
 1

Generating Textures of New Zealand
Native Wood

Jack Wang

Abstract - This report explores algorithms for computer
generated textures simulating New Zealand native wood, we out
line procedural texturing algorithms like Perlin noise and
turbulence, techniques like texture generation, texture mapping
and Ray tracing. The main goal of this research is to study New
Zealand native wood in depth and to gather sufficient information
to be able to generate realistic and detailed 3D texture for New
Zealand native woods. In particular this work shows the
development of texture for Kauri out of New Zealand’s most
famous native trees, and with Rimu.

1.Introduction

The goal of this research is to introduce and carry forward New
Zealand native woods in the computer graphics field using 3D
texture. There are many common and famous woods that have
already been introduced in the computer graphics field as 3D
textures such as Maple, Mahogany, Pine, and etc.[POV-RAY],
and there are already many people using them to model wooden
objects such as furniture, toy, wall and floor panels and
architectures in computer-generated scenes frequently, and the
same time finding them very easy and natural to the eyes,
therefore I feel that it is a very interesting topic study more in
depth, especially there are no 3D textures of New Zealand native
woods published for people to use yet as far as I know, and yet
the unique features and varieties of New Zealand does not lose its
pride when comparing to other woods all around the world, I
believe these beautiful and unique woods need to be promoted,
and can be very popular in the future.

My goals of this research are to study the properties of New
Zealand native woods (the wood grains, the colour, and the
physical properties) as well as successfully generate detailed 3D

 2

texture of a particular wood that can be applied to objects and
used to create a scene by a ray tracer.

Texture mapping, is a powerful technique for adding realism to a
computer-generated scene. Firstly, why do I put my emphasis on
“3D” texture mapping, why is it better? Let me give you an
example, can you tell the difference between a solid block of
wood and a veneered block of wood just by looking at it. You
will probably say something like “Of course, you can tell them
apart easily by looking at the edges to see if the grains are
matching.” that is exactly the reason, we do not just want to stick
a texture on to the surface of an object like the conventional way,
sometimes it is hard to match the textures side by side especially
when the object is irregular and even if they do, the texture will
most likely be distorted and lose its realism; this is where 3D
texture comes in to solve problems like this.

 3

2. Researched Areas

2.1. Texture Mapping

2.1.1. Contouring achieved by 1D texture mapping

Contour curves drawn on an object can provide valuable
information about the object's geometry. Such curves may
represent height above some plane (as in a topographic map) that
is either fixed or moves with the object. Alternatively, the curves
may indicate intrinsic surface properties, such as geodesics or
loci of constant curvature.

Contouring is achieved with texture mapping by first defining a
one-dimensional texture image that is of constant colour except at
some spot along its length. Then, texture coordinates are
computed for vertices of each polygon in the object to be
contoured using a texture coordinate generation function. This
function may calculate the distance of the vertex above some, or
may depend on certain surface properties to produce, for instance,
a curvature value. Modular arithmetic is used in texture
coordinate interpolation to effectively cause the single linear
texture image to repeat over and over. The result is lines across
the polygons that comprise an object, leading to contour curves.

Figure 1: Showing distance from a plane with contouring [5]

2.1.2. 2D Texture mapping

The most common form of texture mapping is to apply a 2D image
to a polygon (or some other surface facet) by assigning texture
coordinates to the polygon's vertices. These coordinates index the

 4

texture image, and are interpolated across the polygon to determine,
at each of the polygon's pixels, a texture image value. The result is
that some portion of the texture image is mapped onto the polygon
when the polygon is viewed on the screen. Typical two-dimensional
images in this application are images of bricks or a road surface (in
this case the texture image is often repeated across a polygon. Below
is an example of “Wattie’s Can” (2a) made from a 2D texture (2b)
mapped onto a cylinder.

 Figure 2a Figure 2b

Above images are from [2]

2.1.3. 3D Texture mapping

In 3D texture mapping, the volumetric data is copied into the 3D
texture image. Then, slices perpendicular to the viewer are drawn.
Each slice is again a texture mapped polygon, but this time the
texture coordinates at the polygon's vertices determine a slice
through the 3D texture image. This method requires a 3D texture
mapping capability, but has the advantage that texture memory
need be loaded only once no matter what the viewpoint. If the
data are too numerous to fit in a single 3D image, the full volume
may be rendered in multiple passes, placing only a portion of the
volume data into the texture image on each pass. A three-
dimensional image might represent a block of marble from which
objects could be "sculpted." Below is a sample scene from POV-
Ray made from 3D texture mapping, notice the grains on the
sides are mating.

 5

Figure 3: Wooden-box scene from POV-Ray

 6

2.2. Rendering Texture Mapped Objects
2.2.1. Polygon Rendering

2.2.1.1. POV-Ray

During the process of my research, I came across a popular ray
tracer program call POV-Ray which proved very useful for my
project.

What is a Ray Tracer?

Ray tracing is a method of
generating realistic images by
computer, in which the paths of
individual rays of light are
followed from the viewer to
their points of origin. A ray
tracer is any program that
implements this method. Since
ray tracing makes use of the
actual physics and mathematics
behind light, the images it
produces can be

 Figure 4: Logical Ray Tracing diagram [4] strikingly life-like, or "photo-
realistic."
POV-Ray is free and open for everybody to work on; most
importantly, it provides good foundation in order to generate
realistic scenes (Accurate lighting, material effects, good
memory and performances techniques and so on.). I can take
advantage off existing facilities and try to generate realistic 3D
wooden textures. For my project, I will be working on
generating material for Kauri.

2.3. Texture Generation
2.3.1. Perlin Noise
Many people have used random number generators in their
programs to create unpredictability, make the motion and
behavior of objects appear more natural, or generate textures.
Random number generators certainly have their uses, but at
times their output can be too harsh to appear natural. This
article will present a function which has a very wide range of

 7

uses, more than I can think of, but basically anywhere where
you need something to look natural in origin. If you look at
many things in nature, you will notice that they are fractal.
They have various levels of detail. A common example is the
outline of a mountain range. It contains large variations in
height (the mountains), medium variations (hills), small
variations (boulders), tiny variations (stones) . . . you could go
on. Look at almost anything: the distribution of patchy grass
on a field, waves in the sea, the movements of an ant, the
movement of branches of a tree, patterns in marble, and winds.
All these phenomena exhibit the same pattern of large and
small variations. The Perlin Noise function recreates this by
simply adding up noisy functions at a range of different scales.
To create a Perlin noise function, you will need two things, a
Noise Function, and an Interpolation Function.

2.3.1.1. Noise Function

A noise function is essentially a seeded random number
generator. It takes an integer as a parameter, and returns a
random number based on that parameter. If you pass it the
same parameter twice, it produces the same number twice.
It is very important that it behaves in this way; otherwise
the Perlin function will simply produce nonsense, a valid
result from a Noise function can look like the graph below.

 Figure 5: Noise Function [1]

2.3.1.2. Interpolation Function

Once have created the noise function, you then need to
smooth out the values it returns. Again, there are many
methods, but some look better than others. A standard
interpolation function takes three inputs, a and b, the
values to be interpolated between, and x which takes a
value between 0 and 1. The Interpolation function returns

 8

a value between a and b based on the value x. When x
equals 0, it returns a, and when x is 1, it returns b. When
x is between 0 and 1, it returns some value between a and
b.

Linear Interpolation [1]:

This is the simplest and the fastest method, therefore the
result is ugly. Unless you are trying to do Perlin noise in
real-time, other methods are preferred.

function Linear_Interpolate(a, b, x)
 return a*(1-x) + b*x

 end of function

Cosine Interpolation [1]:

This method gives a much smother curve than Linear
Interpolation. It's clearly better and worth the effort if you
can afford the very slight loss in speed.

 function Cosine_Interpolate(a, b, x)
 ft = x * 3.1415927
 f = (1 - cos(ft)) * .5

 return a*(1-f) + b*f
 end of function

Cubic Interpolation [1]:

This method produces very smooth results indeed, but you will
pay for it in speed. Actually, it would not give noticeably better
results than Cosine Interpolation, but here it is anyway if you
want it. It's a little more complicated, so pay attention. Whereas
before, the interpolation functions took three inputs, the cubic
interpolation takes five. Instead of just a and b, you now need
v0, v1, v2 and v3, along with x as before. These are:

v0 = the point before a
v1 = the point a
v2 = the point b

 9

v3 = the point after b

 function Cubic_Interpolate(v0, v1, v2, v3,x)
 P = (v3 - v2) - (v0 - v1)
 Q = (v0 - v1) - P
 R = v2 - v0
 S = v1

 return Px3 + Qx2 + Rx + S
 end of function

The Perlin Noise therefore can use a cubic polynomial function
interpolation to generate pseudo-random number at every point
in the texture space, generates images.

Below is a sample image from POV-Ray that is able to be
generated by Noise. As we can see, there are textures of marble
and wood, they look realistic through the semi-randomness.
Above section and diagram summarizes results from [1].

 Figure 6: Marble scene from POV-Ray

 10

2.4. Turbulence
“Noise is Good, Turbulence is better“ [4]

We can impose self-similarity on noise to add scale-invariance. The
turbulence at a point is created by summing the noise at that point
with scaled down noise values at other points.

k

i i

i = 0

t u r b u l e n c e (x) = a b s (n o i s e (2 x) / 2)∑

Where k is the smallest integer for which 1
2 1k +

is greater than the size

of a pixel in real coordinates. This is very similar to fractal surface
generation, giving a visual impression of Brownian motion.

Here is an example of a turbulent field using the random field as a
basis, with grey scale and random colour map.

 Figure 7a: Grey scale [4] Figure 7b: Random Color [4]

Using Turbulence

1. Start with a simple regular structure (e.g. a curve)
2. Impose turbulence on values

 () () ()V x V x tubulence x= + or () (())V x V x tubulence x= + [4]

3. Need to modify range of turbulence to fit structure
4. Need to play with degree and scale of turbulence

 11

Applications [4]

Marble Texture: Add
turbulence to sine
wave, use a curve
through colour space
instead of a ramp. [4]

Here is an example of
a sine wave with
added turbulence. I
show it using grey
scale and a random
colour map. [4]

Stars: Intensity of
points based on
distance to the center.
Add turbulence to this
distance. Here is an
example of a star with
added turbulence. [4]

Flames: Compute intensity of
point based on distance from
center in x. Scale it based on
distance in y. Add turbulence.
Use 3-D turbulence to
animate. Here is an example
of a flame with added
turbulence. [4]

• Lots of interesting effects can be gained by adding turbulence
• Need to play with degree and scale to get most realistic

images

 12

• Ties together a lot of topics in graphics (fractals, texture,
colour, curves)

Above section summarizes results from [4], please refer to it for
more information on turbulence.

3. Examination of Wood
3.1. Brief introduction to Kauri

Kauri is an endemic conifer pine found in the northern third of
the North Island of New Zealand. They grow from sea level to

600m in altitude. Kauri (Agathis
Australis) belong to the family
Araucariaceae. They are the only
species of this very ancient family
found in New Zealand. Other examples
are found in the South-western pacific
including Australia and New Guinea.

For the first 50 years of a kauri tree's
life it is in a cone shape. From then on
a solid trunk forms with a crown of
branches from above 15 - 20m. They
reach maturity at around 200 years but
are still growing at 500 years old.

Figure 8: Just over 50 years old Kauri [6]

 13

Kauri is one of the few native trees that are non-flowering. They
are a type of gymnosperm (have a naked seed) with the seeds
found in cones. The female cones are round in shape and the

male cones are
finger-shaped. The
female cones
mature in March
and the seeds are
quick to germinate
as long as there is
good light. Male
and female cones
are found on the
same tree and they
can be self-
fertilized or the
wind can blow the
pollen from
another tree. The
seeds are also
spread via the
wind.

The trunk of a

 Figure 9: A grown Kauri tree [Google] kauri tree h as
grey coloured bark which flakes off in round pieces leaving flat
marks - like hammer marks. Occasionally on the trunk there will
be fresh gum bleeding from the tree.

The kauri is a host tree to many shrubs and tufting plants that live
high up in the crown of the tree.

Kauri trees grows steadily throughout winter and summer, causes
having more smooth and even grains and since they contain rich
in gum (rosin), the texture on the polished surface has rich sheen
and sometimes wavy luster, which are popular for interior
building and furniture making. [6]

 14

3.2. My own experiments
With the help of my old college school teacher, I was able to scan
slices of a Kauri block by using the Buzzer facility to take off one
millimeter at a time from the block, then I could used a scanner
to scan the surface into my computer.

Figure 10&11: Mr. Bordot and me at the workshop process and scan Kauri

A total of 90 good quality images are what I capture from a
100*100*180mm block, each of them is 1.5MBs, I first study
them, and from the study of the images I’ve found the colour
range, the different grains it is composed of and many more
useful data to help developing the 3D textures, more details will
be mentioned later on.

An idea was suggested by my supervisor; it would be interesting
to test if hue value from all colour on the scanned images of
wood are the same, a surprising find was that the hue values are
only between 4 and 15 out of 255, which is considered to be a
relative small range; this is very useful information when
choosing colour to generate 3D texture later on. I would imagine
the reason for this is because the trunk of the tree is grown out of
the same cells, therefore it’s only the matter of the speed the tree
is growing relative to the size of the cells and the density of the
wood, and only the saturation changes, above was the reason I
assumed that causes this effect. (Note, theoretically, I believe all
the colours from the same wood material can be from one hue,
and why don’t the results show that? I believe it is because first,
the Buzzer can not guarantee the smoothness of the surface if the
planning is against the grain, fibers on the rough surface can
cause inaccurate scanning results. And other problem is with

 15

devices’ gamut can have unavoidable errors, and this is a
common problem known in the computer graphics world.)

 16

4. Implementation

4.1. Initial tests

Here are some screen shots of some 3D textures that I made
manually just to try it out, to get familiar with work with 3D
textures. I do this by using the Ray tracer assignment used in the
372(Computer Graphics) course.

Figure 12: A solid red sphere with horizontal blue Figure 13: A solid red sphere with little blue cubes
strips running through it. evenly distributed in it.

Figure 14: Trying to simulate wood grain with Figure 15: Same as 14 with random dark brown dots.
Light and dark brown layers.

 17

4.1.1. Problems Found and Solutions

Immediately I find that I run out of memory very easily, therefore
I thought it was nearly impossible to produce very fine textures
(200*200*200)

To solve this problem, I have to use bytes instead of floats for
each of the RGB values to save memory to produce better
resolution images; therefore the colour quality is compromised.

By using the 90 scanned kauri images(Figure 16) I can produce
images like below (Figure 17).
As we can see, the wood grain of kauri is not very distinctive, as
is it grown steadily during either winter or summer. Somehow the
image came out with more red than I expected. My supervisor
suggested that this could be an aliasing problem, this problem is
caused by having a much higher resolution texture comparing to
the pixel resolution on the monitor, and during the process of ray
tracing, part of the texture colour is skipped, and therefore causes
inaccurate result. On the other hand, if the texture resolution is
much lower than the pixel resolution, then this is not good neither,
as many pixels would have the same colour from the texture,
therefore produced blocky appearance.
Now that I have the product from my scanning results, and found
out that by doing it this way is not particularly useful, because of
the sluggish image quality and the huge memory consumption, I
realized that this way is not going to work; I will need to find
another different approach.

Here is the C++ code for generating the 3D texture…

 ifstream textureFile;
 char* fileName="0.ppm";
 textureFile.open(fileName, ios::in);
 if (textureFile.fail())
 displayMessage(ERROR_MESSAGE, "could not open file %s",fileName);
 skipLine(textureFile);
 skipLine(textureFile);
 textureFile >> textureWidth;
 textureFile >> textureHeight;
 textureDepth = 400;
 cout<<"Height = "<<textureHeight;
 cout<<"Width = "<<textureWidth;
 textureFile >> numRGBValues;

 18

 int i,k,l,c,r,g,b;
 for(i=1;i<textureDepth+1;i++){
 for(k=0;k<textureHeight;k++)
 for(l=0;l<textureWidth;l++){
 textureFile >> r;
 textureFile >> g;
 textureFile >> b;
 texture[k][l][i] = Color3(((float)r)/255,((float)g)/255,((float)b)/255);
 }
 string fileNumber = i.toString();
 char* fileName=fileNumber+".ppm";
 textureFile.open(fileName, ios::in);
 if (textureFile.fail())
 displayMessage(ERROR_MESSAGE, "could not open file %s",fileName);
 skipLine(textureFile);
 skipLine(textureFile);
 textureFile >> textureWidth;
 textureFile >> textureHeight;
 textureFile >> numRGBValues;
 textureDepth = 90;
 }

 Figure 16: One of the scanned Figure 17: Kauri Sphere from a raw
 image from the Kauri slices 3D texture

From this approach, the biggest problem is that the resolution is fixed,

4.2. Texture Generation

 19

After my unsuccessful attempt, I have looked at other people’s
approach to wood texture generation. Here is how POV-Ray
supports wooden textures.

4.2.1. How others generate realistic wooden textures
In POV-Ray, first we will have to declare colour_maps for how your texture
colour is arranged from 0 to 1. E.g. From 0 to 0.3 is Red, 0.3 to 0.8 is Blue, and
from 0.8 to 1.0 to Green.
You will form the following colour map

Secondly, we can declare a texture by combining a texture or more
textures together to form layers, in each texture, we can specify the
pigment, which is the way you want your colour_map to arrange, in
this case, we use wood. If we choose wood the colour_map will be
arranged like the picture below.

To create a wood
texture, first you
need to generate a
cylinder simulating
the trunk of a tree.
(Figure 18)

And then add
in the wood
grain into the
cylinder,
(Figure19) the
code follows..

#declare DemoWood=texture {
 pigment {

Figure 18:

Figure 19:

 20

 wood //Key word for having the texture circular like the grains
 color_map {
 [0, 1 color rgb <0.90, 0.80, 0.30> //First coluor
 color rgb <0.50, 0.30, 0.15>] //Second colour
 }
 ramp_wave // Means the color varies like a ramp(first colour to second colour)
 }
}
#declare Log=cylinder{ <0, 0, 0>, <0, 0, 10>, 1 texture { DemoWood } }
// Create a cylinder with radius 1 and height of 10 and apply the texture,
there for we have only one year ring.
or
#declare Log=cylinder{ <0, 0, 0>, <0, 0, 100>, 10 texture { DemoWood } }
// Create a cylinder with radius 10 and height of 100 and will need to scale
the object down 10 time to see it. Now we would have 10 year rings, each
ring repeats the color_map that is given to it.

The cut-open view of
the cylinder,

Unfortunately real
wood doesn't look like
this. (Figure 20)

It looks more like this. Why?
It is because a tree trunk is
not cylindrical; it is slightly
conical, thicker at the root
and narrower towards the
crown. A cut parallel to the
core will therefore be at a
slight angle to the grain,
resulting in the typical
parabolic pattern. Code
follows…

#declare Log=difference {

Figure 20:

Figure 21:

 21

 cylinder { <0, 0, 0>, <0, 0, 250>, 25

 rotate <0, -1, 0> //Rotate the cylinder by 1 degree

 }

 plane {-x, 0 translate <4.6, 0, 0> }

 texture { DemoWood

 rotate <0, -1, 0> //Rotate the texture by 1 degree as well

 }

}

This section summarizes results from [3]

5.Results
5.1. Final Product

5.1.1. Kauri
This is what I have finally come up with using POV-Ray.
I have combined three different 3D textures together to form the
final product; each of them models different characteristics of the
Kauri. Texture 1 models the year ring of Kauri; they are unobvious,
straight and evenly spaced. (Figure 22)

Texture 1:
#declare M_KauriA(Year Ring) =
colour_map {
 [0.00 0.10 color rgb < 0.59, 0.42, 0.12 >
 color rgb < 0.58, 0.43, 0.11 >]
 [0.10 0.80 color rgb < 0.62, 0.44, 0.12 >
 color rgb < 0.64, 0.49, 0.14 >]
 [0.80 1.00 color rgb < 0.63, 0.48, 0.13 >
 color rgb < 0.69, 0.42, 0.12 >]
}

 Figure 22:

 22

Texture 2 models the brown dots between
the grains, and they are formed by the fine
fiber-like lines going cross the year rings.
(Figure 23)
Texture 2:
#declare M_KauriB(Cross Grain) =
colour_map {
[0.00 0.30 color rgb < 0.45, 0.346, 0.04,0.85>
 color rgb < 0.58, 0.456, 0.04,0.85 >]
 [0.30 0.70 color rgb < 0.62, 0.454, 0.04,0.9 >
 color rgb < 0.63, 0.484, 0.040,0.85 >]
 [0.70 0.95 color rgb < 0.860, 0.584, 0.040,0.85 >
 color rgb < 0.860, 0.584, 0.040,0.9 >]
 [0.95 1.00 color rgb < 0.694, 0.524, 0.040,0.85 >
 color rgb < 0.714, 0.524, 0.040,0.85 >]
 }

Texture 3 models the wavy reflection when shined under light; this
is a very nice characteristic of Kauri, the effect is produce by the
transparent colours in the 3D texture. (Figure 24)

Texture 3:
#declare M_KauriC(Transparent Shine) =
colour_map {
 [0.00 0.30 colour rgbt < 0.40, 0.100, 0.215, 0.8 >
 colour rgbt < 0.50, 0.125, 0.225, 0.8 >]
 [0.30 0.50 colour rgbt < 0.50, 0.125, 0.225, 0.8 >
 colour rgbt < 0.75, 0.135, 0.230, 0.8 >]
 [0.50 0.70 colour rgbt < 0.75, 0.135, 0.235, 0.8 >
 colour rgbt < 0.50, 0.120, 0.225, 0.8 >]
 [0.70 1.0 colour rgbt < 0.50, 0.120, 0.225, 0.8 >
 colour rgbt < 0.40, 0.100, 0.215, 0.8 >]
}

By adding the 3 textures together, the texture of Kauri is produced in
Texture 4. (Figure 25)
Texture 4:

The omega value controls how large each successive octave step is
compared to the previous value. Each successive octave of
turbulence is multiplied by the omega value. The default omega 0.5
means that each octave is 1/2 the size of the previous one. Higher

Figure 23:

Figure 24:

 23

omega values mean that 2nd, 3rd, 4th and up octaves contribute
more turbulence giving a sharper, crinkly look while smaller omegas
give a fuzzy kind of turbulence that gets blurry in places.

The octaves keyword may be followed by an integer value to control
the number of steps of turbulence that are computed. Legal values
range from 1 to <10. The default value of 6 is a fairly high value;
you won't see much change by setting it to a higher value because
the extra steps are too small. Float values are truncated to integer.
Smaller numbers of octaves give a gentler, wavy turbulence and
computes faster. Higher octaves create more jagged or fuzzy
turbulence and takes longer to compute.

#declare T_KauriWood =
texture { pigment {
 wood
 turbulence 0.02
 octave 10

omega 1.15
 scale <0.13, 0.13, 0.15>
 colour_map {
 M_KauriA(Year Ring)
 }
 ramp_wave
 }
}
texture { pigment {
 wood
 turbulence <0.2, 0.2, 1>
 scale <0.03, 0.03, 0.03>
 translate x*14
 colour_map {
 M_KauriB(Cross Grain)
 }
 ramp_wave
 }

}
texture {
 pigment { wood
 colour_map {
 M_KauriC(Transparent Shine)
 }

 omega 0.8
 turbulence <0.01, 0.01, 10>
 scale <17.5, 5.5, 10>
 translate x*13
 rotate<0,20,0>

Figure 25:

 24

 }
}
Lastly, we can apply the texture to a box just
for example to produce the following result.
(Figure 26)
box {<-3.75, 0.0, -2.75> <3.75, 2, 2.75>
 rotate <50, 0, 0>
 scale <2,2,2>
 texture {
 T_KauriWood
 rotate <50, 0, 00>
 scale <2,2,2>
 translate x*12
 }
}

5.1.2. Rimu
Same with Kauri, but this time, we only need 2 layers, without
reflective layer. Texture1 models the color and the grain.
(Figure 27)

Texture 1:

#declare M_RimuA =
colour_map {
 [0.00 0.04 color rgb < 0.30, 0.205, 0.075>
 color rgb < 0.40, 0.205, 0.075 >]
 [0.04 1.00 color rgb < 0.40, 0.212, 0.090 >
 color rgb < 0.50, 0.225, 0.095 >]
}

Texture2 models the light-colored pores.
(Figure 28)
Texture 2:

#declare M_RimuB =
colour_map {
 [0.00 0.10 color rgbt < 0.50, 0.172, 0.115, 0.5 >
 color rgbt < 0.50, 0.172, 0.115, 0.7 >]
 [0.10 0.15 color rgbt < 0.50, 0.172, 0.115, 0.7 >
 color rgbt < 0.35, 0.115, 0.060, 0.9 >]
 [0.15 0.20 color rgbt < 0.50, 0.172, 0.115, 0.9 >
 color rgbt < 0.35, 0.115, 0.060, 0.7 >]
 [0.20 1.0 color rgbt < 0.35, 0.115, 0.060, 0.7 >
 color rgbt < 0.35, 0.115, 0.060, 0.5 >]
}

Figure 26:

Figure 27:

Figure 28:

 25

Texture3 is the combined effect. (Figure 29)

Texture 3:

#declare T_RimuWood =
 texture {
 pigment{
 wood
 colour_map { M_RimuA }
 turbulence <0, 0.6, 0>
 omega 2
 turbulence 0.045
 scale <2, 0.7, 0.5>
 translate < -3, 0, 0 >
 rotate <-3, -3, 0>
 }
 }
 texture {
 pigment{
 wood
 colour_map { M_RimuB }
 turbulence <0, 0.7, 0>
 omega 0.7
 scale <5, 0.175, 1>
 rotate x*70
 }
 }

And here is a scene with Rimu texture
applied to a box. (Figure 30)

box {<-3.75, 0.0, -2.75> <3.75, 2, 2.75>
 rotate <50, 0, 0>
 scale <2,2,2>
 texture {
 T_RimuWood
 rotate <50, 0, 00>
 scale <2,2,2>
 translate x*12
 }
}

Figure 29:

Figure 30:

 26

5.2. Sample Scenes For Kauri using POV-Ray
5.2.1. Kauri

From the texture created, I am able to generate scenes like below.
Below is a scene simulates a block of Kauri. As you can see on the
block, the fine straight grains and the reflective layer from the light
are very distinctively shown. (Figure 31)

Below is a scene with the same block but only applied with of the
transparent layer, to show how the reflective effect is achieved. (Figure 32)

Figure 31:

Figure 32:

 27

Below is another example, like a wooden sculpture done by the lathe.
(Figure 33)

Below is a scene with 3 Kauri-made pawns on a wooden chessboard.
(Figure 34)

Figure 33:

Figure 34:

 28

A closeup on one of the pawn. (Figure 35)

Below is a scene with a Kauri-made desk. (Figure 36)

Figure 36:

Figure 35:

 29

5.2.2. Rimu
Here are the same scenes used for Kauri, but with Rimu
applied, and comparisons can be made. (Figure 37)

Figure 37:

Figure 38:

 30

6.Conclusion
6.1. Most suitable tool/software used

I finally end up developing wood texture in POV-Ray, which was
unexpected. In POV-Ray, there are already many useful functions
like Turbulence implemented, which made the process easier, but in
order to generate realistic wood texture, we need to study the
characteristics of the wood in detail; to achieve the best result, slice
the wood in different direction and examine the colour, the way the
grains go, and any additional features of the wood, all these factor
need to be carefully examined and considered.

6.2. Steps in modeling wood texture

Here are some steps I find essential for generating a quality wood
texture, I will list them out.

1. Colour sampling; use a scanner to scan the wood surface from
many angles. From the images, find the colour range and hue
range for later, very useful for choosing colours.

2. Define layers; examine the wood and figure out how the
texture is composed, divide them into different layers. E.g.
Year ring layer, pore layer, or a sheen layer.

3. Apply to objects and compare with the real objects.
4. Adjust if patter and color little by little to achieve best results.

6.3. The layering and the application of algorithms

From my practice of texture modeled, I realized that it is much of an
art, and just like realism painting, it requires good eyes of colour
selection and fine observation of details. Despite the common artist
skills for painting, the two most important and the out-of-ordinary
techniques in which is the layering and the application of algorithms.
Firstly in layering, we must realize the different elements there are
in the wood, and some of the characteristics combined can not be
manipulated by the algorithms to model them precisely. Eg. The
light and blurry year rings and the dark but sharp pores of the wood.
They must be modeled separately, and then combined later.
Secondly, is to apply suitable algorithm with the right value of
parameters. This is the most difficult part out of all, but I have to say
that the trick is to understand what exactly each of the algorithms
does and what effects they produce when applying different value of
parameters. In POV-Ray, the examples are turbulence, omega, and
octaves. From the textures I have modeled in POV-Ray, and in
turbulence in particular for example, I find no correlations between

 31

the values the parameter and the measurements taken from the
scanned wood images. It was pretty much trial and error and
estimated by eyes. And essentially, it’s all comes down to
experience and practice.

6.4. Ideas Learned

From this research, we learn that turbulence is more suitable to
generate wood texture rather then having just noise alone, mainly
because turbulence has the effect of controlled-distortion, very
suitable to model grains, as noise alone is more suitable to generate
textures like marble to suit its smooth-randomness.

And surprisingly, we find that the hue value of the Kauri varies only
by 11, which makes colour selection much easier, and most likely
same apply to other woods, due to find out.

The two native woods, Kauri and Rimu, they have a common feature,
their grains are less obvious compare to the heavily grained Radiata
Pine, which means the following, they grow steadily throughout
winter and summer, mainly because they are very tolerable to
temperature and moisture change, I will imagine since it’s NATIVE,
surely it adapts to its environment well and the imported Radiata
Pine has much more obvious grains.

6.5. Improving quality

Knots can be added to improve realism.

7.Future Research

Possible future related research:
1. Virtual wood carving tool.

- Build on existing 3D texture, and develop a realistic wood
carving software.

2. Generating realistic wood knots in fit into textures.
- Knots can improve the realism of a texture if done properly.

8.Acknowledgements
I want to thank my college woodwork teacher Mr. Bordot for
providing facility for wood processing, to help me to get more

 32

accurate and better results from scanning the wood block, without
the help of the buzzer (thicknesser), the job would be a lot harder.

9.Bibliography

[1] Perlin Noise
http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
[2] Texture Wrapping
http://www.cs.auckland.ac.nz/compsci372fc/lectures/372NotesHando
ut6_1up.pdf
[3] How to use wood textures in POV-Ray
http://home4.inet.tele.dk/ibras/povtips/povwood.htm
[4] Noise, Turbulence, and Texture
http://cs.wpi.edu/~matt/courses/cs563/talks/noise/noise.html
[5] Texture Mapping
http://www.sgi.com/grafica/texmap/
[6] Kauri
http://www.learnz.org.nz/2001/great_barrier/kauri.htm

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

