
Comparing Hash Function Algorithms
for the IPv6 Flow Label

Lewis Anderson
land062@aucklanduni.ac.nz

Nevil Brownlee
n.brownlee@auckland.ac.nz

Brian E. Carpenter
brian@cs.auckland.ac.nz

Department of Computer Science
The University of Auckland

Computer Science Technical Report (2012-002)
March 2012

ISSN 1173-3500

Abstract
We compare several stateless hash algorithms for generating IPv6 flow labels, by testing them
against trace files of IPv6 traffic measured at four different sites. The criteria for comparison were
uniformity of the resulting distribution of hash values and computing time. Of the algorithms tested,
we recommend FNV1a-32. We also note how the hash values may be made hard for a third party to
predict.

1

Introduction
Every IPv6 packet header includes a 20-bit flow label in a fixed position [RFC2460] whose formal
definition is given by [RFC6437]. The choices made in that definition are explained in [RFC6436].
The primary usage envisioned for the flow label is to act as a “handle” for some form of load
distribution in the network, as described in [RFC6438] and [BALANCE]. The flow label is not
proof against forgery, so it cannot be used for reliable end-to-end signalling; for this and other
reasons, RFC 6437 recommends that it should be treated as a “best effort” field, and in particular
that it should be set to the same value for all packets considered to be a single application flow, in
the source computer or by a router as close to it as as possible. This value should be chosen from a
statistically uniform distribution, both to assist in its use for fair load balancing and to make it hard
for a malicious third party to predict its value in future flows.

RFC 6437 and RFC 6438 further recommend that the flow label value should be chosen by using a
stateless hash function applied to header fields in the packet. Typically those fields would be the
classical IP header 5-tuple:

• Source IP address
• Destination IP address
• Protocol number (in IPv6, the final Next Header value in the header chain)
• Source port number (for TCP, UDP, etc.)
• Destination port number

The advantage of a stateless function (one with no input other than the 5-tuple) is to avoid any need
for per-flow storage or per-packet lookup in the node computing and inserting the flow label value.
This is particularly advantageous if the flow label is inserted by a router, which runs at full line
speed and cannot afford to store and look up per-flow state for every packet. Other techniques could
be envisaged for use in the source computer (e.g. a counter and a cryptographic hash function as in
[GONT], or an application layer mechanism as hinted in [BALANCE]). However, this report is
focussed entirely on the choice of a stateless algorithm.

RFC 6437 avoids specifying an algorithm, but it does give one as an example. It is based on an
algorithm by von Neumann [VONN] that is known to give a reasonably uniform distribution and is
rapid to compute, since it uses only simple logical operations. The objective of the present report is
to evaluate this and other algorithms, both in terms of the uniformity of the resulting distribution of
flow label values, and of the computing time needed. The method is to test various algorithms
against the packet headers in real IPv6 packet traces of actual traffic. The remainder of the report
describes the algorithms tested, the trace files used as datasets, and the results obtained.

2

The Algorithms
The hash function algorithm given as an example in RFC 6437 is as follows:
 “For each packet for which a flow label must be generated,
 execute the following steps:

 1. Split the destination and source addresses into two 64-bit values
 each, thus transforming the 5-tuple into a 7-tuple.
 2. Add the following five components together using unsigned 64-bit
 arithmetic, discarding any carry bits: both parts of the source
 address, both parts of the destination address, and the protocol
 number.
 3. Apply the von Neumann algorithm to the resulting string of 64
 bits:
 1. Starting at the least significant end, select two bits.
 2. If the two bits are 00 or 11, discard them.
 3. If the two bits are 01, output* a 0 bit.
 4. If the two bits are 10, output* a 1 bit.
 5. Repeat with the next two bits in the input 64-bit string.
 6. Stop when 16 bits have been output (or when the 64-bit string
 is exhausted).
 4. Add the two port numbers to the resulting 16-bit number.
 5. Shift the resulting value 4 bits left, and mask with 0xfffff.
 6. In the highly unlikely event that the result is exactly zero, set
 the flow label arbitrarily to the value 1.”

* The first bit output becomes the MSB of the resulting hash value.

This algorithm was identified as Algorithm 2 in our tests. Note that it does not include a step
intended to reduce predictability, which the RFC recommends. This can easily be achieved by
adding a host-specific nonce value into the initial sum in step 2, without material effect on the
results.

The other algorithms based on [VONN] that we tested were as follows:

Algorithm 1: This was included in a draft version of RFC 6437, with the following steps:
 “1. Split the destination and source addresses into two 64 bit values
 each, thus transforming the 5-tuple into a 7-tuple.
 2. Add the seven components together using unsigned 64 bit
 arithmetic, discarding any carry bits.
 3. Apply the von Neumann algorithm to the resulting string of 64
 bits:
 1. Starting at the least significant end, select two bits.
 2. If the two bits are 00 or 11, discard them.
 3. If the two bits are 01, output* a 0 bit.
 4. If the two bits are 10, output* a 1 bit.
 5. Repeat with the next two bits in the input 64 bit string.
 6. Stop when 20 bits have been output (or when the 64 bit string
 is exhausted).
 4. In the highly unlikely event that the result is exactly zero, set
 the flow label arbitrarily to the value 1.”

3

Algorithm 3:
 1. Split the destination and source addresses into two 64 bit values
 each, thus transforming the 5-tuple into a 7-tuple.
 2. Shift the port numbers 48 bits left (as 64 bit quantities).
 3. Add the seven components together using unsigned 64 bit
 arithmetic, discarding any carry bits.
 4. Apply the von Neumann algorithm to the resulting string of 64
 bits:
 1. Starting at the least significant end, select two bits.
 2. If the two bits are 00 or 11, discard them.
 3. If the two bits are 01, output a 0 bit.
 4. If the two bits are 10, output a 1 bit.
 5. Repeat with the next two bits in the input 64 bit string.
 6. Stop when 16 bits have been output (or when the 64 bit string
 is exhausted).
 5. Shift the resulting value 4 bits left and mask with 0xfffff.
 6. In the highly unlikely event that the result is exactly zero, set
 the flow label arbitrarily to the value 1.

Algorithm 3b: This was a faulty version of Algorithm 3, in which the two port numbers were added
in a second time, as in Algorithm 2.

In Algorithm 4, the input to the von Neumann algorithm was 96 bits - the sum of the two port
numbers as the low order 16 bits and the sum of the other fields as the high order 64 bits. The
maximum loop was 20.

Algorithm 5 was similar to Algorithm 4, but with the port numbers as as the high order 16 bits.

 Algorithm 6 was the same as Algorithm 2, except that the high order halves of the two addresses
were omitted.

Algorithm 7 was Algorithm 6 but with the port numbers entirely omitted.

Algorithm 8 was a complete change of tack, leaving the von Neumann algorithm behind. Instead of
using the von Neumann algorithm, it uses the Fowler/Noll/Vo (FNV) algorithm [FNV], and
specifically 32-bit FNV1a with the result XOR-folded to 20 bits. The whole IPv6 header 5-tuple is
fed into the algorithm, one byte at a time, in the following order:
 The source address, starting with the low-order byte.
 The destination address, starting with the low-order byte.
 The protocol number.
 The source port, starting with the low-order byte.
 The destination port, starting with the low-order byte.

As usual, in the highly unlikely event that the result is exactly zero, set the flow label arbitrarily to
the value 1.

The FNV algorithm involves multiplication and the use of some large numerical constants, so we
expected it to be noticeably slower than any of the von Neumann algorithms.

Algorithm 9 was a trivial variant of Algorithm 8, in which FNV’s arbitrary “offset basis” value was
changed by a few units to investigate whether this had any impact on the algorithm’s performance.

4

Datasets
We decided to work only on TCP traffic, because TCP flows can be recognised trivially and it is
sufficient to capture packets containing only a SYN flag (i.e., not SYN/ACK packets) in order to
have one packet from each outgoing or incoming flow. Other methods of identifying new flows are
much more complex. One side-effect is that if the TCP initiator receives no SYN/ACK, it will
repeat the same SYN packet several times - this proved to be quite common in the traces obtained,
but was not counted as a hash collision. Of course, all SYN packets captured have the same
protocol number, but since TCP is the dominant protocol on the Internet we did not consider this to
be a significant disadvantage.

The trace files were collected using tcpdump, Wireshark or equivalent tools, in standard pcap (bpf)
format. An appropriate capture filter is

ip6 and tcp and ip6[53:1]=2
(Note that the tcp[tcpflags] construct does not work for IPv6.) An appropriate Wireshark display
filter is

ipv6 and tcp.flags.syn == 1 and tcp.flags.ack != 1

The traces we obtained were as follows:

Trace 1 2011-05-19 Brian Carpenter's desktop traffic

Trace 2 2011-05-31 Brian Carpenter's desktop traffic

Trace 3 2011-05-30/31 University of Auckland site border (3703 SYN packets)

Trace 4 2011-05-31 Griffith College, Dublin (107340 SYN packets)

Trace 5 2011-05-31 potaroo.net (25486 SYN packets)

Trace 6 2011-12-30 Chinese ISP (7319279 SYN packets)

The first two were short traces used for software debugging; the others were substantial files of
production traffic, with the packets truncated for privacy reasons.

5

Methods of Analysis
First, a preliminary analysis was made of all algorithms against traces 3, 4 and/or 5. For this, we
used a ruby program that itself depends on the RubyLibtrace library. The ruby program loops over
all packets in a given trace file. For each packet, it performs the following steps:

• Extract the 5-tuple from the packet.
• Call the hash function under test, which returns a 20 bit hash value.
• If the hash value is new, adds a new entry containing the 5-tuple to a hash table.
• If the hash value is not new and the 5-tuple is different, counts a collision.

At the end, the program outputs the list of hash codes generated with their collision counts (1 = no
collision) and some summary statistics. The hash code distribution may then easily be plotted as a
histogram or otherwise analysed.

The actual hash algorithm is a ruby function coded in C; a variant was coded for each of the 9
algorithms described above.

The results from this preliminary analysis allowed a visual judgment of the uniformity or otherwise
of the distribution produced by a given algorithm.

Second, a more complete test harness was built which could conveniently test any algorithm against
any trace, including performing a Kolmogorov-Smirnov test for statistical uniformity (using the R
language implementation of this test [RPROJ]), and the measurement of CPU time required by each
algorithm. Due to memory limits, trace 6 had to be split into 7 pieces for analysis, with the results
recombined afterwards. The CPU time measurements were made on a dedicated PC running Linux,
using getrusage(). The absolute values of CPU time are not significant; our interest was only in
comparative times for different algorithms on the same hardware.

The results from this test harness allowed an objective comparison of the uniformity of distribution
of a given algorithm and the relative performance of different algorithms.

6

Results – preliminary
Trace 3

Algorithm Distinct
hashes

Hashes with
collisions

Total
collisions

Max collisions
per hash

Collision
rate

1 1571 519 1434 15 33%
2 2710 104 145 5 4%
3 1698 538 1366 28 32%
3b 2746 70 90 4 2.5%
8 2807 9 12 4 0.3%

Trace 4

Algorithm Distinct
hashes

Hashes with
collisions

Total
collisions

Max collisions
per hash

Collision
rate

1 14330 7088 90152 235 49%
2 48452 28953 55999 12 60 %
3 7421 4231 97789 945 57%
3b 49669 29160 54865 14 58 %
4 16142 7409 88124 384 46%
5 7803 4256 97335 1193 55%
6 46575 28094 57912 16 60%
7 1523 1274 104975 8349 84%
8 98288 4697 4987 9 5%

Trace 5
Algorithm Distinct

hashes
Hashes with

collisions
Total

collisions
Max collisions

per hash
Collision

rate
1 12902 3525 9595 33 27%
2 15249 3535 5868 12 23%
3 13244 3757 9254 28 32%
3b 16217 3042 4604 12 19%
8 19658 180 227 4 0.9%

From visual inspection of these results, it seems clear that for traces 3 and 5, Algorithm 2 is the best
of the von Neumann algorithms (fewer collisions). Algorithm 3b, the faulty version of Algorithm 3,
is unintentionally almost identical to Algorithm 2. For Trace 4, Algorithm 2 is also probably the best
choice; although it has a high collison rate, so do all the others, but Algorithm 2 has the lowest
maximum number of collisions per hash.
It is clear on sight that Algorithm 8, FNV1a-32, is considerably superior to Algorithm 2.

7

To complete the preliminary comparison, here are histograms showing the hash value distribution
for Trace 4 for the two most promising algorithms. These figures visually confirm that Algorithm 8
appears to produce a far more uniform distribution than Algorithm 2. Other histograms confirm that
Algorithm 8 appears much better than any of the von Neumann algorithms, and that Algorithm 9
appears to perform identically to Algorithm 8.

Fig. 1 Hash value distribution for Algorithm 2 applied to Trace 4.

Fig. 2 Hash value distribution for Algorithm 8 applied to Trace 4.

8

Results - objective
Using the test harness, uniformity and performance were tested for various combinations of
algorithm and dataset.

Algorithm 3 was used as representative of the von Neumann algorithms, and compared with the two
FNV algorithms. Firstly we show the computed D-statistic for the Kolmogorov-Smirnov 2-way test,
when comparing the observed distribution against a perfectly uniform distribution. In an idealised
world, a D-statistic of zero would indicate that the observed distribution was perfectly uniform. The
corresponding p values of the K-S test are also shown, but their interpretation is an art as much as it
is science.

Trace file Algorithm 3
D p

Algorithm 8
D p

 Algorithm 9
D p

3 0.4084 2E-16 0.0417 0.9985 0.0246 0.0657
4 0.2512 2E-16 0.0021 0.7446 0.003 0.3232
5 0.2861 2E-16 0.0058 0.5232 0.00104 0.02386
6 0.2626 2E-16 0.0004 0.8344 0.0004 0.644

The D values may be interpreted by calculating the critical values of the D-statistic for the various
sample sizes. At the 95% confidence level, the critical value is 1.36/√ N where N is the sample size.
Thus we obtain:

Trace file Sample size N Critical value @ 95%
3 3703 0.0223
4 107340 0.0042
5 25486 0.0085
6 7319279 0.0005

An observed D value less than the critical value is interpreted to imply a 95% confidence level that
the distribution is uniform. We may conclude that the distributions produced by Algorithms 8 and 9
are indistinguishable from the uniform distribution at the 95% confidence level in 5 cases, but with
somewhat lower confidence in 3 cases. By contrast, Algorithm 3 in no case reaches a reasonable
confidence level. This is confirmed by its very low p-value in all cases.

We can also compare the algorithms graphically, to better illustrate what these numbers mean. The
graphs below show the cumulative distribution functions for Algorithm 3 (left) and 8 (right), for
trace file 6; as expected for a uniform distribution, Algorithm 8 shows a straight line. Algorithm 9 is
not shown, but appears identical. In contrast, Algorithm 3 deviates significantly from a straight line
due to its lack of uniformity.

We feel confident in concluding that the Algorithms 8 and 9 provide a very good approximation to a
uniform distribution, and that Algorithm 3 (and the other von Neumann-based algorithms) do not.

9

Fig. 3: CDF for Algorithm 3 Fig. 4: CDF for Algorithm 8

As far as timing goes, the absolute values that we measured are of limited interest as they concern a
pure software implementation of the algorithms on general purpose PC hardware (Intel® Core©2
CPU, 800 Mhz RAM) using Ubuntu 11.04 (Natty), Linux 2.6.38-13-generic kernel and the gcc
compiler. Nevertheless we present the measured values for the largest trace files in the following
table. The times are of the order of 100 μs per packet, but no effort was made to optimise the code
so these values should not be considered meaningful except for comparison among themselves. It is
the relative speed of the various algorithms that is interesting.

Trace file Packet
count

Algorithm 3
CPU sec.

Algorithm 3
μs/packet

Algorithm 8
CPU sec.

Algorithm 8
μs/packet

 Algorithm 9
CPU sec.

Algorithm 9
μs/packet

4 107340 7.196449 67 4.476279 41 5.388336 50

5 25486 1.232076 48 0.996062 39 0.924057 36

6 7319279 646.6 88 1046.84 143 985.46 135

A noticeable aspect is that Algorithm 3 is slowest for the smaller datasets but fastest for the largest
dataset. A characteristic of datasets 4 and 5 is that they were recorded close to specific sites, such
that one address in every 5-tuple has many of its bits in common. Dataset 6 is from a provider’s
network, so such commonality among the address bits is much rarer. This appears to indicate an
important point - the computing time of the various algorithms is noticeably data-dependent. For
this reason, we do not combine these performance results statistically. We consider that the result
for dataset 6 is the most significant as far as mixed traffic is concerned: Algorithms 8 and 9 differ in
execution time only by about 6%, but Algorithm 3 is some 37% faster. However, this result cannot
be assumed valid for traffic directed from or to a specific site, such that the address bits are less
variable. Overall, however, the difference in computing time between the von Neumann and FNV
approaches is relatively modest and, due to its data-dependence, clearly not a deciding factor.

Another point to note is that changing the FNV offset basis value (the difference between
Algorithms 8 and 9) does have a noticeable impact on performance, in the range -8% to +20% for
the datasets listed above. Again, this effect is data-dependent, not merely statistical.

10

Predictability
If all nodes use the same algorithm, they will all generate exactly the same flow label value for the
same IP header 5-tuple. From a security viewpoint, this is undesirable, because it allows a malicious
third party to predict flow label values for future flows, if it can predict the 5-tuple (for example,
when flows use consecutive port numbers).

Such predictability can be avoided, even without a cryptographic hash function, if a node that is
generating flow labels includes a node-specific nonce in the input to the hash function. Such a
nonce could be generated once during system start-up and retained until the node is restarted (at
which point all bets are off for sesssions in progress anyway).

In the present study, this mechanism was simulated by the difference between Algorithms 8 and 9.
Algorithm 8 used the standard offset basis for FNV1a-32, 2166136261. Algorithm 9 replaced this
by 2166136263. This produced a completely different set of hash values but with an equally
uniform distribution. Thus, a locally generated and secret offset basis is sufficient to avoid
predictability by a third party.

Conclusion
The principal conclusion is that the FNV1a-32 algorithm, applied to an IPv6 header 5-tuple
considered as a string of bytes, with the result XOR-folded to 20 bits, appears very suitable for use
as a stateless hash function for the generation of IPv6 flow labels, as recommended by [RFC6437].
It produces an observably uniform distribution of values, and has a computing time not very
different from the superficially simpler von Neumann algorithms also tested. The latter, however, do
not in fact produce uniform distributions and are not recommended.

A secondary conclusion is that both uniformity and computing time are data-dependent. In
particular, an algorithm that is best for use on or near a single site (where most packets will have
some address bits in common) may not be best for use in the heart of the network (where addresses
will be completely diverse). Even so, FNV seems to be a reasonable choice.

When unpredictability is required, this can be achieved by using a locally generated nonce as the
offset basis for FNV1a-32.

11

Acknowledgements
Gavin McCullagh provided a trace from Griffith College, Dublin. Geoff Huston (APNIC) provided
a trace from potaroo.net, and Zhang Qianli (Network Research Centre, Tsinghua University)
provided an ISP trace from China. Hu Qinwen (University of Auckland) assisted us in retrieving the
latter.

Cris Calude suggested the von Neumann algorithm.

David Malone noticed a bug in the original Algorithm 3 code.

Donald Eastlake pushed us to look at the FNV algorithm.

References
[RFC2460] S. Deering, R. Hinden, Internet Protocol, Version 6 (IPv6) Specification, RFC 2460,
December 1998.
[RFC6436] S. Amante, B. Carpenter, and S. Jiang, Rationale for Update to the IPv6 Flow Label
Specification, RFC 6436, November 2011
[RFC6437] S. Amante, B. Carpenter, S. Jiang and J. Rajahalme, IPv6 Flow Label Specification,
RFC 6437, November 2011
[RFC6438] S. Amante, and B. Carpenter, Using the IPv6 Flow Label for Equal Cost Multipath
Routing and Link Aggregation in Tunnels , RFC 6438, November 2011
[BALANCE] B. Carpenter, S. Jiang, W. Tarreau, Using the IPv6 Flow Label for Server Load
Balancing, draft-carpenter-v6ops-label-balance, work in progress, 2012.
[FNV] G. Fowler, L. Knoll, K. Vo, D. Eastlake, The FNV Non-Cryptographic Hash Algorithm,
draft-eastlake-fnv-02.txt, work in progress, 2011.
Also see http://www.isthe.com/chongo/tech/comp/fnv/index.html.
[GONT] F.Gont, Security Assessment of the IPv6 Flow Label, draft-gont-6man-flowlabel-security,
work in progress, 2012.

[RPROJ] The R Project for Statistical Computing, http://www.r-project.org/

[VONN] J. von Neumann, Various techniques used in connection with random digits, National
Bureau of Standards Applied Math Series 12, 36-38, 1951.

12

