countable, ℵ0 2¬

G = {x | x = n2, x ∈ N, n ∈ N} countable, ℵ0 b
√

¬c

P = {(p, q) | p ∈ N, q ∈ N} countable, ℵ0 ¬2

Q′ = {− p
q
, p

q
| p ∈ N, q ∈ N} countable, ℵ0 2¬2

Q = {0,− p
q
, p

q
| p ∈ N, q ∈ N} countable, ℵ0 2¬2 + 1

the set of numbers x ∈ [0, 1) expressed in the binary continuum, C 2¬
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Hilbert’s Grand Hotel paradox

A full hotel has no room left. However, a full infinite hotel has
vacancies.

Indeed, we first note that the infinite hotel has a countable set of
rooms, as each room has a number (positive integer).

Suppose that the infinite hotel is full and a new gust arrives. To
free a room for the guest we need to move the occupant of room 1
to room 2, then move the guest in room 2 to room 3, . . . In this
way the room 1 is free for the new guest.

Is this solution logically correct?
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Grossone solution to Hilbert’s Grand Hotel paradox

Recall that N = {1, 2, 3, . . . ,¬}.

In the grossone terminology, the hotel has ¬ rooms.

When the new guest arrives, we move the occupant of room 1 to
room 2, move the guest in room 2 to room 3, aso. In particular,
the guest in room ¬ has to move in room ¬ + 1 6= ¬, a
contradiction. As in the case of a finite hotel, a full hotel has no
vacancy!
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Data science

George Box: All models are wrong, but some are useful.

Models have been able to consistently, if imperfectly, explain the
world around us.

Is there any choice?
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Data science

Sixty years ago, digital computers made information readable.

Twenty years ago, the Internet made it reachable.

Ten years ago, the first search engine crawlers made it a single
database.

Kilobytes are stored on floppy disks, megabytes are stored on hard
disks, terabytes are stored in disk arrays, and petabytes are stored
in the cloud. We leave in the Petabyte Age.
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Data science

Every day, we create 2.5 quintillion bytes of data – so
much that 90% of the data in the world today has been
created in the last two years alone. This data comes from
everywhere: sensors used to gather climate information,
posts to social media sites, digital pictures and videos,
purchase transaction records, and cell phone GPS signals
to name a few. This data is big data. IBM: What is big
data?
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Data science: Google philosophy

We don’t know why this page is better than that one. If the
statistics of incoming links say it is, that’s good enough. No
semantic or causal analysis is required.

Operationalising this philosophy, Google

I can match ads to content without any knowledge or
assumptions about the ads or the content;

I can translate languages without actually “knowing” them; it
can translate Maori into Farsi as easily as it can translate
French into English provided it has equal corpus data (see
WIKI-LINKS).
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Data science: Data deluge

According to C. ANDERSON, Wired Magazine, Google’s research
director Peter Norvig offered an update to George Box’s dictum:

All models are wrong, and increasingly you can succeed
without them.

Unfortunately, Norvig denies:

That’s a silly statement, I didn’t say it, and I
disagree with it.
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Data science: Data deluge

The big target here is science. The scientific method is built
around testable hypotheses. The models are then tested, and
experiments confirm or falsify theoretical models of how the world
works. This is the way science has worked for hundreds of years.

THE END OF THEORY: THE DATA DELUGE MAKES THE
SCIENTIFIC METHOD OBSOLETE.

Welcome to data science! Long live the dead science!
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Data science: Data deluge

Operationalising the idea

THE END OF THEORY: THE DATA DELUGE MAKES THE
SCIENTIFIC METHOD OBSOLETE.

In short, the more we learn about [[biology]], the further
we find ourselves from a model that can explain it.

There is now a better way. Petabytes allow us to say:
“Correlation is enough.” We can stop looking for models.
We can analyze the data without hypotheses about what
it might show. We can throw the numbers into the
biggest computing clusters the world has ever seen and let
statistical algorithms find patterns where science cannot.

Lectures on Philosophy and Computation 99 / 139

http://www.wired.com/science/discoveries/magazine/16-07/pb_theory
http://www.wired.com/science/discoveries/magazine/16-07/pb_theory


Data science: Data deluge

NSF : Computational and Data-Enabled Science and Engineering
(CDS & E) is a new program. CDS & E is now clearly recognizable
as a distinct intellectual and technological discipline lying at the
intersection of applied mathematics, statistics, computer science,
core science and engineering disciplines.. . . We regard CDS & E as
explicitly recognizing the importance of data-enabled,
data-intensive, and data centric science. CDS & E broadly
interpreted now affects virtually every area of science and
technology, revolutionizing the way science and engineering are
done. Theory and experimentation have for centuries been
regarded as two fundamental pillars of science. It is now widely
recognized that computational and data-enabled science forms a
critical third pillar.
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Data science: Data deluge

The “wave of the future”—as it was called—disposes of
experiment and theory in science. It affects everything from
astronomy to zoology, from medical sciences to social sciences.

History reminds us of similar exaggerations (recall chaos theory or
catastrophe theory in mathematics): the “wave of the future”
often washes away a number of worthy things and leaves a number
of questionable items littering the shore.
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Data science: Google cats

In June 2012, Google demonstrated the power of “data-oriented
deep learning” with one of the largest neural networks containing
more than a billion connections.

A Stanford University–Google team (lead by Andrew Ng and Jeff
Dean) showed the system images from 10 million randomly
selected YouTube videos. One simulated neuron in the model
fixated on images of cats. Others focused on human faces, yellow
flowers, and other discrete objects.

The model identified reasonable well these discrete objects even
though no humans had ever defined or labeled them.
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Data science: translating is’t easy...

How computers translate human language

Does grammar matter?
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Data science: Deep learning...

in April 2013 Jeff Dean presentation

in April 2016 Google DeepMind’s artificial intelligence program
AlphaGo seals 4-1 victory over Go grandmaster Lee Sedol
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Data science: The good

Imagine there are two papers somewhere in the literature, one of
which says that A implies B, and another that says B implies C.
With the incredible growth of the scientific literature, it is likely
that these two papers remain unrelated.

A program can find a way to stitch these two papers together,
showing that A implies C, potentially an important discovery.
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Data science: The price for the good

Is there a price in this finding? Cornell University program
EUREQA is a free tool for detecting equations and hidden
mathematical relationships in data with the goal “to identify the
simplest mathematical formulas which could describe the
underlying mechanisms that produced the data”.

A theorem may be proven in this way, but no one person actually
may understand the proof, though there may be reasons to believe
it is correct.
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Data science: The price for the good

So what does this all mean for the future of truth?

Is it possible for something to be true but not understandable? Is
this bad?

Believing without finding reasons is controversial. However, if
these findings motivate the search for more elegantly constructed,
human-understandable, versions of these proofs, then they are
good.
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Data science: The signal problem

Data are assumed to accurately reflect the “real world”; however,
significant gaps, with little or no signal coming from particular
parts may exist.

Boston has a problem with potholes, patching approximately
20,000 every year. STREETBUMP smartphone app passively
detects and instantly reports potholes to the City. A clever
approach which has a signal problem. People in lower income
groups are less likely to have smartphones, or to use StreetBump
and this is particularly true of older residents, where smartphone
penetration is as low as 16%.

Smartphone data sets miss inputs from significant parts of the
population.
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Data science: Ramsey theory or size vs content correlations

Ramsey theory, named after the British mathematician, logician
and philosopher Frank P. Ramsey, is a branch of mathematics that
studies the conditions under which order must appear.

Problems in Ramsey theory typically ask questions of the form:

How many elements of some structure must there be to
guarantee that a particular property will hold?
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Data science: Party theorem

Suppose a party has six people. Consider any two of them.

They might be meeting for the first time—in which case we will
call them mutual strangers; or they might have met before—in
which case we will call them mutual acquaintances.

Theorem (Paul Erdös, Alfréd Rényi, Vera T. Sós): In any party of
six people either

I at least three of them are (pairwise) mutual strangers or

I at least three of them are (pairwise) mutual acquaintances.
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Data science: Party theorem

Party graph

This is the complete graph with six vertices in which every pair of
vertices is joined by an edge. Every colouring of edges with red and
blue, cannot avoid having either a red triangle or a blue triangle.
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Data science: Party theorem

Proof. Choose any one vertex; call it P. There are five edges
leaving P. They are each coloured red or blue. The pigeonhole
principle says that at least three of them must be of the same
colour.

Let A,B,C be the other ends of these three edges, all of the same
colour, say blue. If any one of AB,BC ,CA is blue, then that edge
together with the two edges from P to the edge’s endpoints forms
a blue triangle. If none of AB,BC ,CA is blue, then all three edges
are red and we have a red triangle, namely, ABC .
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Data science: Partition regularity

When a set system is “quite big”?

Given a set X , a collection of subsets S ⊂ 2X is called partition
regular if every set A ∈ S has the property that, no matter how A
is partitioned into finitely many subsets A = C1 ∪ C2 ∪ · · · ∪ Cn, at
least one of the subsets Ci must belong to the collection S .

The infinite pigeonhole principle. Partition regularity asserts that
every finite partition of an infinite set contains an infinite set.
Proof: take S the collection of all infinite subsets of the infinite set.
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Data science: Ramsey theory

Ramsey theory proves that

Complete disorder is an impossibility. Every large set of
numbers, points or objects necessarily contains a highly
regular pattern.

R. Graham, J. H. Spencer. Ramsey Theory, Scientific American
262 no. 7 (1990), 112–117.
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Data science: Ramsey theory

I How to distinguish correlation from causation?

I How to distinguish content-correlations from Ramsey-type
correlations?
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Data science: Spurious Correlations

A growing list of over 24,000 spurious correlations in real
databases:

I Total revenue generated by arcades (US) correlates with
Computer science doctorates awarded (US). Correlation:
0.985065

I Per capita consumption of mozzarella cheese (US) correlates
with Civil engineering doctorates awarded (US). Correlation:
0.958648

I Precipitation in Yakima County, WA correlates with Apple
iPhone sales. Correlation: 0.993657

I Divorce rate in Maine correlates with Per capita consumption
of margarine (US). Correlation: 0.992558

I People who drowned after falling out of a fishing boat
correlates with Marriage rate in Kentucky. Correlation:
0.952407
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Spurious Correlations

Using classical results from ergodic theory, Ramsey theory and
algorithmic information theory, the paper

C. S. Calude, G. Longo. The deluge of spurious correlations in
big data, Foundations of Science, 2016, DOI
10.1007/s10699-016-9489-4; also at http://goo.gl/MHdRMJ

proves that very large databases contain arbitrary correlations due
to the size, not the nature, of data. They can be found in
“randomly” generated, large enough databases, which implies that
a) they are spurious, and b) most correlations are spurious.

Too much information tends to behave like very little information.
The scientific method can be enriched by computer mining in
immense databases, but not replaced by it.
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Data science books

Jeffrey M. Stanton. Introduction to Data Science, 2012.

Data Science: An Introduction, wikibook.

The Data Science Handbook, 2015.
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Randomness and free will

It is frequently claimed that randomness conflicts with free will
because

[i]f our actions are caused by chance we lack control

and

[r]andomness, the operation of mere chance, clearly
excludes control.

How “powerful” is this type of argument?
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Agents, objects, contexts and choices

An agent is an entity that can make a choice (decision) in some
context.

By choice we mean that the agent is able to pick an element from
an abstract set of objects.

The context C gives the environment and the relevant constraints
for the choice to be made. A context may include the position in
space and time where an agent must make a choice, as well as
various constraints the objects should satisfy. The object that the
agent picks is called the chosen object in the context C.
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Agents, objects, contexts and choices: examples

Consider first a girl at a pet store looking to buy a pet. Here the
agent can be taken to be the girl, the objects are the pets available
for purchase in the shop, and the context is the shop at some time;
the girl can choose any pet.

On the other hand, an individual animal in the shop can be an
agent in the same context: the objects are the foods the animal
can eat and a choice consists in selecting one of the available
foods.

In the same context, the same animal can be an agent for the set
of actions {eat, not eat}, where the choice consists in deciding on
an action in that set.
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Context and possibility

The idea of context is crucially related to the idea of possibility.
The choices the agent can make are assumed to be contextually
possible, i.e. possible in the given context.

They may or may not be considered rational, morally justified or
politically acceptable.

Contextual possibility should also be distinguished from other
notions of possibility; for instance, an agent may have the ability to
scuba dive, so that it is possible for the agent, given her abilities,
to scuba dive, even though it is not possible in a given context
because the agent is not close to water.
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Context and possibility

Contextual possibility is also different from a kind of intentional
contextual possibility in which the agent has sufficient control over
her ability to deliberately select certain outcomes (an ability Alfred
Mele calls intentional).

Intentional contextual possibility implies contextual possibility, but
the converse does not hold. For example, an agent can
intentionally flip a coin, but while it is possible in the context for
her to get heads she cannot intentionally get heads. It then also
follows that she cannot freely choose to get heads. To understand
why, we need to address the constraints needed in an account of
free choice.
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A definition of free will: scope

In the vast literature on free will a lot of misunderstanding comes
from the fact that free will has been understood in numerous
different ways.

In what follows we try to avoid confusion by working with a simple,
two-stage, contextual (not absolute) definition of free will.

This is not the uniquely right definition: its goal is mainly to
propose a more precise and detailed framework for studying the
relation between free will, determinism, and randomness.
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A definition of free will: intuition

The definition of free will models the idea that an agent has free
will in some context if it has the ability to make a decision that is
not completely determined by or the result of prior events.
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A definition of free will

An agent A acted freely in the context C with respect to the set of
objects OC(A) if A could have acted differently to the way it did
and A had full control over the outcome of the choice. This means
that in the context C:

I Possibility Assumption (P) The set of objects OC(A)
available to A contains at least two elements and every choice
for A is possible in the given context.

I Choice Assumption (C) The agent A has full control over
which of the objects in OC(A) to choose.
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A definition of free will: comments

The main point of (P) is that in context C there are at least two
objects in OC(A) available to A to choose from. (P) thereby
guarantees that the act of choice is meaningful and can lead to
different outcomes, something that is impossible if OC(A) has
fewer than two elements.

I OC(A) depends on the context C and can vary with C – by
changing the context C some elements may disappear and
new elements can be added to OC(A).

I The identity of OC(A) may not be completely known by A:
that is, A may not exhaustively know what, in the context, is
possible for her.

The assumption (C) supplements (P) by claiming that the agent
has full control over which option to choose.
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A bit of philosophy of randomness

I True randomness does not to exist mathematically.

I There are no random events in nature. Randomness is only a
theoretical concept which is defined and produced in
deterministic ways: it is not a direct cause of actions.

I There is a process conception of randomness based on which
random actions are chancy actions.

I There is a product conception of randomness based on which
random happenings are haphazard, lacking any discernible or
explicable pattern.

I As the idea of a random event as the outcome of a chancy
process faces a number of problems (which?), the focus
should be on the latter.

Lectures on Philosophy and Computation 128 / 139



How some philosophers see chance and randomness

The 5th BCE philosopher Leucippus wrote that

“Nothing occurs by chance, but there is a reason and
necessity in everything.”

Similarly, under the influence of mathematician A. de Moivre,
Hume called chance a mere word:

“ . . . there be no such thing as Chance in the world.”
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Randomness is incompatible with freedom: pure randomness argument

Arguments against the compatibility between free will and
randomness based on “pure/true randomness” are unsound as they
rest on vacuous concepts. An example is Hume’s and Schlick’s
ontological thesis according to which there is nothing intermediate
between chance and determinism.

In Eddington’s words: There is no half-way house
between random and correlated behavior. Either the
behavior is wholly a matter of chance, in which case the
precise behavior within the Heisenberg limits of
uncertainty depends on chance and not volition. Or it is
not wholly a matter of chance, in which case the
Heisenberg limits . . . are irrelevant.

Popper disagreed: Hume’s and Schlick’s ontological
thesis . . . seems to me not only highly dogmatic (not to
say doctrinaire) but clearly absurd.
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Randomness is incompatible with freedom: using randomness violates (C)

A more interesting, but still unsound, argument is the following:
randomness exists (in various degrees), so if an agent’s actions are
caused by randomness, the agent lacks control, so the assumption
(C) is violated.

1. Assume (P).

2. An agent A has free will with respect to O(A) in the context
C if the assumption (C) is satisfied.

3. So A has ultimate control of which object in O(A) to choose.

4. If the object was chosen randomly (to some degree), then no
one had full control of which object in O(A) was chosen.

5. Hence, A cannot not have full control on which object in
O(A) to choose.

6. Therefore, A has no free will with respect to O(A) in the
context C.
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Randomness is incompatible with freedom: using randomness violates (C)

Unfortunately, this argument does not offer a clear explanation of
how the object selected was chosen sufficiently randomly to
prevent A having control over its decision.

Rather, it is often claimed that (P) is inherently able to provide
this. However, randomness does not “float around”, and is not
something that is somehow “imposed on the agent”. Randomness
is just produced, and then used by the agent in coming to a
decision. To make random decisions the agent needs to use a
random generator, which is a device producing random bits of a
certain quality (but never “truly random bits”); there is no
alternative.
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Randomness is incompatible with freedom: using randomness violates (C)

According to our definition of free will, the detailed process used
by the agent A to choose an object in some context C where more
than one object is available for selection is irrelevant: with (P) in
place, all that is needed for her to choose freely is satisfaction of
condition (C). For the purposes of making a decision, using a
random generator is no different than using the advice of a friend
or getting more information from Wikipedia!

For clarification we look at the process of choosing at random. We
henceforth assume that (P) is satisfied and consider first how a
random generator may interact with an agent’s decision making
process, and second how the quality of the randomness generated
may affect the agent’s freedom. With the former in mind, we
discuss four possible cases of interactions between the agent and
the random generator.
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Four ways to use randomness

1. (0) A uses G which outputs x , but ignores the output and
picks an element of O(A).

2. (1) A uses G which outputs x , and, after first deciding
whether to use x to pick an element of O(A), A then picks an
element of O(A).

3. (2) A uses G which outputs x and continues as follows:
I A uses x to determine whether to use G or not,
I depending on x , A makes no use of G or uses G to produce

another (independent) output y which becomes its decision (in
the last case G actually takes the decision on A’s behalf).

4. (3) A uses G which outputs x and its decision is x (G is used
to take the decision on A’s behalf).
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Four ways to use randomness

In case (0) it is clear that A’s freedom is not hindered by
randomness. Still it is worth pointing out that there was a random
element in her decision process (though it did not impact A’s
decision).

To show that case (1) does not undermine A’s freedom, we restate
that the information which A uses to make a decision is irrelevant
to A’s decision being free. A merely asks G for advice. In fact
cases (0) and (1) are identical if A picks something other than G ’s
output. In either of these cases however, A can consistently choose
any element in O(A) and, regardless of what G outputs, A has the
final say on the decision. Hence, neither of these cases will disturb
A’s freedom.
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Four ways to use randomness

Case (2) is a hybrid between the earlier cases and the substantially
more severe case (3). In (2) A operates G to generate a random
bit. Depending on what this generated bit was, G either stops
(leaving A to make the decision) or uses G to generate another
random element of O(A) and chooses this element on A’s behalf.
Thus (2) will either reduce to (0) or (3) depending on the result of
the first computation.

The point is that in cases (2) and (3), once A starts G , which
object is chosen may potentially be decided by G rather than A. Is
(C) fulfilled in these cases? Does the quality of random bits
matter (e.g. if they form an incomputable sequence)?
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Four ways to use randomness

The reason these cases seem to violate assumption (C) is because
the agent gives up its final decision, not because the agent gives
up its final decision to a random process. Asking another agent to
make a decision on its behalf is no different than asking a random
generator. Notice that whether A retains its freedom in asking
another agent B to make its decision, is a delicate issue, one which
is, in practice, judged on a case by case basis. This shows that
from the point of view of free choice, the role of B is as
detrimental to A’s freedom as the role of G .

Giving up freedom to randomness is as harmful as giving up
freedom to any other agent: A retains its freedom when it gives up
its decision to B if and only if A retains its freedom when it gives
up its decision to G .
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Four ways to use randomness

Similarly, even if A does not voluntarily give up its decision,
another agent B choosing an element of O(A) is no different than
some random generator G doing the same. Thus, the fact that
indeterminism allows for randomness should not lead us to
conclude that free will is impossible any more than the fact that
there are other free agents which are capable of choosing on behalf
of others.
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Randomness is compatible with free will

We showed that randomness is compatible with free will so long as
free will is itself metaphysically possible.

Our arguments are relative and do not answer the main
philosophical question about free will, namely does free will exist
and, indeed, can it exist?

For more details see: C.S. Calude, F. Kroon, N. Poznanović. Free
Will Is Compatible With Randomness, CDMTCS Research Report
461, 2015.
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