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ABSTRACT
Histograms are widely used for estimating the density of a contin-
uous signal from existing data. In some practical applications, they
are also employed for entropy estimation. However, a histogram
involves implicitly a discretization procedure because the unknown
density is approximated by a piecewise constant density model. In
the previous literature, the impact of the discretization procedure on
the accuracy of the entropy estimate was either ignored or evalu-
ated in the particular case of a regular histogram, in which all bins
are equally wide. In this work, we provide bounds on the perfor-
mance of the histogram-based entropy estimators without relying on
the restrictive assumptions which have been used by other authors.
The proof of our theoretical results is mainly based on concentration
inequalities which have been already employed to analyze the per-
formance of histograms as density estimators. After establishing the
theoretical results, we illustrate them by numerical examples.

Index Terms— Histogram, entropy estimation, concentration
inequalities, bias, variance

1. INTRODUCTION

Researchers working in signal processing are often confronted with
the task of entropy estimation for continuous signals. The problem
occurs in various research areas like independent component anal-
ysis [1], detection of abrupt changes and blind deconvolution [2],
analysis of EEG signals [3].

One possible solution is to estimate firstly the unknown density
and then to employ the obtained result for estimating the entropy.
This two-stage procedure involves either kernels or histograms. In
this work, we investigate the performance of the method which re-
lies on histograms. Before presenting our contributions, we discuss
briefly previous attempts for evaluating the performance of the two
categories of methods. Since it is beyond the scope of this study to
provide a complete list of works, we mention here only the refer-
ences [4] and [5]. The first one is focused on the histogram-based
approach, while the second one shows how some techniques which
have been originally applied in the case of histograms can be adapted
to analyze the kernel entropy estimators.

As our focus is on histograms, let us remark that their use in-
volves implicitly a discretization procedure because the unknown
density is approximated by a piecewise constant density model. So
far, the impact of the discretization procedure on the accuracy of the
entropy estimate was either ignored [4] or evaluated in the particular
case of regular histograms for which all bins have equal width [3].

We propose a new method of analysis that does not make any
assumption on the width of the bins and allows us to treat in a uni-

tary manner both the regular and the irregular histograms. To this
end, we resort to some techniques which are based on concentration
inequalities. For a more detailed description of the techniques as
well as for an exemplification of how they can be applied in density
estimation, we refer to [6] and [7, Ch. 7]. In this paper, we will
demonstrate their usefulness in finding bounds for bias and variance
of the entropy estimate. In what concerns the bounds for variance,
our methodology is not limited to the application of the inequalities
from [6, 7], but we also investigate some other techniques like those
from [8, 9].

The rest of the paper is organized as follows. The most impor-
tant definitions are introduced in the next section. Then the bounds
for the bias and the variance are given in Section 3 and Section 4,
respectively. The theoretical results are illustrated by numerical ex-
amples in Section 5. Section 6 concludes the paper.

2. NOTATION AND DEFINITIONS

We outline below the main definitions which are similar to those
previously introduced in [6], [7, Ch. 7], [10, Ch. 5].

Density estimation: Let ξ1, . . . , ξn be n independent and iden-
tically distributed observations with common law P on a measurable
space (Z, T ). Under the hypothesis that P admits a density s∗ with
respect to µ, or equivalently, s∗ = dP

dµ , we aim to estimate s∗ from
the measurements ξ1, . . . , ξn. In our settings, µ is the Lebesgue
measure on Z .

Histogram: Assuming that Z is a compact interval of R, we
take ΛM =

⋃DM
j=1 Ij , where Ij1

⋂
Ij2 = ∅ for j1 6= j2. In other

words, ΛM is a partition of the intervalZ intoDM pieces. Addition-
ally, µ(I) > 0 for all I ∈ ΛM . Furthermore, we consider the linear
vector space of piecewise constant functions with respect to ΛM :
M̃ =

{
s =

∑
I∈ΛM

βI1I : (βI)I∈ΛM
∈ RDM

}
. The most im-

portant is the subset M of the functions in M̃ that are densities with
respect to ΛM : M =

{
s ∈ M̃ : s ≥ 0,

∫
Z sdµ = 1

}
. Remark

that, for an arbitrary set A, 1A denotes its indicator function.
Maximum likelihood (ML) estimator: For a measurable

function f on Z , Pn(f) = n−1∑n
i=1 f(ξi) is the empirical dis-

tribution associated to the samples ξ1, . . . , ξn. Given the model
M , the ML estimator is that particular function s ∈ M which
minimizes Pn(− log s) = n−1∑n

i=1 [− log s(ξi)]. Observe that
log(·) stands for the natural logarithm. It can be easily proved (see
[10, Ch. 5]) that the expression of the ML estimator is ŝn(M) =∑
I∈ΛM

Pn(I)
µ(I)

1I = 1
n

∑
I∈ΛM

1
µ(I)

[∑
I∈ΛM

1I(ξi)
]
1I . For

writing the equations more compactly, the notation Pn(I) is used
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instead of Pn(1I).
Kullback-Leibler (KL) projection: If P and Ps are the prob-

ability distributions on (Z, T ) with respect to µ of the densities
s∗ and s, respectively, then the KL divergence has the expression:
DKL(P, Ps) =

∫
Z log

(
dP
dPs

)
dP =

∫
Z s∗ log s∗

s
dµ. Like in [7],

we use the notation DKL(s∗, s) instead of DKL(P, Ps). Remark
that the integral within the definition is not finite whenever there is
an interval I ⊂ Z for which s∗(I) > 0 and s is identically zero on
I. Among all densities s which belong to a given model M , there is
one which minimizes DKL(s∗, s). This particular density is called
“the KL projection of s∗ onto M” and is denoted by sM . It can be
expressed as follows: sM =

∑
I∈ΛM

1
µ(I)

[∫
Z s∗1Idµ

]
1I [10].

With the convention that P (I) = P (1I) =
∫
Z s∗1Idµ, we get

sM =
∑
I∈ΛM

P (I)
µ(I)

1I . Moreover, for a measurable function f on
Z , we have P (f) = E[f(ξ)], where ξ stands for a generic random
variable of law P on (Z, T ).

Entropy estimation: Assume that s∗ is estimated by us-
ing the histogram model M . Then, it is natural to estimate
the entropy H∗ = −

∫
Z s∗ log s∗dµ by computing Ĥn(M) =

−
∫
Z ŝn(M) log ŝn(M)dµ. In the next sections, we focus on

finding bounds for the bias and the variance of Ĥn(M). In our
calculations, it is helpful to employ the following definitions which
are taken from [6]. If ΛM is the partition which corresponds to M
and η is an arbitrary number from the interval ]0, 1[, then

Ωη(M) =

{
|Pn(I)− P (I)|

P (I)
≤ η, ∀I ∈ ΛM

}
, (1)

χ2
n(M) =

∑
I∈ΛM

[Pn(I)− P (I)]2

P (I)
(2)

=

∫
Z

[ŝn(M)− sM ]2

sM
dµ.

Additionally, the notation Ωcη(M) is used for the event {|Pn(I) −
P (I)|/P (I) > η for some I ∈ ΛM}.

After these preliminaries, we present next some results on the
bias and the variance of Ĥn(M).

3. BOUNDS FOR BIAS OF THE ENTROPY ESTIMATE

Our derivations are based on the following set of assumptions:

(A1) Z = [0, 1].

(A2) For some positive real number ρ, s∗(z) ≥ ρ for all z ∈ Z ,
and

∫
Z s∗(log s∗)

2dµ <∞.

(A3) For the model M , the cut-points of the partition ΛM belong
to the grid G = {q/Nn : 0 ≤ q ≤ Nn}, where Nn is a
positive integer which satisfies the inequality

Nn ≤
n/(logn)2

w
. (3)

In the inequality above, the constant w is not smaller than one. It is
important to emphasize that the model M can be either a regular or
an irregular histogram. With respect to (A1), let us observe that the
necessity of imposing constraints for the support of s∗ was already
noticed in [3]. In fact, the regular grid from [3] covers only an inter-
val of length 6σ, where σ is the standard deviation for the probability
density function whose entropy is evaluated. Assumptions similar to
(A2) and (A3) have been used in connection with the density esti-
mation problem (see [7, Ch. 7] and the references therein for a more

detailed discussion). In the beginning of our analysis, we prove the
auxiliary result which is outlined below:

Lemma 3.1. On the set Ωη(M), we have:

1− η
2(1 + η)2

χ2
n(M) ≤ DKL(ŝn(M), sM ) ≤ 1 + η

2(1− η)2
χ2
n(M). (4)

Proof. It can be shown that the double inequality is true by applying
Lemma 2.3 from [6]:

1

2

∫
Z

min{p, q}
(

log
p

q

)2

dµ

≤ DKL(p, q)

≤ 1

2

∫
Z

max{p, q}
(

log
p

q

)2

dµ,

(5)

where the densities p and q have the property that min{p(z), q(z)} >
0 for all z ∈ Z . The key point is to observe in (5) that the upper
and lower bounds are the same for both DKL(p, q) and DKL(q, p).
With this observation, the inequalities in (4) can be obtained straight-
forwardly from [6, Eq. (2.13)]. Finally, we note that Lemma 2.3
from [6] is a particular case of Lemma 1 from [11].

Next we will show how Lemma 3.1 can be used for finding
bounds for the bias of the entropy estimate. The strategy is to control
the bias on the set Ωη(M) and at the same time to verify how fast
P[Ωcη(M)] converges to zero when n increases.

Proposition 3.1. Let δM = infI∈ΛM µ(I). If δM ∈]0, 1[ and the
assumptions (A1)-(A2) are satisfied, then the following inequalities
hold:

− 1 + η

(1− η)2

DM − 1

2n
−A ·

(
P[Ωcη(M)]

)1/2
≤ E

[(
Ĥn(M)−H? −DKL(s∗, sM )

)
1Ωη(M)

]
≤ − 1− η

(1 + η)2

DM − 1

2n
+B ·

(
P[Ωcη(M)]

)1/2
,

(6)

where A = −n−1/2 log min{ρ, δM}, B = 1−η
(1+η)2

(ρδM )−1 −
n−1/2 log min{ρ, δM} and

P[Ωcη(M)] ≤ 2

δM
exp

(
− nρδMη

2

2(1 + η/3)

)
. (7)

Proof. According to hypotheses, both Ĥn(M) and H∗ are finite.
The starting point is the identity:

Ĥn(M)−H∗

=

∫
Z
s∗ log

s∗
sM

dµ−
∫
Z

(ŝn(M)− s∗) log sMdµ

−
∫
Z
ŝn(M) log

ŝn(M)

sM
dµ

= DKL(s∗, sM )−DKL(ŝn(M), sM )− νn(log sM ), (8)

where νn = Pn−P is the centered empirical measure [7, Def. 7.1].
For the identity above, it is important to observe that sM (z) ≥ ρ > 0
for all z ∈ Z (see (A2)).

The use of Lemma 3.1 yields for E
[
−DKL(ŝn(M), sM )1Ωη(M)

]
bounds which depend on −E[χ2

n(M)1Ωη(M)]. The fact that
E[χ2

n(M)] = (DM−1)/n leads to the identity−E[χ2
n(M)1Ωη(M)] =



−(DM − 1)/n+ E[χ2
n(M)1Ωcη(M)], which implies that −(DM −

1)/n ≤ −E[χ2
n(M)1Ωη(M)] ≤ −(DM−1)/n+2(ρδM )−1P[Ωcη(M)].

The upper bound for −E[χ2
n(M)1Ωη(M)] can be easily obtained by

observing in (2) that

χ2
n(M) =

∑
I∈ΛM

[
P 2
n(I)

P (I)
− 2Pn(I) + P (I)

]

≤ −1 +

(
sup
I∈ΛM

1

P (I)

) ∑
I∈ΛM

P 2
n(I)

≤ sup
I∈ΛM

2

P (I)
≤ 2

ρδM
.

We note in passing that the above inequality has been also employed
in [6, p. 7].

It is clear that E[−νn(log sM )1Ωη(M)] = E[νn(log sM )1Ωcη(M)]

because E[νn(log sM )] = 0. Then we have the chain of inequalities:∣∣∣E[νn(log sM )1Ωcη(M)]
∣∣∣

≤
(
E
[
(νn(log sM ))2])1/2 (P[Ωcη(M)]

)1/2 (9)

≤
[

1

n

∫
Z
s∗(log sM )2dµ

]1/2 (
P[Ωcη(M)]

)1/2 (10)

≤ 1√
n

log

(
max

{
1

ρ
,

1

δM

})(
P[Ωcη(M)]

)1/2
. (11)

Remark that (9) is a straightforward consequence of the Cauchy-
Schwarz inequality. More details on the proof of (10) can be found
below. The inequality in (11) is based on the fact that, for all I ∈
ΛM , we have ρ ≤ sM (I) = P (I)/µ(I) ≤ 1/µ(I) ≤ 1/δM .

To sketch the proof of the inequality in (10), we introduce the
notation t(z) = log(sM (z)) for all z ∈ Z . So,

E
[
(νn(t))2] = E

[
(Pn(t))2]− (P (t))2

=
1

n2
E

[(
n∑
i=1

t(ξi)

)2]
− (P (t))2

=
1

n
P (t2)− 1

n
(P (t))2

≤ 1

n

∫
Z
s∗t

2dµ.

Collecting all the above inequalities, we obtain the result in (6).
The inequality in (7) is based on Bernstein inequality [12], and it also
appears in the previous literature (see, for example, [6, Eq. (2.9)]).

Remark 3.1 In (6), the term DKL(s∗, sM ) takes only nonnegative
values, and it becomes zero when s∗ coincides with sM . In fact,
DKL(s∗, sM ) is that component of the bias which measures how
well the estimated density is approximated by the histogram model
M . The other component of the bias is mainly given by −(DM −
1)/(2n) (see also the discussion below), and it depends on the sam-
ple size. This makes it to behave differently from DKL(s∗, sM ),
which is independent of n. A similar decomposition of the bias has
been presented in [3, Sec. 3] by using a different mathematical ap-
proach than the one employed to prove Proposition 3.1. The term
DKL(s∗, sM ) plays a much more important role when M is not
fixed, but is selected from a class of models. As this problem is not
addressed here, we only mention that the interested reader can find
some new results in [13].

Remark 3.2 According to an asymptotic result which is known
since long time [14], the bias of Ĥn(M) − DKL(s∗, sM ) is given
by−(DM−1)/(2n)+o(1/n). A detailed discussion on various ap-
proaches which have been used to derive the asymptotic result can be
found in [4, Sec. 4]. Here we focus on the relationship between this
result and Proposition 3.1. The key point is to express P[Ωcη(M)] as
a function of n, and then to investigate its convergence rate. Under
the hypothesis that the assumption (A3) holds, the inequality in (7)
takes the particular form P[Ωcη(M)] ≤ UBn(w, ρ, cη), where

UBn(w, ρ, cη) =
2/w

(logn)2

[
n(wρcη) logn−1

]−1

,

cη =
η2

2(1 + η/3)
.

Since the product wρcη is strictly positive and independent of n, we
have that

lim
n→∞

UBn(w, ρ, cη)

1/n
= 0.

Hence, for a fixed DM , the probability P[Ωcη(M)] converges to zero
faster than (DM − 1)/(2n). However, a more careful analysis of
the upper bound UBn(w, ρ, cη) should also take into account the
influence of the parameters w, ρ and η. For instance, it is easy to
prove that cη ∈]0, 3/8[. The smaller is ρ, the slower is the decrease
of UBn(w, ρ, cη) when n→∞. On the other hand, if one increases
the value of w, then the maximum number of histogram bins will be
reduced (see (3)) and UBn(w, ρ, cη) will lower more rapidly when
n becomes larger.

The performance of the histogram-based entropy estimator is
further investigated by finding upper bounds for the variance of
Ĥn(M).

4. BOUNDS FOR VARIANCE OF THE ENTROPY
ESTIMATE

In the demonstration of next result, we resort to some techniques that
are different from those used in the previous section. More precisely,
we apply Theorem 3 from [8] for proving the following proposition:

Proposition 4.1. Under the assumptions (A1)-(A3), we have:

Var[Ĥn(M)] ≤ 9

4

(logn)2

n
. (12)

Proof. Let us remark that

−DKL(ŝn(M), sM )− νn(log sM )

= −
∫
Z
ŝn(M) log

ŝn(M)

sM
dµ−

∫
Z

[ŝn(M)− sM ] log sMdµ

= −
∑
I∈ΛM

Pn(I) log
Pn(I)

P (I)
−
∑
I∈ΛM

[Pn(I)− P (I)] log
P (I)

µ(I)

=
∑
I∈ΛM

P (I) log
P (I)

µ(I)
−
∑
I∈ΛM

Pn(I) log
Pn(I)

µ(I)
.

By using the identity above together with (8), one can show with-
out difficulties that the variance of Ĥn(M) equals the variance of the
functional F̂M (ξ1, . . . , ξn) = −

∑
I∈ΛM

Pn(I) log [Pn(I)/µ(I)].
It is important to notice how the value of the functional changes
when the measurement ξi is replaced by ξ′i 6= ξi and all other



measurements are kept unchanged. Assuming that ξ′i ∈ Ij and
ξi ∈ Ik, where both intervals Ij and Ik belong to ΛM , furthermore
we should consider two different cases:

(i)If j = k, we get

F̂M (ξ1, . . . , ξi−1, ξ
′
i, ξi+1, . . . , ξn)

= F̂M (ξ1, . . . , ξi−1, ξi, ξi+1, . . . , ξn).

(ii) When j 6= k, the effect of the modification is twofold:
Pn(Ij) increases from j/n to (j + 1)/n, while Pn(Ik) decreases
from k/n to (k − 1)/n. Therefore, the functional is altered as fol-
lows: ∣∣∣F̂M (ξ1, . . . , ξi−1, ξ

′
i, ξi+1, . . . , ξn)

− F̂M (ξ1, . . . , ξi−1, ξi, ξi+1, . . . , ξn)
∣∣∣

=
∣∣∣− j + 1

n
log

j + 1

n
+
j

n
log

j

n
− k − 1

n
log

k − 1

n

+
k

n
log

k

n
+

1

n
log

µ(Ij)
µ(Ik)

∣∣∣
(∗)
≤ 2

logn

n
+

1

n
log

(
1

δM
− 1

)
(∗∗)
≤ 3

logn

n
.

Note that in (∗) we have applied an inequality from [9, Sec. 2], and
in (∗∗) we have used (3). Hence, we have shown that the modi-
fication of one sample point cannot alter the absolute value of the
functional F̂M (·) by more than cn = (3 logn)/n. According to [8,
Th. 3], the result above leads to an upper bound for the variance of
F̂M (·) which equals (n/4)c2n, and this concludes the proof.

Remark 4.1 Note that Theorem 3 from [8] plays a key role in the
proof of Proposition 4.1. The same theorem has been employed also
previously in the context of entropy estimation (see, for example,
[9]). However, the problem from [9] is slightly different from the
one which we discuss here. More precisely, Antos and Kontoyian-
nis have assumed that the measurements take values on a countable
alphabet and they are outcomes from a discrete distribution. Under
these hypotheses, it has been demonstrated that the variance of the
plug-in estimator for the entropy does not exceed (logn)2/n. The
bound which we have found in (12) is approximately double than the
one from [9] since we have considered the impact of the discretiza-
tion process. We cannot neglect this effect because the discretization
itself is determined by the modelM . However, in our proof we have
assumed that the partition ΛM contains only two intervals: one hav-
ing length δM and the other one with length 1− δM . Obviously, this
is an extreme case and, for all other models M , the inequality (12)
can be sharpen by replacing in (∗) the term (1/n) log(1/δM − 1)

with 1
n

log
maxI∈ΛM

µ(I)

minI∈ΛM
µ(I)

.

The natural question is if possible to obtain a sharper bound for
the variance by using techniques like those from the proof of Propo-
sition 3.1. In order to investigate this possibility, we bound the fourth
order moment of χn(M). Unfortunately, we cannot apply straight-
forwardly the similar result which was proved in [7, p. 225], and this
is why we show next all steps of the demonstration.

Lemma 4.1. If the assumptions (A1)-(A3) are satisfied, then we
have:

E
[
χn(M)4] ≤ κ(ρ, δM )

(logn)4
, (13)

where κ(ρ, δM ) is a strictly positive constant and δM is the same as
in Proposition 3.1.

Proof. We consider some more definitions from [6, 7]:

ϕI = P (I)−1/21I , ∀I ∈ ΛM ,

ΦM =
∑
I∈ΛM

ϕ2
I ,

VM = sup
a∈AM

Var

 ∑
I∈ΛM

aIϕI(ξ1)

 ,
where AM = {a ∈ R|ΛM | :

∑
I∈ΛM

a2
I = 1}. It is easy to

check that νn(ϕI) =
∫
I
ŝn(M)−s∗√

P (I)
dµ = Pn(I)−P (I)√

P (I)
, which leads

to χn(M) =
[∑
I∈ΛM

ν2
n(ϕI)

]1/2
[6, p. 19].

More importantly, for any strictly positive constants ε and x, the
following holds [7, p. 209]:

P

[
χn(M) ≥ (1 + ε)E[χn(M)] +

√
2VMx

n
+ cε

√
||ΦM ||∞
n

x

]
≤ exp(−x),

(14)

where cε = 2(ε−1 + 1/3). Now we focus on the relationship be-
tween DM and the mathematical quantities involved in the left-hand
side of the equation above. Firstly, the Jensen inequality leads to
(see also [7, Eq. (7.10)]):

E[χn(M)] ≤
√

E[χ2
n(M)] <

√
DM/n. (15)

Then, an upper bound for VM can be readily obtained [7, p. 230]:

VM ≤ sup
a∈AM

E

 ∑
I∈ΛM

aIϕI(ξ1)

2 ≤ DM . (16)

From the hypotheses, we have that δM = infI∈ΛM µ(I) > 0 and
s∗(z) ≥ ρ for all z ∈ Z . So, P (I) ≥ ρδM for all I ∈ ΛM , and

||ΦM ||∞ ≤ DM sup
I∈ΛM

1

P (I)
≤ DM
ρδM

. (17)

Finally, note that the assumption (A3) implies√
DM
n
≤ 1

logn
. (18)

Based on the results from (14)-(18), we conclude that there exits a
constant κ′ > 0 so as

P
[
(logn)χn(M) > κ′(1 + x)

]
≤ exp(−x) ∀ x > 0.

It is evident that κ′ depends on both ρ and δM . From the equation
above, we get the inequality in (13).

Remark 4.2 To gain more insight on the inequality in (13), we resort
to some well-known results. From (2), we have that nχ2

n(M) is
the same as the standard Chi-Square statistic [6, p. 5]. Moreover,
when n → ∞, the distribution of the standard Chi-Square statistic
approaches χ2(DM − 1), where DM − 1 is the number of degrees
of freedom. Hence, for large n, E[χ4

n(M)] = (D2
M −1)/n2 and, by

making use of assumption (A3), we get E[χ4
n(M)] ≤ 1/(logn)4.

The inequality in (13) is further employed to bound the variance
of Ĥn(M)−H∗ −DKL(s∗, sM ) on Ωη(M).



Proposition 4.2. If in addition to the hypotheses of Lemma 4.1 we
have that 1/ρ ≤ n, then there exist two strictly positive constants
κ1(η, ρ, δM ) and κ2(η, ρ, δM ) so as

Var
[(
Ĥn(M)−H∗ −DKL(s∗, sM )

)
1Ωη(M)

]
≤ (logn)2

n
+
κ1(η, ρ, δM )√

n logn
+
κ2(η, ρ, δM )

(logn)4
.

(19)

Proof. From the identity in (8), we readily obtain the following:

Var
[(
Ĥn(M)−H∗ −DKL(s∗, sM )

)
1Ωη(M)

]
≤ E

[
(νn(log sM ) +DKL(ŝn(M), sM ))2 1Ωη(M)

]
.

By using the inequalities from the proof of Proposition 3.1, we get:

E
[
ν2
n(log sM )1Ωη(M)

]
≤ E

[
ν2
n(log sM )

]
≤ [log max{1/ρ, 1/δM}]2

n
≤ (logn)2

n
.

Similarly, we have:∣∣E [νn(log sM )DKL(ŝn(M), sM )1Ωη(M)

]∣∣
≤ logn√

n

(
E
[
D2
KL(ŝn(M), sM )1Ωη(M)

])1/2
.

Moreover, Lemma 3.1 implies that the following inequality holds on
Ωη(M): D2

KL(ŝn(M), sM ) ≤ (1+η)2

4(1−η)4
χ4
n(M). The application of

Lemma 4.1 concludes the proof.

Remark 4.3 As we already know from Remark 3.2, P(Ωcη(M))
goes very fast to zero when n increases. This recommends to
compare the result in (19) with the one from (12). It is straight-
forward to verify numerically that, for the sample sizes currently
available in practical situations, namely n ∈ [50, 105], we have
max{1/(

√
n logn), 1/(logn)4} < (1/4)(logn)2/n. How-

ever, we cannot conclude that (19) provides a better bound than
(12) because the magnitudes of the constants κ1(η, ρ, δM ) and
κ2(η, ρ, δM ) are unknown.

5. NUMERICAL EXAMPLES

The theoretical results established in the previous sections will be
illustrated next by considering two different distributions. The first
one is obtained by truncating the normal distribution with mean 1/2
and variance 1/16 to the interval [0, 1] and then re-normalizing it
so as to integrate to unity. Hereafter, we will refer to this distribu-
tion as TN (truncated normal). The second distribution called TE is
generated by applying the same techniques as in the previous case,
with the major difference that this time we have started from an ex-
ponential distribution with mean 1/3. Both TN and TE are plot-
ted in Figures 1(a) and 1(d) together with their KL projections onto
the considered models. Remark that the partition ΛM for the his-
togram model of TN is given by the reunion of the intervals [0, 1/5],
]1/5, 2/5], ]2/5, 4/5] and ]4/5, 1]. It is evident that δM = 1/5, and
simple calculations show that ρ ≈ 0.226. For TE, ρ ≈ 0.157 and
δM = 1/7. The value of δM is a straightforward consequence of the
fact that the intervals within the partition of the histogram model are
[0, 2/7], ]2/7, 3/7], ]3/7, 4/7], ]4/7, 6/7] and ]6/7, 1].

As we already know from Remark 3.2, the upper bound for
P[Ωcη(M)] depends on the parameters w, ρ, η and the sample size
n. Based on the discussion above, one can easily notice that w = 1

in our settings (see also (3)). As ρ is also known for both TN and TE,
all that remains is to investigate the dependence of P[Ωcη(M)] on η
and n. To this end, we take {50, 100, 200, 400, 800} to be the set of
n-values for TN. Similarly, the set of sample sizes for TE is chosen
to be {200, 400, 800, 1600}. Furthermore, for each distribution and
each sample size, 106 realizations are produced. The generated data
are used to estimate empirically P[Ωcη(M)] when η rises from 0.05
to 0.95. The results of this experiment are plotted in Figures 1(b)
and 1(e). Observe that, for all n, the estimated values of P[Ωcη(M)]
are almost one when η is located in the vicinity of 0.05. However,
the situation changes when η increases. To exemplify this trend, let
us have a closer look at the case of TE when η = 0.6: P[Ωcη(M)]
is approximately 0.20 when n = 200, but it becomes as small as
7 · 10−5 when n = 1600. For the same value of η, in the plot drawn
for TN, P[Ωcη(M)] falls from 0.28 to less than 10−6 when n grows
from 50 to 800.

Next we employ the values of P[Ωcη(M)] which have been em-
pirically computed for η ∈ {0.65, 0.70, 0.75} to calculate the upper
and lower bounds given in Proposition 3.1, and the results are shown
in Figures 1(c) and 1(f). For the sake of comparison, we represent
in the same plots, for each n, an approximation of E

[
Ĥn(M)

]
−

H? −DKL(s∗, sM ) which is obtained by replacing the expectation
operator with an average over 106 realizations. Note that for all three
selections of η that have been considered in this experiment, Propo-
sition 3.1 does not provide tight bounds when n = 50 (for TN). The
same is true when n = 200 (for TE). On the other hand, for both
TN and TE, the difference between the upper and the lower bound
diminishes very fast when n increases, and this behaviour is mainly
caused by the rapid decrease of P[Ωcη(M)] when n becomes larger
(see Figures 1(b) and 1(e)).

Given that
maxI∈ΛM µ(I)

minI∈ΛM µ(I)
= 2

for the histogram model of TN as well as for the histogram model of
TE, we make use of the result within Remark 4.1 to reduce the up-
per bound in (12) from (3 logn)2/(4n) to (2 logn+ log 2)2/(4n).
Even after this improvement, the upper bound remains much larger
than Var[Ĥn(M)] computed from the same realizations that were
considered in the experiments described above. For TN, the upper
bound falls from 0.17 to 0.02 when n increases from 50 to 800,
while the empirical estimate of Var[Ĥn(M)] is smaller than 0.01
for all values of n. In the case of TE, the empirically calculated
value of Var[Ĥn(M)] does not exceed 0.005, whereas the upper
bound varies from 0.055 to 0.01 as a function of the sample size.

6. CONCLUSION

In this paper, we have used concentration inequalities for analyzing
the performance of histogram-based entropy estimators. The main
advantage of our approach is that it takes into account the effect of
the discretization process and, at the same time, allows to treat uni-
tarily both the regular and the irregular histograms. An open problem
is to improve the bounds provided in this work. Another possible line
of research is to investigate how the results obtained in the 1D case
can be extended to higher dimensions.
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