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Abstract: The stochastic complexity (SC) selects from a given family of parametric 
models the one that yields the shortest code length for the available measurements. 
Theoretical developments have made possible the evolution of the SC from the “two-part 
code” formula to the most recent expression based on the so-called Normalized 
Maximum Likelihood (NML) distribution. The application of the NML criterion is 
recommended especially in the case of small sample size, but high computational burdens 
prevent its general use. During recent years increasing interest has been growing in 
obtaining an approximation of the NML-based SC by use of the Fisher information 
matrix. We show in this note that the most important step in working out such an 
approximate expression for order-1 Markov chains is the calculation of an integral that 
leads to the Catalan constant. We evaluate the accuracy of the approximation for small, 
moderate, and large samples, and we illustrate the use of the formula in model selection.  
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1. INTRODUCTION 
 

Model selection is an important paradigm that has 
received a considerable attention in the statistics 
community over the years. A principled method to 
select a particular model from a class M  of models 
is based on the evaluation of the stochastic 
complexity (SC). The very first formula for SC was 
introduced in (Rissanen, 1978) as the celebrated 
“two-part code”, and it was further refined in (Barron 
et al., 1998; Rissanen, 1978, 1996, 2000). The 
method is rooted in information theory (Cover and 
Thomas, 1991), and it relies on a coding scenario for 
transmitting the measurements 1

n
nx x …x=  from a 

hypothesized encoder to a decoder. We 
conventionally employ the notation 1

n
nX X …X=  

for the corresponding stochastic process, and 

1
n

nx x …x=  for a specific realization. The selection 

procedure chooses that model from M  family that 
allows the data to be encoded with the shortest code 
length, or equivalently to minimize SC.  
 
We focus on the model selection for strings with 
entries from the alphabet . Our choice is 
motivated by the fundamental role of the binary 
alphabet in information theoretic criteria.  

{0 1}A = ,

 
The calculation of SC relies on the Normalized 
Maximum Likelihood (NML) distribution (Barron et 
al., 1998), which for a model  with parameters Ξ θ  
is given by  

 

     

mailto:ciprian.giurcaneanu@tut.fi


ˆ( ( ))ˆ ( )
ˆ( (n n

n n
n ML

n n
MLy A

f x x
f x

f y y
θ

θ
Ξ

Ξ∈

;
;Ξ = ,

;∑ ))

)

            (1) 

 
where  denotes the maximum likelihood 

estimate and 

ˆ ( )MLθ ⋅

( nf y θΞ ;  the likelihood function for 

an arbitrary binary string  assumed to have been 
generated according to model . The stochastic 
complexity is defined as , 
where  is the natural logarithm. The SC is then 
expressed in nats. The binary logarithm can be used 
equally well, and then SC will be expressed in bits.  

ny
Ξ

ˆ( ) ln ( )n nL x f x;Ξ = − ;Ξ
ln( )⋅

 
If the maximum likelihood estimates satisfy the 
Central Limit Theorem and some weak smoothness 
conditions are verified, then SC can be approximated 
with the formula (Rissanen, 1996):  
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where  is the number of parameters in the model 

,  denotes the entire parameter space, and 
k

Ξ Θ
( )θJ  is the Fisher information matrix with entries 

21 ln (( ) lim
n

ij n
i j

f xJ E
n

)θθ
θ θ→∞

⎡ ⎤∂ ;
= − ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
1 i j k≤ , ≤ . Both practical and theoretical 
considerations explain the recent interest in the 
expression of SC given by (2), but it was already 
noticed that deriving closed-form formulae from (2) 
is not an easy task (Hanson and Fu, 2005).  
 
The aim of this note is to elaborate on formula (2) for 
order-1 Markov processes and to investigate its 
connections with the Catalan constant . The 
definition of the constant is given by 

G
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and it is approximated as 

. We mention that in 
various studies the Catalan constant is denoted by C  
or 

0 915965594177G ≈ . …

K .  
 
The crucial step in working out the expression of SC 
for order-1 Markov chains is the evaluation of the 
integral  
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0 0
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( ) 1 1

I α β
α β α β

= ,
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which has the value 4I G= . Investigating integrals 
and series associated with G  is a time honoured 
research topic (Adamchik, 2002; Bradley, 2001). The 
interested reader can find at 
http://www.cs.cmu.edu/˜adamchik/articles/catalan/ca
talan.htm an impressive list of such results that have 
been verified by using Mathematica . A proof for 
the identity 

©

4I G=  can be found in (Bradley, 
2001). 
 
The rest of the paper is organized as follows. In the 
next Section we briefly revisit the stochastic 
complexity for Bernoulli and Markov models. Note 
that the main results are given for the Markov 
models, and the results on Bernoulli models are 
included only for pedagogical reasons. For 
completeness, we give in Section 3 three proofs for 
the identity 4I G= . In the last Section we compare 
the asymptotic approximation (2) with another SC 
approximation that is grounded in analysis of 
algorithms (Jacquet and Szpankowski, 2004). Section 
4 also contains a short discussion on SC for large 
order Markov models.  

 
 

2. A CASE STUDY ON MODEL SELECTION 
 

For concreteness we assume that the model selection 
problem reduces to the decision whether the samples 

1 nx … x, ,  are outcomes from a Bernoulli distribution 
or from an order-1 Markov process. We use the 
notation ( )Be δ  for the Bernoulli distribution whose 

parameter is ( tP X 1)δ = = , where t  is an 
arbitrary time moment between 1 and . For 
circumventing some computational difficulties, we 
accept as the working hypothesis that 

n

(0 1)δ ∈ , , so 
that the Bernoulli parameter cannot be neither zero 
nor one. A more detailed discussion on this 
hypothesis can be found in (Rissanen, 1996).  
 
We assume that the order-1 Markov chain is time 
invariant:

1 2( ) (t tP X j X i P X j X i+ 1 )= | = = = | =  for 

all i j A, ∈  and 1 t n< < . With the convention that 
both the rows and the columns of the probability 
transition matrix Q  are indexed from zero, the 
entries of Q  are given by 

1( )ij t tQ P X X i+ j= = | = , where . 
Without loss of generality we further write 

i j A, ∈

1
1

α α
β β
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
Q , where (0 1)α β, ∈ ,  and 

     



α β≠ . We assume that 1α β+ ≠ , because 
otherwise the model reduces to a memoryless source. 
For sake of simplicity we use the notation 

1(Ma )α β,  for the Markov chain introduced above. 

Note that 1(Ma )α β,  is ergodic since the transition 
probabilities are chosen to be strictly positive (Cover 
and Thomas, 1991). Therefore, in our case study, the 
considered model class is 

1{ ( ) ( )}M Be Maδ α β= , , . It is straightforward to 

apply the SC formula (2) for ( )Be δ . With the 

notations  and 1
1

n

i
i

n
=

= ∑ x 10n n n= − , 

0 1( ) (1 )n nn
Bef x δ δ δ; = − , and the Fisher 

information matrix reduces to the scalar 1
(1 )δ δ−  

(Rissanen, 1996). Using the well-known expression 
of the ML estimate for the Bernoulli model and 
performing elementary calculations, it is easy to 
show that  
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The Markov models satisfy all conditions (Rissanen, 
1996) required for the approximate formula (2), and 
we derive next the SC expression for 1( )Ma α β, . 
The likelihood function is given by 

1

1 1

1 1
0 0

( ) ( ) ijnn
Ma ij

i j

f x P X x Qα β
= =

; , = = ∏∏ , where 

 denotes the number of times the symbol  

occurs immediately after symbol i  in the string 

ijn j
nx . 

Since no straightforward relationship exists between 
the stationary probability  and the 

parameters 
1 1( )x=P X

α  and β , we consider the probability 

of the string nx , conditioned on the very first 

symbol, namely 
1

1 1

1
0 0

( ) ijnn
Ma ij

i j

f x x Qα β
= =

; , , = ∏∏

)

 

(Atteson, 1999).  
 
Let (θ α β= , . With slight abuse of notation we 

define  and . Notice 

that the identity  is verified for the 

Bernoulli model, whereas  for the 
order-1 Markov model. We calculate the entries of 
the Fisher information matrix 

0 00 0n n n= + 1 11 10 1n n n= +

0 1n n n+ =

0 1 1n n n+ = −

( )θJ : 

. It is 

elementary to prove the 
identities

11 00 012 2

1 1 1( ) lim
(1 )n

J E n n
n

α β
α α→∞
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0
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12 21( ) ( )J Jα β α β, = , = , and 

22 10 112 2
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J E n n
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PnE

n
β−=

∞→
, where 

 is the stationary probability for state 1 
(Atteson, 1999). The two states converge to their 

stationary distribution , and 

the column vector  verifies . Since 

the entries of  are constrained to sum to one we 

obtain 

(1)sP

[ ]T)1()0( ss PP=sP

sP TT
ss PQP =

sP

(0)sP β
α β

=
+

 and (1)sP α
α β

=
+

(Cover 

and Thomas, 1991). Consequently, 
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1 (1lim E[ ]
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n
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−
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+
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It is easy to check that 

(1 )1

(1 )

0
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β
α α

α β α
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α β −
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J  Therefore the 

calculation of the integral term in (2) reduces to the 
evaluation of (3). The identity  leads to  4I G=
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where we have used the well-known result 
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⎝ ⎠
∏∏ (Finesso 

et al., 1996). Since the cost of transmitting the 
symbol 1x  from the encoder to the decoder is one 

bit, or equivalently  nats, we obtain the 
following expression for the SC of order-1 Markov 
chains:  
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Fig. I. The percentage error ε  versus the sample size 
n. 

 
Table 1 After observing nx , we compute the SC 
with formulae (4) and (5), and choose the model 
associated with the minimum SC. The empirical 

probability of selecting the correct model, cP~ , is 

evaluated in two different experiments for various 

values of the sample size n. Each reported cP~  is 

calculated based on 106 trials.  
 

Experiment 1: the entries of nx   
are outcomes from  (0 8)Be .

n  50 100 200 400 

cP%  0.821 0.897 0.940 0.962 

Experiment 2: the entries of nx   
are outcomes from  1(0 1 0 2)Ma . , .

n  50 100 200 400 

cP%  0.973 0.999 1.000 1.000 

 
Notice that the formula (5) is obtained for 
asymmetric Markov models. The Markov model is 
symmetric if the two conditions hold simultaneously: 
α β=  and 1 2α ≠ / . In this case, the Fisher 

information matrix reduces to the scalar 1
(1 )α α− , and 

the term 2 2lnk n
π  in (2) becomes 1

2 2ln n
π . If we 

ignore the cost for transmitting the symbol 1x , the 
SC criterion for deciding between symmetric Markov 
and Bernoulli models is equivalent with the ML 
criterion.  
 
Equation (5) is an asymptotic approximation for the 
exact NML distribution given by (1). More precisely, 
the logarithm of the normalization factor from (1), 

, is 

approximated by 

1
ˆln ln ( ( ))

n n

n
n Ma ML

y A

C f y θ
∈

= ;∑ ny

π
GnCn

4lnln~ln += . To gain 

more insight we calculate the percentage error 

n

nn

C

CC

ln

ln~ln
100

−
=ε  for small sample sizes, 

and we plot in Fig. I the value of ε  when  varies 
between five and twenty. Notice in Figure 1 that 

n
ε  

decreases monotonically with increasing n , and the 
percentage error is as small as 9  when the sample 
size is twenty.    

%

 
 

2. INTEGRALS RELATED TO G  
 

We begin this Section with a well-known result:  
 
Lemma 1. The following expressions of   G

4 2

0 0

1ln(tan )d ln(tan )d
2 2

xx x x
π π

G= = − .∫ ∫       (6) 

are true.  
 
Proof. Integrating by parts we have  
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because

0 0
lim ln(tan ) lim (tan ln(tan )) 0

tanx x

xx x x x
x→ →

= =

Then we put tan arctanx u x= ⇔ = u  
( 2

2
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sin 2 u
u

x
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= , 2
1

1
d
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dx u

+
= ), which implies 

4 1
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x u
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=∫ ∫ . One can calculate 

this integral with the series development 
2 1
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+∑ . Note that the series is 

uniformly convergent and can be integrated term by 
term on the interval [0 1], . Consequently we obtain  
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The change of variable 2x y= /  in the first integral 
from (6) leads immediately to the second integral and 
this ends the proof.   
  

     



Proposition 1. The double integral  
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equals 4 .  G
 
Proof. First method. We change the variables 

1 1u vα β− = , − =

1],

;  and  go along the 

interval [0  and we get , 

u v
21 uα = − 21 vβ = − ; 

consequently d 2u udα = −  and d 2 dv vβ = − . 
Our integral becomes 

1 1

2 20 0

14 d d
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4I u v J
u v
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split the  integral into two separate integrals: J
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∫ ∫∫ ∫
. Here  denotes the quarter of the unit disc inside 
the unit square, 

, and 

. One can easily compute the 
first integral (denoting 
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Applying the same  and cosu r t= sinv r t=  
substitutions, the second integral turns into  
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which is not an improper integral because the limit of 

the integrated function in 2  is finite. Further we 
obtain by integration by parts  
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We used for the limits in 2 : 
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Now we make the change of variable 
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giving 

4 4
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π π
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We also use the substitution 4p xπ= −  in the first 
integral, which yields 

4 4
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In the second method (a variant of the first one) we 
simplify the calculation of the integral of the function 

2 2
1

2 u v− −
 on the surface  by changing the 

integration order. Based on the symmetry of  we 

write 
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course, we continue as before.  
 
The third method also starts with , where 4I = J
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12

12ln
22

1

2

2ln
22

1d
2

1

2

2

2

1

0
2

2

2

1

0 22

−−

+−

−
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−

+−

−
=

−−∫

v

v

v

uv

uv

v
u

uv

 
Therefore we have 

21

2 20

1 2 1ln d
2 2 2 1

vJ v
v v

− +
=

− − −
∫  and 

21

2 20

1 2 12 ln
2 2

v d
1

I v
v v

− −
= −

− − +
∫ . Here we 

change variables with 2 sinv s= , 
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Then we transform in products the cosines sum and 
the difference, and obtain 
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 Simple changes of variable ( 8 2

s pπ − =  and 

8 2
s qπ + = ) transform the two integrals into 
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Therefore we have 4

0
4 lntan dI x x

π

= − ∫ , which 

concludes the proof.   
 
We mention in the end of this Section that problem 

, proposed by P. Deiermann in 2002, in the 
Crux Mathematicorum Magazine, requires the 
calculation of the area of the surface obtained from 
the quarter of the unit disc contained in the first 
quadrant by the mapping . Along 
the solution that was published in the same magazine 

in 2003, pages 522-524, integrals akin to those from 
this note are calculated. 
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4. FINAL REMARKS 
 

In (Jacquet and Szpankowski, 2004), combinatorial 
methods of analysis of algorithms are applied to find 
an asymptotic approximation for 
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following result is obtained when : {0 1}A = ,

)1(8logloglog 222 oGnCn ++=
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. The 

approximation is further refined by subtracting the 
term lnln 2

ln 2 , which is due to the constraint that SC be 
integer-valued.  
 
It is interesting to observe that the Catalan constant 
appears also in formula from (Jacquet and 
Szpankowski, 2004), even if their asymptotic 
approximation is not based on the generalized Fisher 
information matrix.  
 
A natural question arises: is it possible to work out 
the formula (2) for Markov models whose order is 

 ? First we give a result proven in (Atteson, 
1999): the square root of the determinant of the 
Fisher information matrix is  
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where ( )sP ⋅  denotes the stationary probabilities. We 
illustrate the difficulties that occur in calculations by 
applying this formula for . To fix the ideas, let 
us assume that the probability transition matrix for 
the order-2 Markov binary chain is  

2r =
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−
−

=

δδ
γγ

ββ
αα

100
001

100
001

Q (Good,1963).  

We denote ( )θ α β γ δ= , , ,  and then we employ in 
(7) the expressions of the stationary probabilities 
derived in (Good, 1963) under the usual regularity 
conditions. We further obtain 
 

( )

[ ]
,

)1)(1)(1)(1(

2
1)(

2/1

2
2/1

δγβα
αδ

αδγδαβ
θ

−−−−
×

++
=J

 

 

     



which is not trivial to integrate over the parameter 
space.  
We conclude that the evaluation of (2) for Markov 
chains with arbitrarily large orders is still an open 
question. It might be helpful for practitioners to 
notice that a recursive formula is given in (Finesso et 
al., 1996) for another form of SC that relies on the 
method of mixtures (Rissanen, 1989).  
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