
Automatic structures, Part 3

Bakh Khoussainov
Computer Science Department, The University of Auckland,

New Zealand

July 23, 2007

1 / 33

Bakh Khoussainov Automatic structures, Part 3

Plan: Tutorial 3
Complexity

Plan:

Rabin automatic structures
Scott ranks of automatic structures
The isomorphism problem
Heights of automatic well founded relations
Cantor-Bendixson ranks of trees
Resource bounded complexity

2 / 33

Bakh Khoussainov Automatic structures, Part 3

Rabin automata

Let T be the binary tree ({0, 1}?; Left , Right).
Let Tree(Σ) be the set of all the Σ-labeled trees (T , v),
where v : T → Σ.

Definition
A Rabin automaton M is (S, ι, ∆,F), where S is a set of
states, ι ∈ S is the initial state, ∆ : S × Σ → P(S × S) is the
transition table, and F ⊂ P(S) is the set of designated
subsets.

3 / 33

Bakh Khoussainov Automatic structures, Part 3

Rabin automata

Definition
A run of M on (T , v) is a mapping r : T → S such that
r(root) = ι, and for each x ∈ T we have

(r(Left(x)), r(Right(x))) ∈ ∆(r(x), v(x)).

The run is accepting if for every path η in T we have

{s | s appears on η infinitely many times } ∈ F .

Definition
The language accepted by the automaton M, denoted L(M),
is the set of all trees (T , v) accepted by M.

4 / 33

Bakh Khoussainov Automatic structures, Part 3

Examples

The alphabet Σ is {0, 1}.
1 {(T , v) | there is at least one x such that v(x) = 1}.
2 {(T , v) | v(x) = 1 for finitely many x ∈ T }.
3 {(T , v) | for every node x if v(x) = 1 then the tree below x

is labeled by 0s only }.

5 / 33

Bakh Khoussainov Automatic structures, Part 3

Boolean operations for Rabin languages
Rabin automata

Theorem (Rabin, 1968)
1 The emptiness problem for Rabin automata is decidable.
2 Rabin automata recognizable languages are closed under

Boolean operations.

6 / 33

Bakh Khoussainov Automatic structures, Part 3

Rabin automata and T

Consider the structure T = ({0, 1}?, Left , Right). Consider
the MSO logic defined to be the extension of the FO logic
with (monadic) variables for subsets over the domain of T .
On T the MSO logic can express many interesting
relations such as X ⊆ Y , Finite(X), Path(X), Open(X),
Clopen(X), and PathOrder(X , Y), etc.

7 / 33

Bakh Khoussainov Automatic structures, Part 3

Rabin’s theorem

Theorem (Rabin, 1968)
1 A relation R ⊆ P(T)n is definable in the MSO logic if and

only if R is Rabin recognizable.
2 The monadic second order theory of T , denoted by S2S,

is decidable.

8 / 33

Bakh Khoussainov Automatic structures, Part 3

Tree automata

A finite Σ-tree is t : dom(t) → Σ, where dom(t) is a finite
binary tree. A tree language is a set of Σ-trees.

Definition
A tree automaton is M = (S, ι, ∆, F), where F ⊆ S and the
rest are all as for Rabin automata.

Definition
A run of M on t is accepting if the last state along each path of
the run is in F .

9 / 33

Bakh Khoussainov Automatic structures, Part 3

Tree automata

Now one has:
1 The emptiness problem for tree automata is decidable.
2 Tree automata recognizable languages are closed under

Boolean operations.

10 / 33

Bakh Khoussainov Automatic structures, Part 3

Definitions of Automatic Structure

Definition
A structure A = (A; R0, R1, . . . , Rm) is tree automatic over Σ if
its domain A and all relations R0, R1, . . ., Rm are all tree
automata recognizable (over Σ).

Definition
A structure A = (A; R0, R1, . . . , Rm) is Rabin automatic over Σ
if its domain A and all relations R0, R1, . . ., Rm are all Rabin
automata recognizable (over Σ).

11 / 33

Bakh Khoussainov Automatic structures, Part 3

Examples

1 Every word automatic automatic structure is Rabin
automatic.

2 Every Büchi automatic structure is Rabin automatic.
3 If A is tree automatic then so is its ω-product.
4 (ω,×) is tree automatic.
5 The countable atomless boolean algebra is tree automatic.
6 Every tree automatic structure is Rabin automatic.

12 / 33

Bakh Khoussainov Automatic structures, Part 3

The term algebra example (Niwinski)

The term algebra F = (Terms(X), f), where |X | = ω and f is
the binary function symbol, is tree automatic.

Proof. Let A be the set of all trees t : domt(t) → {0, 1}. Let t0
and t1 be {0, 1}-trees. Define f (t0, t1) as the tree t such that
t(root) = 1, t(x0) = t0(x) and t(x1) = t1(x).
It is easy that (A, F) ∼= F .

13 / 33

Bakh Khoussainov Automatic structures, Part 3

Löwenheim-Skolem Theorem for Rabin structures

Theorem (Khoussainov, Nies, 2006)
Let A be a Rabin automatic structure. Consider

A′ = {(T , v) ∈ A | (T , v) is a regular tree}.

The structure A′ is a computable elementary substructure of A.

14 / 33

Bakh Khoussainov Automatic structures, Part 3

Definability Theorems

The situation is similar to word and Büchi automatic structures:

Fact
1 A structure is Rabin automatic iff it is definable in the

monadic second order logic of the binary tree T .
2 A structure is tree automatic iff it is definable in the weak

monadic second order logic of the binary tree T .

15 / 33

Bakh Khoussainov Automatic structures, Part 3

Rabin automatic vs Büchi automatic

Fact
Every Büchi automatic structure is Borel.

Theorem (Khoussainov, Montalban, Nies; 2007)
There exists a Rabin automatic structure that is not Borel.

16 / 33

Bakh Khoussainov Automatic structures, Part 3

Outline of the proof

Let V = {(T , v) | each path through T has finitely many 1s}.

Lemma
The language V is Rabin recognizable but not Borel.

Proof. Embed ω<ω into T by: n1 . . . nk → 1n101n20 . . . 1nk . A
tree S in ω<ω has no infinite path if and only if its image (which
is a tree) contains finitely many 1s along each path.

We code the set V in a Rabin automatic structure.

17 / 33

Bakh Khoussainov Automatic structures, Part 3

Outline of the proof

1 The domain D of the structure is {(T , v) | v : T → {0, 1}}.
2 The unary predicate S = {(T , v) | there is a unique x for

which v(x) = 1}.
3 The unary predicate V from the lemma above.
4 Two operations Left ′ : S → S and Right ′ : S → S mimic the

Left and Right operations on the binary tree.

The structure (D; S, V , Left ′, Right ′) is Rabin automatic. If it had
a Borel copy then the set V would also be Borel.

18 / 33

Bakh Khoussainov Automatic structures, Part 3

Scott Rank

Definition

For tuples ā, b̄ ∈ An define
ā ≡0 b̄ if ā, b̄ determine isomorphic substructures.
For α > 0, ā ≡α b̄ if for all β < α, for each c̄ there is d̄ such
that ā, c̄ ≡β b̄, d̄ , and vice versa.

The Scott rank of ā is the least β such that for all b̄ ∈ An,
ā ≡β b̄ implies that (A, ā) ∼= (A, b̄). The Scott rank of A,
SR(A), is the least α ≥ the Scott ranks of tuples of A.

All known examples of automatic structures have had small
Scott ranks.

19 / 33

Bakh Khoussainov Automatic structures, Part 3

Examples

Fact
The Scott rank of any locally finite graphs is at most 1.

Proof. Indeed, let G be such a graph. Then, by König’s lemma,
there is an automorphism between tuples ā to b̄ if and only if for
every n the n-neighborhood of ā is isomorphic to the
n-neighborhood of b̄. Thus, (G, ā) ∼= (G, b̄) iff ā ≡1 b̄.

Corollary
The Scott rank of the configuration space of any Turing
machine is at most 1.

20 / 33

Bakh Khoussainov Automatic structures, Part 3

Scott Rank Theorem

Theorem (B. Khoussainov, M. Minnes, 2007)

For each infinite α ≤ ωCK
1 + 1 there is an automatic structure of

Scott rank α.

We now outline the proof of the theorem.

21 / 33

Bakh Khoussainov Automatic structures, Part 3

Proof

Let C = (C; R) be a computable structure.
We construct an automatic structure A whose Scott rank is
(close to) the Scott rank of C.
We assume that C = Σ? for some finite Σ.
Let M be a Turing machine for R.

22 / 33

Bakh Khoussainov Automatic structures, Part 3

Proof: continued

Consider the configuration space C(M) of the machine M.

Definition
A deterministic Turing machine M is reversible if the
in-degree of each vertex in C(M) is at most 1.

Lemma (Bennet, 1973)
Any deterministic Turing machine may be simulated by a
reversible Turing machine.

So, we assume that M is reversible.

23 / 33

Bakh Khoussainov Automatic structures, Part 3

Some assumptions and terminology for C(M)

1 All the chains in C(M) are of the type ω or ω? or n.
2 M halts if and only if its output is yes.
3 Terminating computation chains: finite chains whose

base is a valid initial configuration.
4 Non-terminating computation chains: infinite chains

whose base is a valid initial configuration.
5 Unproductive chains: chains whose base is not a valid

initial configuration.

24 / 33

Bakh Khoussainov Automatic structures, Part 3

Changing the configuration space C(M):

1 Add an ω?-chain below each base of an unproductive
chain.

2 Add ω-many copies of ω? and ω? + ω.
3 Connect to each base of a computation chain a structure

which consists of ω many chains of each finite length.
4 Connect each tuple (x1, . . . , xn) in C to the initial

configuration of M determined by the tuple.

Denote the resulting structure by A.

25 / 33

Bakh Khoussainov Automatic structures, Part 3

Proof: continued

Lemma
For x̄ , ȳ from the domain of C, and for any ordinal α, x̄ ≡α

C ȳ
implies that x̄ ≡α

A ȳ .

Lemma

SR(C) ≤ SR(A) ≤ 2 + SR(C).

Lemma (Knight, Millar, in print)

For each α ≤ ωCK
1 + 1 there is a computable structure of Scott

rank α.

Thus, we have proved the theorem.

26 / 33

Bakh Khoussainov Automatic structures, Part 3

The isomorphism problem

Corollary
The isomorphism problem for automatic structures is
Σ1

1-complete.

Proof. The transformation from C to A preserves isomorphism
types. The isomorphism problem for computable structures is
Σ1

1-complete. Hence, the theorem reduces the isomorphism
problem for computable structures to the isomorphism problem
for automatic structures.

27 / 33

Bakh Khoussainov Automatic structures, Part 3

Cantor-Bendixson ranks of successor trees

Recall the following:

Definition
Let T = (T ,≤) be a tree. d(T) is the subtree of all nodes x
such that x belongs to two distinct infinite paths of T . Set

dα+1 = d(dα(T)), and
for limit ordinal α, set dα = ∩β<αdβ(T).

Definition

The first α for which dα+1(T) = dα(T) is called the CB rank of
T denoted by CB(T).

28 / 33

Bakh Khoussainov Automatic structures, Part 3

Cantor-Bendixson ranks of successor trees

In the second tutorial we proved the following

Theorem (Khoussainov, Rubin, Stephan, 2003)

If T is automatic partial order tree then CB(T) < ω.

This theorem fails if we consider automatic successor trees
rather than automatic partial order trees.

Theorem (Khoussainov, Minnes, 2007)

For each computable ordinal α < ωCK
1 there is a successor tree

of CB rank α.

29 / 33

Bakh Khoussainov Automatic structures, Part 3

Heights of automatic well founded relations
The general case

In the second tutorial we proved that heights of automatic well
founded po sets are < ωω. However, we have the following:

Theorem (B. Khoussainov, M. Minnes, 2007)

For each computable ordinal α < ωCK
1 , there is an automatic

well-founded relation (A, R) such that α ≤ h(A) ≤ ω + α.

This answers Vardi’s question.

30 / 33

Bakh Khoussainov Automatic structures, Part 3

Computational complexity aspects

Let G = (V , E) be an automatic graph. We ask the following:

Connectivity Problem. Is G connected?

Reachability Problem. Is there a path from x to y?

Infinity Testing Problem. Is the component of x infinite?

Infinite Component Problem. Does G have an infinite
component?

All the problems above are undecidable.

31 / 33

Bakh Khoussainov Automatic structures, Part 3

Computational complexity aspects

Theorem (Khoussainov, Liu, Minnes, 2007)
Given a unary automaton A of size n representing a locally
finite graph G:

1 The infinite component problem can be solved in O(n
3
2).

2 The infinity testing problem can be solved in O(n
5
2).

Moreover, when A is fixed, the infinity testing problem can
be solved in constant time.

3 The reachability problem can be solved in
O(|v |+ |w |+ n

5
2).

32 / 33

Bakh Khoussainov Automatic structures, Part 3

Conclusion (Open questions):

1 Study the isomorphism problem for the classes of
Automatic linear orders.
Automatic groups.
Automatic Abelian groups.
Automatic partial orders.
Automatic equivalence structures.

2 Study computational complexity of computing isomorphism
invariants of automatic structures (heights, CB ranks,etc).

3 Study computational complexity of the theories of
automatic structures.

4 etc.

33 / 33

Bakh Khoussainov Automatic structures, Part 3

