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Abstract 
Computer generated scenes are usually represented by polygon models. While graphics hardware capabilities 
have advanced rapidly in recent years many natural scenes are still much too complex to be rendered in real-time 
as polygon models. A solution is to simplify such models by reducing the number of polygons in them. However, 
for many complex models, such as models of trees, a polygon reduction is difficult to achieve. Recently a new 
image-based method called “Billboard Clouds” has been suggested for extreme model simplification. The idea is 
to replace a complex model by a set of texture mapped images (billboards) of it. The algorithm can deliver 
impressive results but has several severe limitations: the set of possible planes is restricted to a discretised plane 
space and the number of resulting billboards can not be controlled directly. In this paper we present a new 
algorithm for generating billboard clouds using k-means clustering. We show that our algorithm is fast and offers 
improved performance and user control. 
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1 Introduction 
Modern graphics hardware is purpose build for the 
fast rendering of large numbers of texture mapped 
polygons. Consequently polygon meshes are a 
popular representation of models in Computer 
Graphics. However, despite recent advances in 
graphics hardware many natural scenes represented by 
polygons are still much too complex to be rendered 
interactively. A possible solution is to use mesh 
reduction techniques which simplify polygon models 
by reducing the number of polygons in them. 
Examples are polygon merging techniques which 
combine coplanar or nearly coplanar polygons, vertex 
or edge elimination techniques which delete vertices 
or edges and retriangulate the resulting holes, and 
edge collapsing techniques which replace edges by 
vertices obviating the need for retriangulation. A 
survey of mesh reduction techniques can be found in 
[1].   

While mesh reduction techniques work well for some 
models, other models, e.g. models of trees, can only 
be reduced to a small number of polygons by severely 
changing the shape and topology of the model. An 
alternative approach is to use an image-based model 
simplification. An example is billboards which are 
popular in Computer Games and represent the 
complex geometry of a model by a single texture 
mapped polygon depicting the model’s image from a 
certain view point. The advantages of image-based 

simplification methods are that complex geometry can 
be represented efficiently by texture maps and that it 
is not necessary to manage texture coordinates during 
mesh simplification.  

If a model is approximately rotational invariant the 
illusion of a 3D model within an interactive 
application can be achieved by rotating the 
corresponding billboard so that it always faces the 
current view point. However, if the appearance of the 
model differs considerably for different view points 
this approach does not work. A more complex 
representation without this drawback are light fields 
which are 4D functions which encode 2D images of 
the model from different view points [2]. New views 
of the model can be generated from arbitrary camera 
positions without depth information simply by 
combining and resampling the available images stored 
in the light field. However, light fields are rather 
complex to implement and in order to get a good 
quality reproduction they must encode images from 
many different viewpoints resulting in a large data set. 
Recently “Billboard Clouds” have been proposed 
which combine ideas from mesh reduction techniques 
and image-based model simplification [3]. Billboard 
clouds represent models as a set of planes with texture 
and transparency maps. The resulting models can be 
efficiently rendered using modern graphics hardware 
and in contrast to mesh simplification methods no 
mesh connectivity information is necessary for their 
computation. 



The next section explains billboard clouds for extreme 
model simplification. We identify the limitations of 
the algorithm and suggest in the subsequent section an 
improved implementation which uses a variation of k-
means clustering in order to find optimal billboard 
planes. We conclude with an analysis of the efficiency 
and approximation quality of our algorithm. 

2 Billboard Clouds 
Billboard clouds represent models as a set of planes 
with texture and transparency maps. The original 
algorithm proposed by Décoret et al. uses a geometric 
error threshold and a greedy method to select suitable 
representative planes from a discrete plane space. The 
selection of planes is based on a so-called density 
measure that incorporates three constraints: all 
vertices of faces must be within a specified error 
distance, the area of faces projected onto the plane 
should be maximised, and a plane must contain all 
nearly tangential faces in its neighbourhood. 

2.1 Shortcomings and Suggested 
Improvements 

The original algorithm for generating billboard clouds 
described in [3] contains several limitations. Since the 
plain space is discreet it must have a high resolution 
in order to enable the algorithm to find planes with a 
low approximation error. However, a high resolution 
plane space increases the running time of the 
algorithm since more planes must be tested. In this 
paper we make the plane space redundant and instead 
suggest a variation of k-means clustering in order to 
find optimal billboard planes for a set of faces.  

Another limitation of the algorithm is that the user can 
not specify the desired number of billboards. Instead 
several parameters have to be selected (the plain space 
resolution and a geometric error and a measure of 
tangentiality for the selection of planes) and the 
algorithm will find a billboard cloud fulfilling these 
constraints. For many Computer Graphics application 
it is desirable to be able to specify the complexity of a 
model. The algorithm presented in this paper will 
provide this capability. 

3 An Improved Algorithm for 
Generating Billboard Clouds 

The main idea of our algorithm is to let the user 
specify the number k of desired planes and to use a 
variation of k-means clustering to find a suitable set 
of k billboard planes. 

3.1 K-Means Clustering 
K-means clustering is a popular method for 
partitioning data points into disjoint subsets so as to 
minimise a sum-of-squares criterion [4]. The basic 

idea is to first assign the data points (at random) to the 
K sets. Then the centroid is computed for each set and 
the data points are assigned to the centroids according 
to a distance metric. These two steps are repeated 
until there is no further change in the assignment of 
the data points. 

In our case we want to find k planes and assign 
triangular faces to them in a way which minimises a 
given error metric. We choose as error metric the 
distance of a triangle’s centroid to a plane. The 
distance is computed as the sum of the Euclidean 
distances of the triangle vertices to the plane. We can 
omit the division by three necessary to compute the 
average value since linearly scaling the metric does 
not influence the result of the clustering algorithm. 

Next we have to find best fit planes for each cluster of 
triangles. We achieve this using Singular Value 
Decomposition (SVD) [5] and our distance metric for 
triangles. A drawback of this method is that the SVD 
only considers vertices of triangles but not their 
normals. Hence it is possible that all triangles 
assigned to a best fit plane are perpendicular to it. In 
this case the projected area of all triangles is zero and 
the billboard contains no information about the model. 
However, we found that despite this drawback the 
method works well in practice [8]. 

The proposed k-means clustering algorithm gradually 
approaches a locally optimal solution but might not 
stop at a stable state since “flipping” of triangles 
between clusters can occur. Hence we compute for 
each step the total distance of triangle centroids to 
their associated billboards. The k-means clustering 
algorithm terminates if a local minimum for this total 
distance is reached. 

3.2 Assignment of Triangles to Empty 
Clusters 

During the proposed clustering algorithm some 
clusters might end up with no triangles assigned.  We 
detect such empty clusters in each iteration and assign 
the “worst” triangle from all other clusters to it. In this 
case the “worst” triangle is the one which has the 
largest angle between its normal and the normal of its 
best fit plane. As a result the algorithm will compute a 
new best fit plane containing this triangle.  

3.3 Initialisation 
An important aspect of our algorithm is its 
initialisation, i.e. the initial distribution of billboard 
planes. Our first implementation used randomly 
distributed and oriented planes. However, we found 
that the quality of results varied drastically when 
repeatedly running the algorithm. Hence we 
developed a more advanced initialising procedure 
which consists of three steps as described in the 
following paragraphs.  



 
Figure 1: Distribution of clusters after step 1 of the initialisation procedure (a), after step 1 and 2 (b), and using 

all three steps of the initialisation procedure (c). 

 
 
STEP 1 - Minimal Discrete Energy Distribution of 
Tangent Planes on a Bounding Sphere:  

The first step of the initialisation procedure starts 
with computing a bounding sphere of the model. We 
then distribute k points over the sphere’s surface 
using a minimal discrete energy method [6,7], 
compute the sphere’s tangent planes at these points, 
and assign triangles to these planes (clusters) using 
our minimal distance criterion. Figure 1 (a) shows the 
distribution of clusters after step 1 of our initialisation 
procedure. It can be seen that the coverage of clusters 
can vary strongly (e.g. compare the two clusters 
indicated by the red circles).  

STEP 2 - Cluster Coverage Variance Reduction:  

In order to reduce the differences in coverage we 
employ another k-means algorithm which uses the 
following distance metric and centroid definition: 
The centroid of a cluster is computed by projecting 
all triangles onto its best fit plane and by determining 
the centroid of the triangle closest to the centroid of 
all projected triangle vertices. The distance metric is 
given by the average distance of the vertices of a 
triangle to the centroids of the cluster. The 
improvement achieved by adding this step to the 
initialisation procedure is illustrated in figure 2 (b). 
However, the results are still not satisfactory because 
the k-means algorithm optimises coverage only 
locally.  

STEP 3 - Iterative Removal of Minimum 
Coverage Clusters:  

In order to reduce the differences in coverage even 
further we employ an iterative procedure which 
removes in each step the smallest cluster, 
redistributes the triangles to the remaining clusters, 
and creates a new cluster using the plane of the 
triangle which is furthest away from the centroid of 
the largest cluster. The procedure is stopped when the 
variance of cluster radii reaches a local minimum. 
Here we define the cluster radius as the largest 
distance between the centroid and any vertex of that 

cluster. Figure 1(c) demonstrates that the procedure 
dramatically reduces variances in cluster coverage.  

4 Crack Reduction 
The algorithm described so far often creates billboard 
clouds with clearly visible cracks (see figure 2 (b)). 
There are several possible reasons for this:  

• The texture map representing the projection of 
two adjacent triangles can contain a gap 
between them due to alias problems.  

• Because of the way best fit planes are 
computed some triangle information can be 
missed when projecting them onto billboards 
(e.g. if a triangle is orthogonal to its best fit 
plane).  

• Because each triangle is projected onto only a 
plane, there will be cracks between billboards 
as indicated by the dashed ellipsoid in figure 3. 

In order to reduce the number and severity of cracks 
we project some triangles onto multiple planes. We 
determine the triangles which must be projected onto 
multiple planes by first computing for each plane the 
smallest envelope containing all triangles of that 
cluster. Next we determine all pairs of envelopes 
which intersect. Two envelopes intersect if each 
envelope contains a triangle which has at least one 
vertex lying inside the other envelope. For all 
intersecting envelopes we project those triangles 
which lie inside their intersection onto both planes. If 
only a part of a triangle lies within the envelope of 
another plane we project only that part. This is 
achieved by using a stencil buffer for its rendering. 
The process is illustrated in figure 4. More 
implementation details are described in [8]. Figure 2 
shows a polygonal model (a) and its billboard cloud 
representation before (b) and after (c) crack reduction. 



 
 

Figure 2: A polygonal model (a) represented by a 
billboard cloud before (b) and after (c) crack 

reduction.  

 
 

 

Figure 3: Crack between billboards.  

 

 
Figure 4: Crack removal by multiple projections.  

 

5 Results 
In order to evaluate the quality of the results 
produced with our algorithm we compute four 
metrics for the visual error between a model and its 
billboard cloud. Each error is computed by summing 
the error for 50 different view directions obtained by 
evenly distributing 50 points over a sphere [6,7]. We 
use the following four error metrics to quantify the 
error between an image of the original model and the 
corresponding image of a billboard cloud obtained 
from a given view direction:  

Colour error: The colour error between the two 
images with the pixels pij and qij is defined as 

ij ij
2

,  where p  and q  show the model
ij ij

i j
−∑ p q  

We express pixel colours in CIE Luv coordinates 
since this colour space is perceptually uniform, i.e. 
the Euclidean distance between two colours is always 
proportional to their perceptual distance [9].  

Depth error: The depth error between the two 
images is defined as the sum of the Euclidean 
distances between the depth buffer values of all 
pixels showing the model in both images.  

Gap error: The gap error between the two images is 
defined as the number of pixels where the original 
model is drawn but not the corresponding billboard 
cloud.   

Coverage error: The coverage error between the two 
images is defined as the number of pixels where the 
billboard cloud is drawn but not the original model.  

We have compared the visual quality of billboard 
clouds generated with our algorithm for different 
numbers of billboards. Figure 5 (a) shows results 
obtained for the model in figure 2 (a). It can be seen 
that both the colour error and the depth error decrease 
nearly monotonically. Both errors seem to converge 
towards a non-zero value, which indicates that it is 
not possible to completely reconstruct a polygonal 
model with billboard clouds. The results also suggest 
that for a given polygon model there is a certain 
number of billboards beyond which little 
improvement in visual quality is achieved. In this 

a) 

b) 

c) 



Figure 5: Error measures for the model shown in figure 2 (a) computed without (a,b) and with (c) crack 
reduction. 

 
 

 
Figure 6: Error measures for the model shown in figure 2 (a) computed using the original billboard cloud 

algorithm by Décoret et al. [3]. 

 

example using 150 billboards seems to give a good 
balance between visual quality and simplicity of the 
representation. 
 
Figure 5 shows the results for our algorithm without 
(b) and with (c) crack reduction, respectively. It can 
be seen that without crack reduction the gap error 
(number of missing pixels) increases approximately 
linear with an increasing number of billboards. Using 
our crack reduction algorithm dramatically reduces 
the number of cracks at the expense of creating 
erroneous pixels showing the model. However, the 
number of excess pixels reduces with an increasing 
number of billboards.  
 
We have also compared our algorithm with the 
original billboard cloud algorithm by Décoret et al. 
[3]. The results of applying that algorithm to the 
model shown in figure 2 are displayed in figure 6. 
Since the algorithm by Décoret et al. does not allow 

the specification of a fixed number of billboards we 
have used a plane space of fixed resolution and 
varied the error tolerance values in order to get 
results for different numbers of billboards. It can be 
seen that the colour, depth and gap error reduce with 
an increasing number of billboards. The colour error 
is consistently larger than with our algorithm. The 
gap error is smaller than for our algorithm but the 
depth error is again considerably larger. This can be 
partially explained by the fact that the original 
algorithm doesn’t differentiate between front and 
back faces and front facing polygons can be mapped 
onto back facing billboards. Hence when rendering a 
model produced with the original algorithm back face 
removal must be disabled. This has the effect that 
back faces cover most gaps between front facing 
polygons and the corresponding pixels are not 
counted in our gap error measure but in the depth 
error measure. In contrast our algorithm allows a 
differentiation between front and back faces and we 



can enable back face removal for billboard clouds of 
solid models. Additional measurements show that the 
execution speed of our algorithm is comparable to 
that of Décoret et al. when using a low resolution 
plane space and it is by an order of magnitude faster 
than their algorithm executed using a high resolution 
plane space.  

6 Conclusion 
We have presented a new algorithm for generating 
billboard clouds which allows the user to specify an 
arbitrary number of billboards. Our algorithm uses a 
variation of k-means clustering and makes it possible 
to find arbitrarily oriented and positioned best fit 
planes for billboards. Initial results suggest that our 
algorithm is faster than the original billboard cloud 
algorithm by Décoret et al. and that it produces more 
truthful results. More experiments are needed in order 
to compare the algorithms for different models and 
different plane space resolutions. 
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