
IP Addresses Considered Harmful

Brian E. Carpenter
Department of Computer Science

The University of Auckland
Auckland, New Zealand

brian@cs.auckland.ac.nz

This article is an editorial note submitted to CCR. It has
NOT been peer reviewed. The author takes full responsi-
bility for this article’s technical content. Comments can be
posted through CCR Online.

ABSTRACT
This note describes how the Internet has got itself into deep
trouble by over-reliance on IP addresses and discusses some
possible ways forward.

Categories and Subject Descriptors
C.2.1 [Networks - naming and addressing]

Keywords
IP Address

1. INTRODUCTION
The alarming statement in the title above is not entirely

a new idea. Shoch clearly described the benefits of late
binding of names to addresses in 1978 [41]. The point was
repeated in 1983 in [27]:

‘The basic need is for a consistent name space which will
be used for referring to resources. In order to avoid the
problems caused by ad hoc encodings, names should not
contain addresses, routes, or similar information as part of
the name.’

The same was implied by the DNS standard, whose first
design goal was stated in 1987 to be ‘a consistent name space
which will be used for referring to resources’ [29]. The prob-
lems caused by using addresses have been stated in various
forms ever since, for example [15, 9, 12, 10, 36, 11, 21, 13,
23, 14, 44, 4]. It has also been argued that source addresses
in datagrams are unnecessary [16].

The superficial message from these, and certainly other,
references is this: Internet applications and configuration
files should use names, not IP addresses, to initiate the
binding of an application to a remote resource. Addresses
should only be stored transiently, if at all. Specifically, the
name should be a fully qualified domain name (FQDN) in
the DNS; failing that, some other name space might apply
(such as a Skype user identifier).

To argue from absurdity why this might be the right ap-
proach, let us consider the following assertion: ‘Computer
applications should use numeric disk block addresses, in-
stead of file names, to bind themselves to a particular mass

storage file.’ Binding to an IP address would be just like
binding to a disk address. Yet people do it. Why?

2. WHAT ARE PEOPLE SO WORKED UP
ABOUT?

A consequence of the original Berkeley socket API released
in 1983 is that an application wishing to contact a remote
resource on the Internet opens a socket by means of a layer
3 IP address. That means that in order to connect to, say,
host.example.net, an application first needs to discover at
least one IP address for host.example.net, store it locally,
and use it as a parameter in the API call to open a socket.
Moreover, a listener application in host.example.net, when
it receives an unsolicited incoming packet, only learns the
IP address of the host containing the caller; it is not told
the name of the calling host. (It could in theory use reverse
DNS to find a corresponding FQDN, but this cannot be
relied on since by no means all hosts have valid reverse DNS
entries, and in many cases the address may be that of a
NAT box anyway.) Furthermore, it learns this by a layer
violation - the transport layer peeks at layer 3 information
in the incoming packet, and it is even used as part of the
TCP checksum.

This address-based way of requesting, starting and con-
tinuing communication has consequences. Of course, using
IP destination addresses to route the packets in a mono- or
bi-directional communication is inevitable, but that is not
our concern. Our concern is what happens when something
other than simple packet flow occurs. Significant operational
problems arise in several cases as follows.

1. Referrals: A referral is, in the general case, when an
application in host A that is communicating with an appli-
cation in host B passes a reference to B over to an appli-
cation in a third host C. There is a degenerate case when
B = C, and there are indirect referrals where C passes the
reference on to D, etc. In traditional multiparty Internet
protocol design, the reference is passed as an IP address.
There are several reasons why this often fails, basically be-
cause there is no such thing as a single universal address
space in today’s Internet [14]. The address scope is typi-
cally chopped up into separate realms, separated by NATs,
firewalls, and address families (IPv4 and IPv6). Sometimes,
disjoint realms are linked by VPN connections. The Internet
has no way to identify, label or take account of these dis-
joint addressing scopes, yet every address is only meaningful
if we know which scope it belongs to. Thus, the traditional
referral model of passing an IP address on to a third party is
simply broken. Some (but not all) of this problem would be

ACM SIGCOMM Computer Communication Review 65 Volume 44, Number 2, April 2014



overcome if referral was based on an FQDN, but addresses
are widely used because of ancient history, although their
scopes are unknowable.

Because of this problem, applications that need referrals
either have to invent their own identifier space, build their
own rendezvous mechanism, or adopt mechanisms to tra-
verse NATs and other middleboxes. Widespread examples
include BitTorrent and Skype.

2. Multihoming failover: Even without referrals, any form
of host or site multihoming that involves multiple IP ad-
dresses for the same host fails if IP addresses are used to bind
transport sessions to applications. If the path using address
α fails, we need the transport session to switch to address β.
This problem [1, 20] has stymied most attempts to design
scalable solutions for multihoming. As a result, multihomed
sites prefer to have a single provider-independent address
prefix that needs its own BGP4 routing entry. Therefore
the Internet is at some long-term risk of a blow-out of the
wide area routing table to at least several million entries
[26].

3. Dual stack operation: In a way this is the same as the
previous case, except that α is an IPv6 address and β is an
IPv4 address. Difficulties will arise if a transport session or
a multiparty application needs to switch to the other version
of IP for some reason.

4. Multiple Interfaces: A host, especially but not exclu-
sively a mobile host, may have at least two Internet connec-
tions via two different interfaces and probably two different
providers - for example 3G/4G/LTE and WiFi - with differ-
ent latency, throughput, battery impact, and cost [6]. Like
the two previous cases, there will be multiple addresses, and
in addition applications might want to choose one interface
or another for reasons such as price/performance tradeoff or
battery conservation. Analysis in the IETF has shown that
a key part of these scenarios is the concept of a provisioning
domain, defined as ‘a consistent set of network configuration
information’ normally derived from the service provider be-
hind a given interface [2]. Different provisioning domains
may provide better, worse or non-existent routes to specific
addresses, and may even provide different views of the DNS.

5. Roaming: If a host is roaming while connected, it may
experience an unpredictable change of address or even of
address family. It may move from being behind a NAT to
having a global IP address, or vice versa. Thus, the impact
is similar to the two previous cases, with or without NAT.

6. Renumbering: If a site is renumbered, transport ses-
sions in progress will fail - essentially the same situation as
multihoming failover. Although rare, site renumbering is
considered very important to ensure future scaling of the
wide-area routing system [11, 21].

3. VARIOUS APPROACHES
Numerous approaches to tackling this set of problems par-

tially or completely have been proposed, including:
- RSIP (realm-specific IP) [8, 7]. Old, unused.
- HIP (host identity payload) [31, 32]. Old, hardly used.
- STUN/TURN/ICE [39, 25, 38]. Aimed at NAT traversal

for SIP (but why was SIP designed to depend on address
transparency when NATs were already prevalent?)

- PCP (port control protocol). Also aimed at NAT traver-
sal [46].

- SHIM6 [35]. In SHIM6, a shim on top of the network
layer notifies alternative IPv6 addresses to the two ends of

a session, so that a broken session can be automatically re-
stored by picking a new address pair. Host stacks are af-
fected (but not TCP or the socket API), and traffic engineer-
ing is impacted. SHIM6 relies on IPv6 extension headers,
which many firewalls discard.

- LISP [18]. In LISP, packets sent between two prefixes
that are not present in the global BGP4 table are encap-
sulated to traverse the wide-area network. This relies on a
distributed mapping system to map between the true desti-
nation and the decapsulator, and on a transition mechanism
to interface the LISP and non-LISP Internets. On the other
hand, site infrastructure and host software are not affected.

- ILNP [3]. In ILNP, there is a conceptual boundary be-
tween the routing part of an IPv6 address (64 bits) and
the locally-significant identifying part (also 64 bits). The
routing part is rewritten at the site boundary. Host code,
including transport code, and on-site routers are affected.

- Network address and port translation (NAT) has become
widespread for IPv4 enterprise networks wishing to be inter-
nally independent of ISP-based addressing. Network prefix
translation(NPTv6) has been proposed for IPv6 [45]. It has
some, but not all, the disadvantages of traditional NAT.

- Happy Eyeballs [47]. In this technique, applications ex-
plicitly probe before establishing a transport connection, to
discover the ‘best’ IP address to use when there is a choice.
Application code using the socket API must be updated.

- Multipath TCP (MPTCP) [19]. Here, TCP itself is
modified to operate several paths (i.e., several pairs of IP
addresses) simultaneously, with automatic load sharing be-
tween the paths. In some ways this is a compromise between
SHIM6 and Happy Eyeballs, but is only effective for TCP
traffic, and requires host stack modifications.

- Name Based Sockets (NBS) [44]. In NBS, applications
open sockets by name and the transport session, initially
opened by address, swaps DNS names between the two ends,
so that a broken session can be automatically reopened by
name. It relies on IPv6 extension headers or IPv4 options,
which many firewalls discard. NBS requires retooling of the
DNS, not just of the hosts using it, but should be transpar-
ent to routers and middleboxes. At this time it remains a
prototype.

- Ongoing research projects such as Signposts [40] and
Polyversal TCP [33]. A more ambitious project is Named
Data Networking [22]. This attempts to change the con-
versation by viewing individual data resources as the source
and destination of packets, demoting both IP addresses and
DNS names from their current primacy.

- In a sense, the entire work of the IETF MIF WG is
related to this, for example [24, 17].

4. WHY THIS WASN’T FIXED YEARS AGO
It’s easy to see that we have a problem, and why there

have been numerous attempts to find a solution. Some of
these solutions are compared in some detail in [34], which
shows that none of them is perfect. However, we should con-
sider why the problem persists even after the series of ex-
hortations to use names instead of addresses that were cited
at the beginning of this article, and the numerous attempts
at (partial) solutions. The answer is probably the simplic-
ity and generality of the Berkeley socket API, which was
released with 4.2BSD Unix in early 1983. Dynamic transla-
tion of names into addresses was proposed by Jon Postel in
1978 [37] and the general concept of the DNS was described

ACM SIGCOMM Computer Communication Review 66 Volume 44, Number 2, April 2014



in 1982 [43, 42], but it was still months after the 4.2BSD
release before the first stable specification of the DNS was
published [27, 28], and years before the DNS was widely
deployed and fully standardised [29, 30].

It’s also worth noting that the DNS added a third party
to every two-party communication, in order to automate
name-to-address translation. This third party needs to be
reliable, trustworthy, fast, constantly updated, and remark-
ably scalable. These requirements apply to the DNS or to
any other form of identifier-to-locator mapping system.

Back in 1983, there were fewer than 1000 hosts on the
Internet, all with manually assigned and static addresses.
There was only one address family and there was no NAT.
All six of the contingencies listed above, would have seemed
highly unlikely. Thus, a three stage process of opening a
socket - first, convert the remote host’s name to an address
(originally by looking it up in /etc/hosts), second, store the
resulting address, and third, use the stored address to bind
a socket to the remote host, would have been the natural
choice. If the address lookup failed or went slowly, the ap-
plication failed or went slowly. It is not surprising that pro-
grammers chose to resolve DNS names only when they had
to, and stored addresses whenever they could. Here we are
thirty years later, and that’s still what C programmers do,
with a POSIX twist and a little extra logic to cover the
IPv4/IPv6 choice.

This is obviously wrong. At first sight, NBS seems right.
The typical application programmer expects open, send, re-
ceive, close to ‘just work’. To some extent, this is what Java
already provides. The Java programmer opens a connection
by DNS name, not by address, and with limited control over
the details. Somebody else is supposed to take care of the
hard stuff (multiple addresses and interfaces, failover, la-
tency, throughput, battery life, bandwidth caps, cost per
minute) but clearly Java, TCP and still less UDP do none
of this. To a considerable extent, Java is an existence proof
for NBS, and also shows that it is no panacea. If a Java
connection fails to start, the user can’t tell whether there is
a DNS hangup or a TCP/IP hangup, and doesn’t know how
to recover.

By comparison, however, the alternatives seem worse. LISP
and ILNP require radical retooling of network elements, but
still need a mapping system. (LISP adds a new mapping
system, and ILNP re-uses DNS.) SHIM6 has deployment
problems, and NAT hurts Internet transparency. Happy
Eyeballs won’t take care of anything that goes wrong after
a connection has been established, MPTCP and Polyversal
TCP only take care of TCP cases, and Signposts is a tailored
solution for certain scenarios.

The most ambitious approach mentioned is NDN. More
than NBS or Signposts, it sweeps the problems discussed
above under the carpet by adding a name-based architec-
ture on top of the existing Internet. It also calls into question
an underlying assumption of the Internet addressing model:
that the addressable entity is a host. In reality, since the
early days, the concept of an Internet (or ARPANET) host
has become fuzzy. Firstly, addresses are generally taken to
refer to a specific interface on some box, not to the box
as a whole. Secondly, today millions of apparent hosts (or
interfaces) are virtual, in fact being hosted by some other
host. Thirdly, some apparent hosts are in fact load balancers
standing in front of an array of actual hosts (whether virtual
or real). Fourthly, many names that appear to be translated

into host addresses by the DNS are in fact bogus: what they
really translate into are the addresses of proxies or caches,
and the translation varies according to the topological lo-
cation of the resolver. Another form of bogus name is a
name synthesised purely for the purposes of Reverse DNS,
because some applications operate on the assumption that
an address without a Reverse DNS entry is itself bogus. In
this case the bogus name frequently refers to a NAT box
rather than to a real host. NDN’s premise seems to be that
all of this is irrelevant to the real purpose of getting a packet
from a named source object to a named destination object,
and we should focus on those objects.

5. MEANWHILE, THERE WAS SOME DIS-
TRACTION

Another reason this issue has not been fixed is that a great
deal of effort (variously intellectual, engineering, and mar-
keting) has gone into IPv6 since 1994 or thereabouts. IPv6
has proved immensely harder to deploy than its progenitors
expected. Partly this was because of the amazing growth
rate of the IPv4 Internet from 1995 onwards, which put
the focus of attention and the incentives elsewhere. Partly
it was because IPv6, although not conceptually radical, is
more than just IPv4 with bigger addresses, so it was per-
ceived as a complex step for vendors and operators already
dealing with the growth rate. Partly it was because there
is an intrinsic difficulty caused by the need for IPv4-only
nodes (which know nothing of IPv6 addresses) to interop-
erate with nodes that, having IPv6 addresses, cannot get
unique IPv4 addresses. In any case, the result was that for
almost twenty years, thinking about changes in the network
layer has concentrated on IPv6.

6. CONCLUSION: WHERE NEXT?
Why hasn’t NBS caught on? It turns out to be pretty

complicated and not self-contained in the hosts concerned.
As IPv6 has shown, that makes deployment painful.

Will SHIM6, LISP or ILNP catch on? There are rea-
sons for pessimism. SHIM6 is currently undeployable be-
cause many firewalls block the necessary extension head-
ers. LISP requires retooling the Internet wide-area routing
system, and has a significant bottleneck in its method of
interworking with the non-LISP Internet. ILNP requires
retooling of both host network stacks and site routers.

Will MPTCP catch on? It ‘only’ requires both hosts to
have updated stacks, and an MPTCP host can speak plain
TCP if the other host is not MPTCP-aware. This has a
chance of catching on, but it only fixes a subset of the above
issues, because it assumes the host already knows a use-
ful set of address pairs and it only works for TCP applica-
tions. Similar remarks apply to other TCP retreads such as
Polyversal TCP.

Will Happy Eyeballs catch on? Well yes, it has done,
for the specific case of choosing IPv6 vs IPv4, in browsers
that happen to include the necessary code. This fixes an
even smaller subset of the above issues, because it does not
respond dynamically to changes in connectivity. Extensions
and variants of this approach are already appearing.

Will solutions like Signposts catch on? This author’s
prediction: only for a niche market, where customers care
enough about security and reliability to invest in such an
approach. This is related to the way in which IPsec has

ACM SIGCOMM Computer Communication Review 67 Volume 44, Number 2, April 2014



only really caught on for corporate ‘dial home’ VPNs and
the like, rather than becoming ubiquitous. Recent events
have raised interest in encrypted data paths, but it remains
to be seen whether this really leads to extensive change.

Will translation catch on? Sadly, it has done for IPv4,
and NPTv6 is attracting attention for IPv6.

What else? All major distributed applications, especially
the multiparty ones such as BitTorrent and Skype, have
been forced to solve some or all of these problems. Essen-
tially they do so by inventing their own globally unique iden-
tifier space (Skype ID and the like) and their own rendez-
vous mechanism that lives in the global part of the Internet
(outside all proxies, firewalls and NATs). This indeed takes
the harm out of IP addresses by not relying on them except
in a transitory way - if something goes wrong, a multiparty
application shrugs its shoulders and repeats its rendezvous
process via unique identifiers.

Another angle of attack is the notion of a connection man-
ager. This is a piece of magic that is more pro-active than
the Happy Eyeballs approach. A connection manager de-
cides how to maintain connectivity as the network environ-
ment changes around it. There are numerous proprietary
connection managers, often bundled with corporate VPN so-
lutions, where the motivation is to set up tunnels and host
routes such that the user gets access to both the Internet
and the corporate network while roaming arbitrarily. One
step up from a connection manager is a congestion manager
[5] but that is double-ended whereas a connection manager
is typically single-ended.

What does the Internet need? It goes without saying
that so-called ‘clean slate’ approaches, in which radical basic
changes are made, are excluded from serious consideration,
except perhaps as thinking aids. Today’s infrastructure, op-
erating systems and applications are not going to be replaced
overnight. In this sense, the NDN approach is more hopeful,
because although architecturally radical, it is deployed as an
overlay on the existing network.

There’s no point in doing anything that is not deploy-
able. Only incremental change is physically possible. In this
writer’s opinion, that creates difficulty for solutions requir-
ing simultaneous actions by independent parties, i.e. any
kind of double-ended solution that doesn’t automatically fall
back to a single-ended mode, or any solution that requires
a host to be aware of a specific middlebox. Also any solu-
tion that requires firewall transparency has a poor chance
of deployment. Solutions that can be installed one host at a
time, without changing firewall policies, and don’t need new
middleboxes, seem right.

There could be partial solutions that break these deploy-
ability guidelines, for cases where there is strong motivation
- a proof of concept for that is the corporate VPN, where
an enterprise has to deploy a VPN end-point and users have
to install a VPN client. This works because there is a pre-
existing link between the two parties and a strong motiva-
tion to get connected. Signposts is similar, but this will not
work for the general case of Joe Random Citizen connecting
to some new service. NDN seems to have adequate general-
ity but it requires new infrastructure (a name-based routing
system, depending on a systematic naming mechanism).

There are several possible approaches:
1. Do nothing. Applications will have to continue do-

ing what they do today - use DNS and their own form
of identifier (hopefully authenticated) to rendez-vous at a

global IP address, but treat IP addresses obtained during
the rendez-vous process as transitory. When a connection
fails, repeat. The basic interface between apps and the net-
work remains Berkeley sockets, possibly lightly concealed by
Java etc. Issues such as multihoming or interface choice will
be resolved by proprietary connection managers via rules
of thumb. Translation will not go away, and various point
solutions will emerge.

2. Design a superSocket API, but don’t specify the engine
behind it. Let the implementors sort it out, and may the
best solution win.

3. Specify requirements for a generic name-driven connec-
tion manager (to go with point 2). The IETF HOMENET
and MIF efforts may go in this direction, but that only cov-
ers a subset of the network.

4. Design a one-size-fits-all solution: more practical than
NBS, more general than MPTCP or Happy Eyeballs, with
knobs to set policy for interface choice etc. But if this needs
a generic rendez-vous server of some kind (superICE), it hits
the deployability barrier.

5. Overlay a new architecture; NDN is an example. As
noted above, this could indeed hide the problems discussed
above, but it radically affects host stacks and requires an
elaborate new routing system.

Any solution has implementation aspects as well as exter-
nal aspects. Where does the new intelligence sit in the host
system? Kernel space or user space? In the VM or the hy-
pervisor (assuming that in future, virtual hosts will greatly
outnumber physical hosts)? What is the structure (library,
process, thread)? What is the relationship to the DNS re-
solver, and does DNSSEC change things? How will middle-
boxes such as proxies, caches, content distribution mecha-
nisms, load balancers and firewalls deal with the solution?
Will the solution be resistant to pervasive surveillance?

This essay doesn’t attempt to answer these questions or
predict the future.

7. ACKNOWLEDGMENTS
Useful comments and hints have come from Jon Crowcroft,

John Klensin, Anil Madhavapeddy, Vsevolod Stakhov, Lixia
Zhang, and others, who share no responsibility for the re-
sulting text.

8. REFERENCES
[1] J. Abley, B. Black, and V. Gill. Goals for IPv6

Site-Multihoming Architectures. RFC 3582, Aug.
2003.

[2] D. Anipko. Multiple Provisioning Domain
Architecture (work in progress), 2013.

[3] R. Atkinson and S. Bhatti. Identifier-Locator Network
Protocol (ILNP) Architectural Description. RFC 6740,
Nov. 2012.

[4] F. Baker. Happier Eyeballs (work in progress), 2012.

[5] H. Balakrishnan and S. Seshan. The Congestion
Manager. RFC 3124, June 2001.

[6] M. Blanchet and P. Seite. Multiple Interfaces and
Provisioning Domains Problem Statement. RFC 6418,
Nov. 2011.

[7] M. Borella, D. Grabelsky, J. Lo, and K. Taniguchi.
Realm Specific IP: Protocol Specification. RFC 3103,
Oct. 2001.

ACM SIGCOMM Computer Communication Review 68 Volume 44, Number 2, April 2014



[8] M. Borella, J. Lo, D. Grabelsky, and G. Montenegro.
Realm Specific IP: Framework. RFC 3102, Oct. 2001.

[9] B. Carpenter. Architectural Principles of the Internet.
RFC 1958, June 1996.

[10] B. Carpenter. Internet Transparency. RFC 2775, Feb.
2000.

[11] B. Carpenter, R. Atkinson, and H. Flinck.
Renumbering Still Needs Work. RFC 5887, May 2010.

[12] B. Carpenter, J. Crowcroft, and Y. Rekhter. IPv4
Address Behaviour Today. RFC 2101, Feb. 1997.

[13] B. Carpenter and S. Jiang. Problem Statement for
Renumbering IPv6 Hosts with Static Addresses in
Enterprise Networks. RFC 6866, Feb. 2013.

[14] B. Carpenter, S. Jiang, and Z. Cao. Problem
Statement for Referral (work in progress), 2011.

[15] B. Carpenter and Y. Rekhter. Renumbering Needs
Work. RFC 1900, Feb. 1996.

[16] J. Crowcroft. SNA: Sourceless Network Architecture.
In Perspectives Workshop: End-to-End Protocols for
the Future Internet, Schloss Dagstuhl, 2008.

[17] H. Deng, S. Krishnan, T. Lemon, and M. Wasserman.
Guide for application developers on session continuity
by using MIF API (work in progress), 2012.

[18] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. The
Locator/ID Separation Protocol (LISP). RFC 6830,
Jan. 2013.

[19] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure.
TCP Extensions for Multipath Operation with
Multiple Addresses. RFC 6824, Jan. 2013.

[20] G. Huston. Architectural Approaches to Multi-homing
for IPv6. RFC 4177, Sept. 2005.

[21] S. Jiang, B. Liu, and B. Carpenter. IPv6 Enterprise
Network Renumbering Scenarios, Considerations, and
Methods. RFC 6879, Feb. 2013.

[22] L. Zhang and others. Named Data Networking
project, http://named-data.net/.

[23] E. Lear and R. Droms. What’s In A Name: Thoughts
from the NSRG (work in progress), 2003.

[24] D. Liu, T. Lemon, Y. Ismailov, and Z. Cao. MIF API
consideration (work in progress), 2013.

[25] R. Mahy, P. Matthews, and J. Rosenberg. Traversal
Using Relays around NAT (TURN): Relay Extensions
to Session Traversal Utilities for NAT (STUN). RFC
5766, Apr. 2010.

[26] D. Meyer, L. Zhang, and K. Fall. Report from the
IAB Workshop on Routing and Addressing. RFC
4984, Sept. 2007.

[27] P. Mockapetris. Domain names: Concepts and
facilities. RFC 882, Nov. 1983.

[28] P. Mockapetris. Domain names: Implementation
specification. RFC 883, Nov. 1983.

[29] P. Mockapetris. Domain names - concepts and
facilities. RFC 1034, Nov. 1987.

[30] P. Mockapetris. Domain names - implementation and
specification. RFC 1035, Nov. 1987.

[31] R. Moskowitz and P. Nikander. Host Identity Protocol
(HIP) Architecture. RFC 4423, May 2006.

[32] R. Moskowitz, P. Nikander, P. Jokela, and
T. Henderson. Host Identity Protocol. RFC 5201, Apr.
2008.

[33] Z. Nabi, T. Moncaster, A. Madhavapeddy, S. Hand,
and J. Crowcroft. Evolving TCP. How hard can it be?
In CoNEXT Student’12, Nice, France, 2012.

[34] H. Naderi and B. E. Carpenter. A Review of IPv6
Multihoming Solutions. In Tenth International
Conference on Networks (ICN 2011), pages 145–150,
2011.

[35] E. Nordmark and M. Bagnulo. Shim6: Level 3
Multihoming Shim Protocol for IPv6. RFC 5533, June
2009.

[36] D. Plonka. Embedding Globally-Routable Internet
Addresses Considered Harmful. RFC 4085, June 2005.

[37] J. Postel. Internet Name Server. IEN 61, Oct. 1978.

[38] J. Rosenberg. Indicating Support for Interactive
Connectivity Establishment (ICE) in the Session
Initiation Protocol (SIP). RFC 5768, Apr. 2010.

[39] J. Rosenberg, J. Weinberger, C. Huitema, and
R. Mahy. STUN - Simple Traversal of User Datagram
Protocol (UDP) Through Network Address
Translators (NATs). RFC 3489, Mar. 2003.

[40] C. Rotsos, H. Howard, D. Sheets, R. Mortier,
A. Madhavapeddy, A. Chaudhry, and J. Crowcroft.
Lost In the Edge: Finding Your Way With DNSSEC
Signposts. In 3rd USENIX Workshop on Free and
Open Communications on the Internet (FOCI ’13),
2013.

[41] J. F. Shoch. A note on Inter-Network Naming,
Addressing, and Routing. IEN 19, Jan. 1978.

[42] Z. Su. Distributed system for Internet name service.
RFC 830, Oct. 1982.

[43] Z. Su and J. Postel. Domain naming convention for
Internet user applications. RFC 819, Aug. 1982.

[44] J. Ubillos, M. Xu, Z. Ming, and C. Vogt. Name-Based
Sockets Architecture (work in progress), 2010.

[45] M. Wasserman and F. Baker. IPv6-to-IPv6 Network
Prefix Translation. RFC 6296, June 2011.

[46] D. Wing, S. Cheshire, M. Boucadair, R. Penno, and
P. Selkirk. Port Control Protocol (PCP). RFC 6887,
Apr. 2013.

[47] D. Wing and A. Yourtchenko. Happy Eyeballs:
Success with Dual-Stack Hosts. RFC 6555, Apr. 2012.

ACM SIGCOMM Computer Communication Review 69 Volume 44, Number 2, April 2014




