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Abstract 
Although magnetic resonance tissue tagging is a useful tool for the non-invasive measurement of 
three-dimensional (3-D) heart wall motion, the clinical utility of current analysis techniques is 
limited by the prohibitively long time required for image analysis. A method was therefore 
developed for the reconstruction of 3-D heart wall motion directly from tagged magnetic 
resonance images, without prior identification of ventricular boundaries or tag stripe locations. 
The method utilized a finite-element model to describe the shape and motion of the heart. 
Initially, the model geometry was determined at the time of tag creation by fitting a small 
number of guide points which were placed interactively on the images. Model tags were then 

created within the model as material surfaces which defined the location of the magnetic tags. 
An objective function was derived to measure the degree of match between the model tags and 
the image stripes. The objective was minimized by allowing the model to deform directly under 
the influence of the images, utilizing an efficient method for calculating image-derived motion 
constraints. The model deformation could also be manipulated interactively by guide points. 
Experiments were performed using clinical images of a normal volunteer, as well as simulated 
images in which the true motion was specified. The root-mean-squared errors between the known 
and calculated displacement and strain for the simulated images were similar to those obtained 
using previous stripe-tracking and model-fitting methods. A significant improvement in analysis 
time was obtained for the normal volunteer and further improvements may allow the method to 
be applied in a ‘real-time’ clinical environment. 

Keywords: 3-D reconstruction, finite-element model, heart wall motion, magnetic resonance 
imaging, magnetic resonance tagging 

Received June 20, 1998; revised January 29, 1999; accepted February 22, 1999 

1. INTRODUCTION 

Magnetic resonance (MR) tissue tagging is a useful clinical 
tool for the non-invasive measurement of heart wall motion 
(Zerhouni et al., 1988; Axe1 and Dougherty, 1989). Typically, 
multiple parallel tagging planes of magnetic saturation are 
created orthogonal to the image plane in a short time interval 
(5-12 ms) on detection of the R wave of the ECG. Often 
a grid of tag planes is created, whose intersection with 
the image plane gives rise to dark bands (‘image stripes’), 
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l-2 mm in width and spaced 5-10 mm apart. The image 
stripes deform with the tissue and fade according to the 
time constant Tl (-800 ms in the myocardium). Figure 1 
shows a midventricular short-axis slice at end diastole (ED) 
and end systole (ES). Techniques for stripe tracking and 
strain estimation have been developed and validated in both 
two dimensions (2-D) (Young et al., 1993; Kraitchman et 

al., 1995) and three dimensions (3-D) (Young et al., 1995). 
Recently, a number of clinical studies have used MR tagging 
to characterize regional left ventricular (LV) wall motion and 
deformation in normal and diseased hearts (Palmon et al., 
1994; Young et al., 1994). 
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Figure 1. A midventricular short-axis slice at end diastole (left) and end systole (right), showing MR tagging stripes 

The clinical utility of this technique is currently limited by 
the prohibitively long time required for image analysis. Most 
analysis methods require the prior extraction of the inner and 
outer boundaries of the LV in each image, together with the 
localization of the image tag stripes in each frame (O’Dell 
et al., 1995; O’Donnell et al., 1995, 1996; Young et al., 

1995; Park et al., 1996a,b; Denney and McVeigh, 1997; 
Declerck et al., 1998). Several semi-automatic methods 
have been developed for tracking the tags and identifying 
the boundaries (Guttman et al., 1994; Young et al., 1995; 
Denney, 1997). However, the image intensity information 
is insufficient to completely characterize the boundary and 
tag locations, due to limited spatial and temporal resolution, 
lack of contrast between muscle and blood and respiration 
and gating artefacts. User interaction with the tracking and 
segmentation processes is therefore essential. As 3-D studies 
typically comprise more than 200 images (5-12 short-axis 
slices and 5-8 long-axis slices, each with 5-20 frames), the 
time required for user interaction can be substantial. 

This paper describes a method for reconstructing regional 
LV motion and deformation directly from a set of long- 
and short-axis tagged MR images, without the need for 
separate boundary and tag tracking. Previous finite-element 
(FE) modelling techniques (Young et al., 1995, 1996) were 
extended to allow the model to deform directly under the 
influence of the images. A set of ‘model tags’ were embedded 
within the FE model, thereby defining a set of material 
surfaces which determined the location of the magnetic tag 
planes. Since the model tags deform with the FE model, 
intersections of the model tags with the image planes could 
be matched with the image stripes. User-derived constraints 
were imposed in the form of a small number of ‘guide 
points’, which could be used to manipulate the model. These 
were used to determine the initial geometry and establish 

correspondence from frame to frame. The use of the 3-D 
model to track the image stripes simplified the image analysis 
problem since model tags were constrained to move in a 
coherent 3-D manner, allowing information from adjacent 
slices to influence the solution in any particular slice. User 
interaction was minimized since each guide constraint acted 
directly on the 3-D model. In addition, the 3-D myocardial 
deformation in any region of the heart can be calculated 
directly from the fitted model. 

2. METHODS 

2.1. Finite-element model 
As done previously, a 16-element FE model was constructed 
to describe the geometry and motion of the LV (Young 
et al., 1994, 1995). Each element employed bicubic 
Hermite interpolation in the circumferential and longitudinal 
directions, with linear interpolation transmurally (Figure 2). 
Nodes shared position and derivative information between 
elements, giving C’ continuity. Within each element, the 
geometric coordinate field x was given as a function of 
element or material coordinates 6 by a weighted average of 
nodal values: 

where xn are the nodal values and Qa are the element basis 
functions. Note that the element coordinates c of material 
points do not change (by definition) as the model deforms. 

Initially, the model was prescribed in a prolate spheroidal 
coordinate system (h, F, 0). Image fiducial markers were 
required to determine the initial position of the model with 
respect to the ED images. These were: (i) the location of 
the central axis at the centre of the LV in an apical short-axis 
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Figure 2. The 16.element model. (Outer surface only shown for 
clarity.) Element coordinates <I, 62, <3 are in the circumferential, 
longitudinal and radial directions respectively. Rectangular Carte- 
sian (x, y, z) and prolate spheroidal (h, EL, Q) coordinate’systems are 
also shown. 

image; (ii) the location of the central axis at the LV in a basal 
short-axis image; (iii) the approximate centroid of the right 
ventricle (RV); (iv) a set of points around the basal margin 
of the LV muscle as seen in the long-axis images; (v) the 
location of the apex as seen in a long-axis image. 

The origin was placed on the central axis of the LV one 
third of the distance from the base to the apex. Nodes 
were placed at equally spaced intervals in the two angular 
coordinates (p, 0) and at a constant radial coordinate (1). The 
centroid of the RV had 0 = 0 and the extent of the model in 
the p direction was governed by the basal margin points. The 
distance from apex to base was used to determine the focal 
length of the prolate system and provided an overall scale 
factor for the LV. 

2.2. Initial geometry 
As a first step in the motion reconstruction problem, the 
approximate geometry of the LV at the time of tag creation 
(ED) must be determined. This was done interactively 
by manipulating a small number of guide points on the 
images. Due to the lack of blood/muscle contrast in tagged 
myocardial images, the endocardial contour is often difficult 
to determine. Image-derived constraints were therefore not 
employed for the geometry determination. In practice, the 
endocardial boundary cannot often be seen in the ED images 
because there has been insufficient time to wash out the tags 
in the blood pool. The geometry of a subsequent time frame 
(e.g. the second or third frame) was therefore determined first. 

This was then deformed to the approximate ED position by 
displacing the guide points, using the relative motion of the 
tag stripes to indicate the guide point displacements. 

To place a guide point, the user clicked on an image 
position and indicated the associated surface (epi- or endo- 
cardium). Each guide point was projected onto the model 
along lines of constant b and f3 and only the h field was 
fitted by the linear least-squares method. Since there were 
far fewer guide points than model parameters, a smoothing 
term was added to the error function to minimize the first 
and second derivatives of the displacement field, as has been 
done previously (Terzopoulos, 1988). The error function 
minimized was therefore 

E = S(h) + c G’&) - h,)2 (2) 
g 

where S(h) denotes the smoothing term, h, are the h values 
for the guide points and k(tgg) denotes the h values of the 
corresponding model points. The number of guide points 
employed must be sufficient to provide an approximate 
ED shape for input to the stripe-tracking algorithm. Only 
an approximate geometric description was required since 
boundary information was not used for the subsequent motion 
and deformation estimation. 

Although the prolate spheroidal coordinate system is 
useful for representing the initial geometry, LV motion is 
not easily described in a polar system. The initial geometry 
was therefore converted to rectangular Cartesian ‘cardiac 
coordinates’ using the transformation 

x = f cosh(h)cos(p) 
y = f cash(h) sin(p) cos(0) 
z = f sinh(h) sin(p) sin(o) 

(3) 

where f is the focal length and x, y, z are the cardiac 
coordinates. The nodal values of the model were then given 
in cardiac coordinates and each coordinate field (x, y, Z) was 
interpolated using bicubic Hermite/linear basis functions as 
in Equation (1). 

2.3. Model tags 
Image stripes arise from the intersection of tagged material 
surfaces with the image plane. They therefore provide some 
information about the underlying deformation of the heart 
but do not represent the motion of material points. Due 
to the tomographic nature of the imaging process, material 
points move through the fixed image slice planes during 
the deformation. This can result in the appearance and 
disappearance of image stripes from frame to frame due to 
the elliptical shape of the LV. In order to apply the correct 
image motion constraints to the model, a set of ‘model tags’ 
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intersection of tag plane 
with element subdivision 

(a) 

intersection of image plane 
with model tag triangles 

(b) 

Figure 3. Calculation of model tags (a) and model stripe points (b). (a) Each model element is subdivided into small linear elements (thin 
lines). The tag planes F’t (dashed lines) are intersected with the element subdivision using a marching cubes algorithm. This results in a set of 
triangles (thick lines) which define the model tags. (b) Model tags (thick lines) are intersected with the image planes Pi (dashed lines) resulting 
in a set of model stripe points (x). 

was created within the FE model. Model tags represent the 
material surfaces within the heart tissue which are tagged 
with magnetic saturation. They are required to define an 
image-based objective function which is used to deform the 
model to match the image stripes. 

The location and orientation of the tag planes at the time 
of their creation (ED) were determined from the tagging 
pulse sequence parameters. Each tag plane Pt was described 
by a point on the plane pt and a normal nt to the plane. 
Similarly each image slice plane Pi was described by a 
point pi and normal ni. Each tag plane was associated 
with one or more image slice planes; let Ti denote the set 
of tag planes associated with each image plane Pi. Model 
tags were found using a subdivision algorithm (Lorensen 
and Cline, 1987; Young et al., 1996), as follows. Each 
element was subdivided into N subelements with subelement 
nodes equally spaced in c-space. The tag planes were 
then intersected with the subelement mesh assuming a linear 
variation of 6 between subelement nodes. The result was a set 
of triangles whose vertices were given in element (material) 
coordinates. Figure 3a shows a schematic of this procedure. 
Since the vertices were stored in material coordinates, the 
location of the model tags was constant in (cl, 52, cs)-space, 
whereas their physical location in (x, y, z)-space (cardiac 
coordinates) was determined by the nodal values xn. 

At any stage in the model-fitting and deformation process, 
a set of ‘model stripe’ points could be found by intersecting 

the model tags with the image planes. For each model tag 
triangle which intersected the image plane, the intersecting 
edges were interpolated to result in a set model stripe points 
spaced - 1-2 mm apart (Figure 3b). 

2.4. Model deformation 
Let M(i, t) denote the set of model stripe points associated 
with each Pt E Ti. The model was deformed from frame to 
frame to minimize the following objective function: 

E(x) = S(x)+C C C mj [nr.(x(&) - Xj)12. (4) 
Pj PIEZ jEM(i,r) 

The first term is a smoothing constraint included to regularize 
the problem in the case of non-uniformly distributed data. 
The second term is an image displacement constraint which 
measures the match between model stripe points and image 
stripe points in the direction orthogonal to the tags: X(cj) are 
the cardiac coordinates of each model stripe point j E M(i, t) 
and xj are image stripe points associated with X(cj). The 
wj are weights derived from the image intensity function 
and n, are the normals to the original tagging planes Pt. 

The dot product employed in Equation (4) is a statement 
of the aperture problem: image stripes provide information 
about displacement in the direction normal to the tag, whereas 
the position of the material point along the tag is unknown. 
This constraint is similar to displacement constraints used 
previously in optical flow problems (Hildreth, 1984). 



Model tags 365 

The smoothing term measured the variation of the de- 
formation from a prior geometry, as described previously 

(Young et al., 1995): 

where F is the deformation gradient tensor defined with 
respect to the rectangular Cartesian cardiac coordinate system 
and 1]]1; is the Frobenius norm. The smoothing weights 
were set small enough to have negligible effects in regions 
containing sufficient data points. In regions with few or no 
data points, the effect of this smoothing term was to reduce 
the variation of deformation across the model (Young et al., 

1995). 

based image constraints (Davatzikos and Prince, 1995, 1996). 
Finally, the weight wj for each image stripe point was 
calculated to give a measure of the confidence of the image 
displacement constraint and was given by the maximum value 
of the filtered image in the neighbourhood. Myocardial pixels 
with low weight were therefore located either between stripes 
(where the search neighbourhood did not include a stripe 
centre) or on stripes running in the other direction. 

The error function Equation (4) was minimized using an 
iterative non-linear least-squares procedure [see the appendix 
and Young et al. (1996)]. In summary, each iteration 
consisted of the solution of Equation (4) by linear least 
squares (keeping the cj constant), and the model stripe points 
x((j) were recalculated before the next iteration, along with 
their associated image stripe points xj. 

2.5. Image stripe points 
Image stripe points were associated with each model stripe 
point by searching the image in a small neighbourhood for the 
most likely point on the image toward which the model stripe 
point should displace. For each pixel, a likelihood function 
was defined to measure the probability that the pixel is located 
on the centre of an image stripe. The likelihood function 
was given by the output of stripe detection filters (one for 
each stripe orientation) convolved with the image. The stripe 
detection filters had a Gaussian shape in the direction parallel 
to the stripe and a second derivative of a Gaussian in the 
direction normal to the stripe (see Figure 4). The scale of the 
filter was tuned to the width of the tag stripes (in this paper 
all filters had o = 1.5 pixels). The search was carried out in 
a small one-dimensional (1 -D) neighbourhood centred about 
each model stripe point consisting of only those pixels in the 
direction orthogonal to the original tag plane and less than 
half the inter-stripe spacing from the model stripe point. 

Previous studies have shown that image stripe orientations 
do not change substantially during the cardiac cycle (typically 
t20’). The search direction was therefore kept constant 
throughout the tracking process (orthogonal to the original 
stripes). This enabled the result of the search to be 
precalculated before the stripe-tracking process. For each 
image, a displacement image was generated which stored 
the displacement from each pixel to the centroid of the 
filtered image in the search neighbourhood. To maintain 
subpixel resolution, the displacement was multiplied by a 
scaling factor before being stored as a 1 byte/pixel image. 
The weight for each pixel was similarly precalculated as an 
image. Figure 4 shows an example of a short-axis image 
at ES, showing raw, filtered, displacement and weighting 
images. The precalculated displacement and weighting 
images allowed fast calculation of the image displacement 
constraints: for each model stripe point the displacement to 
the associated image stripe point together with the associated 
weighting was given by a simple look-up operation. 

2.6. User interaction 
It is not uncommon for regions of the LV to move more 
than one stripe spacing between frames. User interaction 
was therefore required in order to bring the model into 
approximate correspondence with the image stripes (i.e. 
within range of the image displacement constraints). A fit 
to guide points was performed by minimizing Equation (4) 
above with a small number of guide points in place of the 
image stripe points: 

E(X) = S(X) + C c wg [nt+(6g-g> - xg)]* (6) 
g pw 

Rather than take the image point with the maximum where each guide point xg is associated with one model stripe 
filtered image value, the centroid (or centre of mass) of the point x(tg) on the tag plane Pr(,) corresponding to the guide 
I-D neighbourhood was used as the image stripe point. The point g. The smoothing term was the same as Equation (5) 
centroid was calculated as the average of all the points in the and ensured a smooth interpolation between guide point 
neighbourhood weighted by their filtered image values. This displacements. To define a guide displacement the user 
was a more robust measure of the position of the stripe centre clicked on an image point to locate the guide point and then 
than the maximum filtered value, and allowed the calculation clicked on a model stripe point to define the associated model 
of the image stripe centre to subpixel resolution. Centre- tag. At each iteration of the minimization of Equation (6), the 
of-mass image constraints have previously been employed x(&J were recalculated as the model stripe point closest to 
for active contour models and are more stable than gradient- xg on the corresponding tag plane P,(,). After these ‘guide 
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Figure 4. Precalculation of image displacement constraints as images. Top left, raw image; top right, result of the stripe detection filter in 
one orientation; bottom left, displacement image (lighter grey levels indicate displacement towards the top right, darker grey levels indicate 
displacement in the opposite direction); bottom right, weight image (lighter grey levels indicate higher weighting). 

iterations’ the model stripe points should be within range of 
the image displacement constraints and the fit could proceed 
with ‘image iterations’ as in Equation (4). The user was also 
able to interact with the image iteration by selecting a group 
of model stripe points and redefining their associated image 
stripe points. 

2.7. Image acquisition 
In viva clinical images of a normal volunteer were acquired 
with a Siemens Vision MR scanner using breath-hold seg- 
mented k-space imaging sequences. Eight parallel short- 
axis slices were obtained orthogonal to the central axis of 
the LV spaced 11.5 mm apart, together with six long-axis 
slices oriented 30” apart about the LV central axis. Each 
slice was 8 mm thick and comprised 19 frames through the 
cardiac cycle. The image resolution ranged from 1.17 to 
1.37 mm/pixel, depending on the field of view. 

2.8. Simulated deformation 

Simulated images were also generated of a prescribed de- 
formation, in order to validate the method and determine 
whether errors are introduced in the calculation of model 
tags and model stripe points or in the search for image stripe 
centroids. The deformation was prescribed to mimic the 
displacements seen in the normal LV. An initial regular ED 
geometry was constructed in prolate spheroidal coordinates 
(f = 42 mm), with inner surface at h. = 0.60 and outer 
surface at h = 0.85. The final ES geometry had an inner 
surface at h = 0.40 and outer surface at 1 = 0.82, with 
a longitudinal contraction of 15% in p and uniform twist 
in 19 from 24” and 21” at the endocardial and epicardial 
apex respectively to -8” and -7” at the endocardial and 
epicardial base respectively. The prolate model was converted 
to rectangular Cartesian coordinates (Figure 5) and model 
tags (8 mm apart) were calculated for eight short-axis images 
spaced 10 mm apart and six long-axis images spaced 30” 
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Figure 5. Prescribed (simulated) model deformation. Left, ED; right, ES. The inner surface is shaded and lines denote element boundaries. 

Figure 6. Simulated images from the prescribed deformation. ED (left) and ES (right) images from a short-axis slice. 

apart about the central axis. The number and placement of 
the image and tag planes were chosen to mimic the typical 
case in clinical imaging. 

Simulated images were then calculated at a resolution of 
I. 17 mm/pixel by assigning each pixel within the inner and 
outer boundaries to a representative myocardial grey level 
and each pixel within 1 mm of a model stripe point to a 
representative stripe grey level. Figure 6 shows resulting ED 
and ES images from a short-axis slice. 

The simulated images were also analysed using a previ- 
ously described stripe-tracking and model-fitting procedure 
(Young et al., 1995). Briefly, the stripes were tracked in each 
slice using an active contour model of the 2-D tagging grid. 
The finite-element model was then used to reconstruct the 
3-D displacements of material points by fitting the motion 

from ES to ED. Then the ED model was deformed to ES by 
fitting the reconstructed 3-D displacements of the stripe data. 
This method has been validated using a gel phantom which 
was constrained to undergo 3-D deformations for which 
exact solutions could be derived analytically (Young et al., 

1995). 

3. RESULTS 

3.1. Initial geometry 
In total 103 guide points were required for the ED geometry 
of the normal volunteer (53 for the endocardial surface and 
50 for the epicardial surface). As there were 14 image slices 
this represents 334 points/surface/slice. Figure 7 shows the 
final ED geometry together with the associated guide points. 
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Figure 7. Model fit to guide points at ED. Endocardial surface 
shaded, guide data shown as ‘+‘. Corresponding model locations 
(joined to each guide point with a line) are shown with cross-hairs. 

The geometry in the third frame was determined first, then 
the guide points were moved to match the motion of the 
stripes back to the ED frame. The process required < 10 min 
to complete, compared with -45 min to manually define 
each boundary on each slice individually and then fit the ED 
geometry. 

3.2. Model deformation 
Using the tag plane positions and orientations derived from 
the imaging parameters, 182 model tags were found within 
the ED geometry. The model was then deformed to each 
frame by fitting the location of the model stripe points to 
the image stripes. A small motion occurred between the tag 
creation and the time of the ED image, so this frame was also 
fitted in the same manner. The deformed ED geometry was 
then used as the prior (undeformed state) in the smoothing 

term (Equation (5) for all subsequent frames. Figure 8 shows 
three of the model tags (two from the short-axis images and 
one from a long-axis image) at tag creation and ES. 

Figure 9 shows short- and long-axis images at ES with 
model stripe points overlayed. Typically, one guide iteration 
(-30 guide points) and two image iterations (-4900 points) 
per frame were sufficient to achieve good correspondence 
between image stripes and model stripe points. 

The 3-D tracking procedure took -5 min per frame, 
representing a considerable time saving over the previous 
method (Young et al., 1995) which required definition of 
the inner and outer boundaries and image stripe tracking for 
each frame followed by 3-D model fitting (-45 min/frame). 
Each iteration (least-squares fit) took -30 s to compute on a 

Figure 8. Model tags at the time of creation (left) and at ES (right). 
The two lighter tags are from the short-axis images, while the dark 
tag is from a long-axis image. 

180 MHz R5000 workstation, however the code has not been 
optimized for execution speed. 

3.3. Simulated deformation 
The simulated ED geometry was deformed to fit the simulated 
image stripes in the same manner as above. Typically, two 
guide points per frame were required to bring the model into 
approximate correspondence. The root-mean-squared (RMS) 
errors in the displacement were 0.38 mm in X, 0.34 mm in y 
and 0.34 mm in z (the image pixel size was 1.17 mm). RMS 
errors in Lagrangian strain were 0.022 in circumferential 
strain (true range -0.357 to O.OSS), 0.021 in longitudinal 
strain (true range -0.350 to -0.117) and 0.187 for radial 
strain (true range 0.4460.930). 

These images were also analysed using a previously 
described 2-D stripe tracking algorithm and 3-D finite- 
element model-fitting technique. The RMS errors of the 
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Figure 9. Short- (left) and long- (right) axis images at ES with model stripe points overlayed. 

resulting displacement were 0.29 mm in X, 0.38 mm in y and 
0.38 mm in z. Strain estimates had RMS errors of 0.023 in 
circumferential strain, 0.020 in longitudinal strain and 0.186 
in radial strain. Thus the direct 3-D tracking method resulted 
in similar errors to the 2-D tracking&D fitting method. 
The error was greatest in the radial (transmural) direction 
and was mainly due to the lack of tag resolution in this 
direction, especially at the apex where there was only one 
stripe orthogonal to the radial direction. 

4. DISCUSSION 

This paper describes a method for directly reconstructing the 
shape and motion of the LV from short- and long-axis tagged 
MR images. The use of a 3-D model to track the stripes 
implicitly constrained the motion in each slice to be compat- 
ible with its 3-D neighbours. Thus, all stripes in all images 
contributed to the tracking process in a coherent 3-D manner, 
reducing the tracking errors which can arise from individual 
image analysis. User interaction was also constrained to act 
on the 3-D model, thereby maintaining compatibility between 
displacements and reducing the amount of interaction. Novel 
features of the method were: (i) the use of very sparse guide 
points in combination with model smoothing to approximate 
the geometry at ED and provide a user interface to correct 
for tracking errors; (ii) the calculation of model tags as 
material surfaces of arbitrary orientation within the model; 
and (iii) precalculation of the image displacement constraints, 
reducing the search for corresponding image stripe points to 
a simple look-up operation. 

Previously, the 3-D reconstruction of LV motion from 
tagged MR images has required the prior identification of 
the inner and outer boundaries of the heart together with the 

location of the image stripes. Young et al. (1995) described 
a tracking procedure in which the stripes were tracked 
separately for each slice using an active contour model of the 
2-D tagging grid. The 3-D motion of material points was then 
reconstructed by fitting a finite-element model to the tracked 
stripe data. The FE model and objective function were similar 
to the present method; however, the minimization is now 
an iterative procedure because the location of the element 
(material) coordinates of the image stripe points are not 
known a priori. This increase in computational complexity 
is offset by the reduced user interaction and the simultaneous 
tracking of all image slices. 

Park et al. (1996a, b) developed a class of deformable 
model with parametric global deformations which varied 
locally to capture the heart motion. The deformation func- 
tions governed twist, radial and longitudinal deformation, 
and model parameters were fitted to a priori contour and 
stripe data. Rather than model the tag surfaces, tag planes 
were assumed to translate without bending in the through- 
plane direction from frame to frame. Boundary points 
were included in the deformation analysis to compensate for 
the lack of tag data resolution in the transmural direction. 
Boundary edge information could easily be added to the 
direct 3-D tracking method described above; however, the 
edge information is obscured by the tagging saturation pulses, 
the variable blood grey level and the presence of the papillary 
muscles. The addition of boundary data would therefore 
require increased user interaction. 

O’Donnell et al. (1995, 1996) described a deformable 
model with both global and local components of motion. 
Deformation parameters were fitted to a priori contour 
and stripe data. Global deformation parameters were not 
used in the current 3-D tracking method; rather, guide 
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points were used to obtain an approximate deformation 
before image data were applied. A model-based smoothing 
constraint [Equation (5)] was used to penalize the variation of 
deformation around the model and interpolate the very sparse 
guide data. This allowed a globally smooth deformation to 
be produced interactively in an intuitive manner without the 
need to separate global from local deformations. 

Denney (1997) described a stripe-tracking procedure 
which did not require prior knowledge of the inner and 
outer contours of the heart. An active contour model was 
used to track stripes across an entire region of interest and 
a maximum a posteriori (MAP) hypothesis test was used 
to segment myocardial tag stripes from background. Such 
contour-free stripe data could be used as input to model-free 
motion reconstruction methods such as the method developed 
by Denney and McVeigh (1997), or that of Kerwin and Prince 
(1997). These methods do not require the prior formation of 
a geometric model; however, regional analyses of material 
strains require further processing. One advantage of a model- 
based approach is that the same model can be used to evaluate 
regional strain or deformation parameters, using the model to 
register corresponding regions between patients. 

Radeva et al. (1997) developed a B-spline tensor product 
3-D model (a ‘B-solid’) to describe the deformation of the 
LV. The parameters were fitted directly to the stripes in 
short-axis images using a snake-type algorithm. The method 
could be used to reconstruct 3-D motion by including parallel 
long-axis images, provided that all tag planes correspond 
to isoparametric surfaces in the B-solid. This approach is 
very similar to the present work in that a 3-D model is 
fitted directly to image data. We have used a heart-based 
model to describe the LV geometry and deformation since this 
provides a natural representation of both the geometry and the 
deformation, whereas the tag-based model of Radeva et al. 

(1997) must embed a separate description of the LV surfaces 
into the cuboid space described by the B-solid. Also, the FE 
models fitted using the present technique can be directly used 
in more complex FE analyses of stress and activation (Costa 
et al., 1996). Finally, no restriction is placed on the placement 
or orientation of the tag planes in the heart, since tags or 
images from the long-axis series generally are not orthogonal 
to the short-axis tags or images. 

The direct 3-D tracking method was applied to images 
simulated from a known deformation for the FE model. The 
purpose of this experiment was to determine whether errors 
are introduced in the calculation of model tags and model 
stripe points or in the search for image stripe centroids. The 
accuracy of displacement and strain estimation was similar 
to that of a previously validated stripe-tracking and fitting 
method, suggesting that these errors are due to the stripe data 
density and distribution rather than to methodological errors. 

A number of model and imaging parameters could effect 
the errors obtained. These include the number of elements, 
type of basis functions and the degree and type of smoothing 
[Equation (5)] used in the model, the number of images 
in each series and tag spacing, the number of model stripe 
points included in the fit and the design of the filters used 
to find the corresponding image stripe points. The optimum 
values of many of these parameters will depend on the 
disease processes occurring in the patients themselves, since 
heart motion is very dependent on the underlying pathology. 
Also, image quality generally degrades with the health of 
the patient, due to difficulty in maintaining a breath-hold 
and increased heart rate variability. A comprehensive error 
analysis must therefore await more data on cardiac motion in 
diseased states. 

In conclusion, the 3-D tracking method improves the 
clinical utility of 3-D tagged cardiac images by decreasing the 
time required for analysis. User interaction was minimized 
since each guide constraint acted directly on the 3-D model 
and could influence a number of images at once. This 

represents a substantial time saving over methods which track 
stripes in each slice separately. Further improvements to 
the algorithm, including more efficient solution schemes and 
hierarchical refinement of model complexity, should allow 
real-time interaction, thereby increasing its utility in the 
clinical environment. 
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APPENDIX. MINIMIZATION ALGORITHM 

A Levenburg-Marquardt algorithm (Marquardt, 1963) was 
used to minimize Equation (4), as had been done previously 
for RV surface models (Young et al.. 1996). Gaussian 
quadrature was used to calculate the integrals in Equation (5) 
allowing both smoothing, guide and image data constraints 
to be expressed in terms of sums of squares. The objective 
function Equation (4) can then be written as 

E = I/Sql12 + IlJq - pII (AlI 

where S is a matrix containing derivatives of the deformation 
gradient tensor at the Gauss points, J is a matrix containing 
model basis functions evaluated at {j and weighted by the tag 
normals, p is a vector containing components of Xj weighted 
by the tag normals and q is a vector of model parameters. 
Note that J varies with q, but S does not. 

The Newton method minimizes E by neglecting terms 
higher than second order in the Taylor series expansion, 
giving the following iteration: 

Hk(qk+l - qk) = -E aq k 

where H is the Hessian matrix of second derivatives of E. The 
right-hand side of Equation (A2) has a component due to the 
fact that <j can change with q. However, the error function 
Equation (4) measures the squared distance from each data 
point to the model position <j in the direction approximately 

perpendicular to the model tag surface. Since tj can only 
change within the model tag surface, the contribution to 
the first derivative of the error function due to changes in 
model position will be small. We therefore use the linear 
approximation 

aE 
- = S%q + JTJq - JTp. 
aq 

(A3) 
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Replacing the Hessian H with the linear approximation 
SrS + JTJ, and adding a term Al (A 2 0) to avoid non- 
positive definite H, gives the iteration 

(STS + J,TJk + Al)qk+t = Al + J,Tp. (A4) 

If A is large the step becomes small and in the direction 
of steepest descent; if A is small the update becomes a 
full Gauss-Newton step. In practice, all the iterations were 
performed with A = 0, equivalent to solving the linear 
problem that arises if the ej are assumed to be constant over 
the step. 


