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Plan: Tutorial 2
Proof methods

@ Automatic well-founded partial orders
@ Automatic linear orders and trees

@ Automatic Boolean algebras

@ Automatic Finitely generated groups

2/44

Bakh Khoussainov Automatic Structures, Part 2



Automatic partial orders

Definition

A partially ordered set A = (A, <) is automatic if Aand < are
recognized by word automata.

Examples:
@ Small ordinals w”, where n is finite.

Q ({0,135 ).

© Finite or co-finite subset of w under inclusion.
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Well-founded relations
Structures

Definition

A relation R is called well-founded if there is no infinite
sequence X1, X2, X3, ... such that (xj, 1, x;) € Rfori € w.

Define the height function as follows:
@ For the R-minimal elements x, set h4(x) = 0.
@ Put ha(z) =sup{h(y)+1:(y,2) € R}.

The height of A = (A, R), is sup{ha(x) | x € A}
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Heights of well-founded partial orders

Goal: Study heights of automatic well founded partial orders.

Lemma

@ Foreach a < w§K there is a computable well-founded
partial order of height c.

@ The height of each computable well founded relation is
below w1c i O

Lemma

For a structure A = (A; R) where R is well-founded, if h(A) = «
and (5 < « then there is an x € A such that h4(x) = . O
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The natural sum of ordinals

Definition

The natural sum of ordinals «, 3, a +' 3, is defined recursively
by putting o +’ 3 as the least ordinal strictly greater than v +' 3
for all v < « and strictly greater than o + v for all v < 3.

This sum can also be defined as follows:
(Whrer + ... +wlkek) + (WPrTby + ...+ wkby) =
wﬁ1(C1 —|—b1) —I—...—i-wﬁk(Ck—i-bk).
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@ Let A = (A, <) be a well founded partial order.

@ Let A; and A be disjoint subsets of A such that
A=A UA.

@ Consider A1 = (A1, <) and A, = (Ag, <o) obtained by
restricting < to Ay and A, respectively.

o Let o = h(.A1) and Qo = h(AQ)
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Height Lemma

Lemma (Height Lemma)
Under the assumptions above, h(A) < oy +' as.

Proof. For each x € A, define function f(x):

let A1 x ={z€Aj|z<x}and Aoy ={z€ A | Z < x}.

Set f(x) = h(A1 x) +' h(Az,x)-

The range of this ranking function is in ay +' a. O

If h(A) = w" then either h(A4y) = w" or h(Ap) = w". O
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A Characterization Theorem

Theorem (Khoussainov, Minnes, 2007)

An ordinal « is the height of an automatic well-founded partial
order if and only if o < w®.

Proof. One direction is clear because ordinals w” do the job.

For the other direction, assume there is an automatic
well-founded po A = (A, <) such that r(A) = a > w*.

@ Let (Sa,ta, An, Fa) be word automata for A.
@ Let (S<, i<, A<, F<) be word automata for <.
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Proof: continued (Delhomme’s technique)

@ Forac A, definea|={xc A: x < a}.
@ Fora,p ez~ set

X§={pwecA:weX*&pw< aj}.
@ Thus, a | can be partitioned as follows:

al={xeA: |x|<lag&x<a}uU Upez*:‘p‘:|a|X§.
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Proof: continued

@ For each n, select a, € A such that hy(an) = w".
@ By the corollary, select p, such that

@ |an| = |pn| and
o h(Xgr)=h(ap|)=w".
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Proof: continued

Define the following relation on (&, p) such that |a| = |p|:
(a,p)~(a,p)

@ Ap(ta,p) = Aa(ea, p'), and

° Ac(is, (5) = Dclis, (5))-
There are at most |Sa| x |S<| equivalence classes.
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Proof: continued

Therefore, in the sequence (a1, p1), (a2, p2),... thereare m, n
such that m # nand (am, pm) ~ (&@n, Pn)-

Forany a,p,a,p' € ¥*, if (a,p) ~ (&,p') then h(Xg) = h(XZ).

Proof. The function f : X2 — X;j,’ defined by f(pw) = p'w is

well-defined, bijective, and order preserving. O
Thus, w™ = h(X3m) = h(Xgr) = w", and we proved the
theorem.
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Automatic Linear orders

Let f(x) be either ab*+¢ with a, b, ¢ € w or polynomial with
positive integer coefficients. Let L be an automatic linear order.
The order xc.,(L + f(x) + L) is automatic.

@ The order of rational numbers is automatic.

@ The sum and product of automatic linear orders are
automatic.
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Cantor Bendixson ranks

Definition

Let (L, <) be a lo set. Elements x, y € L are =g-equivalent if
there are finitely many elements between them.

Factorize (L, <) with respect to =¢; Continue this process.

Definition

The first ordinal at which the fix point is reached is called the
Cantor-Bendixson rank of (L, <). We denote it by CB(L, <).

The fix point is either 1 or the order type of rational numbers.
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Cantor Bendixson ranks

If L is an automatic linear order then so is its factor L/ =¢. [

The proof of the heights theorem is adapted to prove this:

Theorem (Khoussainov, Rubin, Stephan, 2003)

An ordinal o is a CB rank of an automatic linear order if and
only if o is finite.
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Corollaries

Corollary

Let L be an automatic linearly ordered set.
@ One can compute the Cantor Bendixson rank of L.
@ It is decidable if L is scattered.

@ IfL is not scattered then one can compute an automatic
dense suborder of L.
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Corollaries

Let L be an automatic linearly ordered set.
@ Itis decidable if L is an ordinal.
@ If L is an ordinal, one can compute its Cantor normal form.

The isomorphism problem for automatic ordinals is decidable.

Open problem: We do not know whether the isomorphism
problem for automatic linear orders is decidable.
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Automatic partial order trees

Definition

Atreeis 7 = (T, <) where < is partial order such that 7" has
the least element and the set x | is linearly ordered and finite
forallx e T.

19/44

Bakh Khoussainov Automatic Structures, Part 2



Q@ (L, =), where L is prefix closed regular language.

@ Let L be regular language. Consider (LU {)\}, <), where
X<y < x=yor

(Ixl < ly)&Vz(z € L&|x| = |2| = X Zjex 2)

Q ({0,1}*-1,=) is isomorphic to w<*.
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Cantor-Bendixson ranks of trees

Definition

Let 7 = (T,<) be atree. d(7) is the subtree of all nodes x
such that x belongs to two distinct infinite paths of 7. Set

@ d*t' = d(d*(7T)), and
o for limit ordinal o, set d* = Ny, d?(7).

Definition

The first o for which d**1(7) = d*(7) is called the CB rank of
7T denoted by CB(7T).
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Cantor-Bendixson ranks of trees

Definition

Let 7 = (T, <) be an automatic finitely branching tree. Set
x <kg y if x =y ory < x orthere are u, v, w such that
v,w € Successor(u) and v <jgx wand v < xand w < y.

The relation <gg is regular. Therefore KBy = (T, <kg) is an
automatic linearly ordered set. This order can be exploited to
prove the following theorem:

Theorem (Khoussainov, Rubin, Stephan, 2003)

If T is an automatic tree then CB(T) < w.
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Full Automatic version of Kénig’s lemma

Suppose that 7 is an automatic tree. An element x is
scattered if |[7x]| < w and [Z4] # 0.

Theorem (Khoussainov, Rubin, Stephan, 2003)
There is a ternary regular relation R(x, y, z) such that:
Q@ 3y3zR(x,y,z) = {x € T | x is scattered }.
© For each scattered x and y € ¥*, the set
Ry, = {z | R(x,y,2)} is an infinite path through 7.
© For each scattered x, if ) is an infinite path through T
there is a y such that R, = 7.
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The Constant Growth Lemma

Lemma (Khoussainov, Nerode 1994)

Letf: D" — D be a function such that the graph of f is a
regular relation. There exists a constant C such that for all

X1,...,Xp € D, we have
|f(X17’ .- ,Xn)| < maX{‘X-] |7 000 ’Xn|} + C.
Proof. The Pumping lemma does the job. O
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Generating sets

Let A= (A, Fo, Fy,..., Fp) be an automatic structure. Let
X C Abe such that in the <y listing xy, X, ... of X we have
|xn| < C’- nfor some constant C'.

Define Gp(X) as follows:
Q Gi(X)={x}.
Q Gr1(X) = Ga(X) U{Fi(a) | @€ Gn(X)} U {Xn41}-
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The growth of generation theorem

Theorem (Khoussainov, Nerode, 1994; Blumensath, Gradel,

2{0[0]0)]
There exists a constant C such that

laj<C-n

for all a € Gp(X). In particular, Go(X) C€ X=¢" when |X| > 1;
and |Gp(X)| < C-nwhen x| =1. O

V.
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Corollaries

Corollary

The following structures are not word automatic:

@ The free semigroup (¥*;-).

@ (w;f), where f : w? — w is a bijection.

@ The free group F(n) with n > 1 generators.
@ (w; x).

@ (w; Div(x,y)).

@ (w; <, {n!'| new}).
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Automatic Boolean algebras

Examples:

@ The Boolean algebra B,,, the collection of all finite or
co-finite subsets of w.

@ The Boolean algebra B, where n > 1.
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The Generation Lemma for monoids

Lemma (Khoussainov, Rubin, Stephan, 2003)

Let (M, -) be an automatic monoid. There is a constant C such
that for every s+, ...,s, € M we have

|S1-So-...-8n| < max{|si],|Sz|,...,|Sn|} + C-log(n).

Proof. Use the constant growth lemma and associativity of the
monoid operation. O
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The Characterization Theorem for Boolean algebras

Theorem (Khoussainov, Nies, Rubin, Stephan, 2003)

A Boolean algebra is automatic if and only if it is isomorphic to
B! for some n > 1.

Proof. One direction is clear. We prove the other direction for
the atomless Boolean algebra.
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Proof: Continued

Construct a sequence embedded trees { Ty} new:
o To={\},by=1.

@ The induction hypothesis on T, is that the number of
leaves in 7, is 2".

@ For each leaf o, the associated element b, is not empty.
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Proof: Continued

Define 7,1 as follows:

@ For each leaf b, in 7, find the first x such that
b,o := by, N x and b, := b, N x both not empty.
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Proof: Continued

@ By the constant growth Lemma we have
|b00| < |bo'| + C1 and ’bg1| < ’bg| + C1-

@ Hence X, C X% where X, is the set of leaves of 7.
@ Hence, by the generation lemma for monoids

B(Xp) € X%
@ However, |B(X,)| > 22".

We have a contradiction. O
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An application

The isomorphism problem for word automatic Boolean algebras
is decidable. O

Proof Elements a, b € B are =¢-equivalent if their symmetric
difference (an b) U (an b) is a finite union of atoms.

By the theorem, the factor algebra B/F is finite if B is
automatic. Also =f is regular. Thus, B and B’ are isomorphic iff
B/F and B'/F’ are isomorphic. O
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Automatic finitely generated groups

Examples:
@ Finitely generated Abelian groups are automatic.
@ F(n), with n > 1, is not automatic.

Definition

A group is virtually Abelian if it has an Abelian subgroup of
finite index.
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Automatic finitely generated groups
Virtually Abelian finitely generated groups G are automatic.

Proof. Say, A =< xq, xo > is an Abelian torsion free normal
subgroup of finite index of the group G.

Each g € Gis of the form

m m :
g=1ix;' %%, j=1,...s
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Proof: continued

We have:

xaty = 7050, et = txf0xgY, and 1 = o Ox50).

Thus,
T,'X1m1 Xé"z ) th1n1 X2f72 _ t,'th1m1 a(i)+mzc(j)+ny xé"‘ b(j)+mzd(j)+n2
So, the group is automatic. O]
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Our goal is to prove the following

Theorem (Thomas, Oliver, 2003)

A finitely generated group is automatic if and only if the group is
virtually Abelian.

Proof. One direction is given by the previous lemma. We prove
the other direction.
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Proof: Continued

Define:
Q@ G'=G, Gt = [Gk, Gk], and
@ 0(G) = G, %+1(G) = [(Gk), G].

Definition

The group G is solvable if G" = {e} for some n. The group G
is nilpotent if v,(G) = {e} for some n.

If G is nilpotent then G is solvable.
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Proof: continued

Let A = {ay,...,ax} be a generating set of G. By the
generation lemma for monoids, we have

Gn(A) C £6709(" " and hence |Gn(A)| < nC.

Theorem (Gromov)

If a finitely generated group has a polynomial growth then it is
virtually nilpotent.

Theorem (Ershov)

A nilpotent group has a decidable FO theory if and only if it is
virtually Abelian.
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Proof: continued

Theorem (Romanovski, Novikov)

A virtually solvable group has a decidable FO theory if and only
if it is virtually Abelian.

Thus, if G is automatic and finitely generated then:
@ G has a polynomial growth.

@ By Gromov G is virtually nilpotent. Hence G is virtually
solvable.

© By Romanovski, G is virtually Abelian.

O
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Open problems

@ Is the isomorphism problem for finitely generated
automatic groups decidable?

@ Is the isomorphism problem for torsion free Abelian groups
decidable?

© Is the group (Q, +) automatic?
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Automatic groups by Thurston

Let A be a finite set of generators of a group G and A= A~".

The Cayley graph of G is the structure (G, f3)aca, Where
fa(x) =x-aforx € G.

Definition
The group G is Thurston automatic if there is a language
Rep C A* such that
@ Repis regular and for each g € G there is a v € Rep such
that v = g.
©Q Theset{(u,v) |G Eu=v&u,v e Rep} is regular.

© For each a € A, the set
{(ua,v) |G Eua=v & u,v € Rep} is regular.
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Thurston automatic vs automatic

Here we restrict ourselves to finitely generated groups. We
have the following:
@ If G is automatic then G is Thurston automatic.
@ There is a Thurston automatic group which is not
automatic. The group F(n) is such an example.
@ If G is Thurston automatic then its Cayley graph is
automatic.

@ There is a group G such that its Cayley graph is automatic
but G is not Thurston automatic. The Heisenberg group is
such an example.
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