
Computer-Aided Sketching to Capture Preliminary Design

B e r y l P l i m m e r

Department of Information Systems
Manukau Institute of Technology

Private Bag 94006, Auckland, Hew Zealand

Beryl. Plimmer @manukau. ac. nz

M a r k A p p e r l e y

Department of Computer Science
Waikato University

Private Bag 3105, Hamilton

M. Apperley@cs. waikato, ac. nz

Abstract

This paper describes the vital role of freehand sketching in the
design process. When designers first tackle a design problem
they usually do so by sketching. We will explore the essential
elements of sketching that make it so helpful to problem solving.
We then examine how current computer interfaces interfere with
the sketching process, and go on to establish the requirements
for an environment to support sketching. Finally we describe a
system under development to integrate sketching into a visual
programming environment (Visual Basic).

.Keywords: Sketching, design, informal interfaces, pen
computing, large interactive displays.

1 Introduction

Sketching is the preferred preliminary capture process for
designers because it provides a quick and easy way to
externalise design ideas. It is well suited to ill-structured
problem solving (Goel, 1995) as participants can produce,
evaluate, modify, refine and replace ideas rapidly. The
requirements for a sketching medium are simple, yet few
existing computer interfaces facilitate true sketching. This
is because providing a sketching interface that is more
useable than the more formal alternatives has been
technically difficult from both a hardware and software
perspective. We propose a model for a sketch interface
and argue that it is now possible to provide a cost
effective sketch interface with software support so that
the sketch artefacts can be used as input to the next
design step.

2 Sketching

Sketching is effortless and natural; we learn to sketch as
very young children. The sketching process occupies
almost zero cognitive load, and this is important as it
allows the designer to externalise a design while directing
all the cognit ive effort to the design process
(Goldschmidt, 1999). Design is an iterative process
(Tversky, 1999); the iterations may be very quick during
the early phases with designs being constructed, refined,
and discarded in rapid succession. Typically, sketches are
informal, abstract conceptualisations of reality using
highly stylised icons and constructs.

Copyright ©2001, Australian Computer Society, Inc. This
paper appeared at the Third Australasian User Interfaces
Conference (AUIC2002), Melbourne, Australia. Conferences in
Research and Practice in Information Technology, Vol. 7. John
Grundy and Paul Calder, Eds. Reproduction for academic, not-
for profit purposes permitted provided this text is included..

People use a range of mediums for sketching: a stick on
the sand, paper and pencil, whiteboards and pens. These
surfaces share the characteristics o f providing a direct,
rapid and effortless way to express ideas visually
(Goldschmidt, 1999). Sand is easy to alter but lacks
permanency and portability. Whiteboards are easy to alter
and large enough for a group to share, however the
available space is generally quite small and like sand it is
a non-permanent, non-portable surface. In contrast, paper
provides more permanency and does not have the same
sort of space restrictions. One can choose a piece of paper
of appropriate size for the scale of the task and extra
paper is generally readily available, but it is more difficult
to alter.

Most creative fields share a tradition of sketching as an
essential part of the design process. A design starts as a
cognitive impression that may be quite vague, that the
designer then expresses in some external form in order to
work with it (Tversky, 1999). Designers tend to choose
sketching for this first external presentation because it
allows them to download short-term memory quickly on
to a more permanent space. Architects sketch to explore
spatial relationships and as a means of communicating
with others. Engineers find that sketches not only allow
them to explore the visual components of a design but
also help expose the underlying functional requirements.
Software engineers use visual modelling to describe
abstractions of real world objects composed of both
information and processes. User interface designers use
diagrams to describe both the appearance and
functionality of an interface.

The sketch serves as a cognitive support tool during the
design process; it compensates for human short-term
memory limitations and at the same time supplements
cognitive effort by depicting the mental imagery in a
concrete form. Where a detailed nontrivial design is too
large to hold as a mental model, a sketch allows the
designer to visually describe the overall concept and then
reorganise, refine and explore the details (Goldschmidt,
1999); different levels o f ref inement can reside
simultaneously in the same diagram. In this way an ill-
structured problem slowly resolves into a structured
solution. This process of partial representation makes
good use of our innate visual intelligence.

Many design activities require group collaboration or
agreement. This is best achieved if the group works
together to produce the initial design concepts (Bekker,
1993). By working together the participants share a better
understanding of the problem and solution space. A
sketch sets up a visual dialogue with the designer and
other group members and facilitates the identification of

patterns and relationships (Tversky, 1999). Practitioners
have found that the 'polished' diagrams that computers
produce discourage critical evaluation and discussion
(Goel, 1995). This is so vital to the design process that a
number of pieces of software have been created to
transform typical computer produced diagrams into
something that resembles a hand-drawn sketch. Other
designers admit that they trace over their computer output
with pen to present a first-draft to clients (Landay, 1996).

Hierarchical structure and sequence are also important in
many design problems; these associations can be easily
identified and explored with a sketch. It has also been
shown that while sketching, experienced designers think
about the underlying processes (Tversky, 1999).

The range of symbols that is used in sketches and
diagrams is generally quite small: rectangles and ovals of
different dimensions and orientation, straight, curved and
squiggly lines. Glyphs (or visual symbols) may be a
single symbol or a combination of symbols. Their
meaning is context dependent (Gross, 1998), with each
discipline developing a unique set of meaningful glyphs.
For example architects have specific icons for showing
doors and windows, physicists have symbols for heat
loss. Software Engineers typically use a diagrammatic
methodology to model systems where the methodology
defines a symbol set. User interface designers use abstract
placeholders and symbols similar to the visual appearance
of the GUI controls. In fact, the same icon may have
different meanings in different disciplines or even within
the same sketch depending on context.

The majority of engineering, architectural and software
diagrams ultimately end up on computers and of course
the end product of a user interface design is the computer
interface. However most designers start with hand-drawn
sketches. They give a number of reasons for this.

First sketching is quicker. Computer environments
typically require the selection of a widget from a
predefined set and then the placing and sizing of the
widget on the screen. Second widget selection forces the
designer to make decisions about the specific nature of a
feature too early, as computer environments do not
provide abstract placeholders for elements to be described
ambiguously (Landay, 1996). Informality and ambiguity
are important during preliminary design. For example at
the early stages of an interface design it may be sufficient
to draw a box named 'contact information'. This will later
be detailed as name, address lines, phone email etc, but at
the initial stages it is not important enough to waste time
on the detail.

3 Computer Supported Sketching

True computer supported sketching is not common. We
suggest that the reasons for this are two-fold. To be useful
a computer environment must add something to the
process (Gross, 1998) and the interface must not add
cognitive overhead to the design generation process.

Computers can clearly contribute to sketching by
overcoming the disadvantages of paper and whiteboards.
A computer can provide limitless space and although the
viewing space is limited, zooming can provide an

overview. Easy editing can also be provided by software,
and the digital artefact is simple to store and transfer.

The other contributions that computer interfaces can
make to the process are: to provide intelligent support for
transforming the sketch to the formal diagrams that are
used as the design process proceeds, for fields where the
design describes a process, to emulate some of the
functionality of the design while it is in sketch form. The
challenge is for the computer to be able to accurately
recognise the sketch icons and then transform and
animate them.

Providing an interaction device that does not interfere
with the sketching process is the other major challenge
for computer supported sketching. We start with the
premise that sketching must be fast, direct and natural. In
the 1960s some work was done with providing direct
manipulation interfaces using light pens on cathode-ray
tubes. As these screens were phased out in the 1970s and
the mouse became the dominant pointing device, the
research effort slowed (Gross, 1998). More recently there
has been a revival with the development of pen based
computing and large interactive displays.

A number of projects have investigated computer
supported sketching in a variety of domains. Landay and
others (Landay, 1996, Landay and Myers, 1995, Lin, et
al., 2000) developed a user interface and a web page
sketch design tool; Gross and Do (1996) created an
architects' sketch tool; Stahovich (1998) worked with
engineering drawings; and Damm et. al. (2000)
developed a CASE tool interface. Each project has taken
a different approach but all have provided a pen interface
and recognised glyphs for transformation into a formal
design or to emulate functionality.

4 Computer Sketch Interface Requirements

From a usability perspective a digital sketch environment
should imitate customary tools in most respects. It must
facilitate informal, direct and rapid drawing in an
uncluttered space, without interruption. Also to be
worthwhile the digital surface must provide more
functionality than paper or a whiteboard. Below we
describe the requirements for a digital sketch tool.

4.1 Usabil i ty

First the physical interface must be pen based and direct.
Pens are the natural drawing tools for humans. When
contact is not direct with the surface, such as is
experienced with drawing tablets, there is an element of
discontinuity and indirectness that makes for a less than
ideal interface.

The visible drawing area needs to be large enough for the
intended users to work with, either as individuals or
groups and accommodate the detail of the design. To
allow the users to concentrate on the design effort, tools
and support should be unobtrusive. We suggest a single
pen and eraser. Depending on the domain it may be
important to be able to select ink colour or brush
properties, but these should be added only if designers in
that field commonly use them.

Clearly, the ability to edit sketches is one of the
advantages of a digital environment so support for
copying and resizing would be expected. The objective
must be to integrate these facilities into a pen interface in
a natural way so that little cognitive overhead or training
is required.

In the following section we will discuss intelligent
recognition, however we contend that while constructing
a sketch the users should not be distracted with checking
whether the recognition engine has correctly interpreted
their pen strokes. This is contrary to the normal view on
user feedback. The best recognition techniques available
do not guarantee accurate recognition, and what is more
the designer may draw intermediary ideas that they do not
intend to be carried forward to the next stage. We believe
that giving the user feedback on whether a glyph has been
recognised will distract them from the design process and
runs contrary to providing a rapid, uninterrupted drawing
environment.

The obvious difference between pen based computing
and standard desktop computers is the replacement of the
mouse and keyboard by a pen. Pens function in a similar
way to a mouse, except that movement is tracked only
when the pen is in contact with the interface; this is
roughly equivalent to a mouse down, mouse move, mouse
up event sequence. On standard computers keyboards
facilitate text entry. While it is possible to have both a
keyboard and pen, moving focus from the pen to the
keyboard interrupts the design session. This can be
avoided by integrating character recognition into software
so that the pen can be used to input text.

4.2 Functionality

In order for a computer-supported environment to be
worthwhile it must add something to the process it is
supporting. Many of the features we are familiar with in
standard applications, such as the ability to save, retrieve
and edit are likely to be useful.

The other substantive way in which computers can
enhance the design process is by integrating sketching
into standard applications and by adding functionality to
sketch. In order to do this the software must recognise the
glyphs. Sketch recognition is a non-trivial task. One of
the strengths of sketching is that precision is not required;
this is clearly counter-productive when attempting to
interpret a sketch. However, once recognised a sketch can
be transformed into a formal diagram or demonstrate
functionality. For example Knight (Damm et al, 2000)
converts sketches to a CASE tool diagram and Denim
(Lin, et al., 2000), a web page design tool allows
designers to link buttons to web pages so that the
designers can 'walk through' the page structure while in
the sketch environment.

5 Direct pen input devices

There is a range of direct pen input devices currently
available; the major discriminating factor is size. PDAs
are perhaps the most popular, however for design
purposes their screens are too small. Tablet PCs that have
a screen about the size of an A4 page would be suitable

for single user sketch environments, but are clearly not
big enough for a group space.

Xerox developed the 'Liveboard' interactive whiteboard
in 1990, which they subsequently used as a base for
meeting support software (Pedersen, et al., 1993).
Smartboard (2000) is a commercially available large
interactive display. To support this work we have
constructed a low cost large interactive display screen
(LIDS)(Apperley, et al., 2001). It is comprised of a
standard data projector, rear projected onto a screen
approximately 900mm wide by 1200mm high with a
Mimio (1999) whiteboard digitiser attached to the screen
to provide the interaction. The Mimio pens are used in
mouse emulation mode.

6 A sketch interface for a programming
environment

GUI interfaces are the standard for most commercial
software and their design is a critical factor in the
usability of the software. With the exception of very large
organisations these interfaces are usually designed and
created by software engineers, many of whom have no
formal training in interface design. While they may
accept that there are some advantages in sketching
designs, most of them are reluctant to do so because they
see it as a waste of time. This is also true of student
programmers. We believe that by integrating a sketching
environment that will electronically transpose a sketch
into a GUI form, into a programming environment
software engineers are more likely to sketch a design and
in doing so consider user interface requirements before
they create the form.

We are developing a sketch interface for Visual Basic TM

(VB) to test this hypothesis using the LIDS described
above as the interface. The software has three major
components; a sketch space, recognition engine, and a
form creator.

The sketch space is a deliberately minimalist environment
where the users can draw, handwrite and edit. In drawing
mode the user can sketch freely but should ultimately end
up with glyphs that roughly depict the VB controls that
they wish to represent. In handwriting mode the user pens
text that is interpreted by a handwriting recognition
module. In edit mode the user can cut, copy, paste or
resize sketch components. Our goal is to provide a
comprehensive and intuitive design environment where
all the interaction is via the pen and LIDS.

Rubine's (1991) pattern recognition algorithm has been
implemented for glyph and gesture recognition. The
sketch space operates in the three separate modes to
improve recognition, with intelligent mode switching
whenever possible. Although this algorithm does
successfully recognise graffiti script (Palm Computing,
1994) the intention is to integrate an available
handwriting recognition module.

Pen strokes are recognised immediately after completion.
Most sketch systems provide some form of feedback,
tidying the sketch, changing the colour or displaying the
name of the recognised glyph. As suggested earlier, we
are experimenting with delaying this until the user

Figure 1

• ,F~:amel = • ,: "

C O p l l ; n l '] I

' t ' . Opl io f tZ i,

¢~ :: npti=,,,,3 =
!

decides the sketch is complete. In edit mode gestures
invoke an immediate response with the sketch being
redrawn to reflect the gesture request.

On completion, the user instructs the software to create a
VB form from the sketch. At this point a rule-based
system is used to work out the relationships between
glyphs. There are essentially three categories of
relationships. Firstly when two glyphs combine to create
one VB control, for example a long rectangle with a
triangle inside will be mapped to a drop down combo.
Secondly, container controls, for example frames, are
large rectangles containing other controls. This is
particularly important for option buttons where each
contained set is mutually exclusive. Finally, VB controls
such as text boxes do not have a caption property, so we
intend to link labels beside or above such controls to
intelligently name the control.

Before the form is created the user has the ability to alter
the recognition engine's decisions, changing the type of
control, relationships or text. Once this is completed a VB
form is generated. A fuller explanation can be found
elsewhere (Plimmer and Apperley, 2001).

We are actively developing the environment described
above; at the time of writing the sketch space is
operational with drawing and editing. Rubine's algorithm
has been implemented along with an interface to create
and edit gesture sets. Integration into VB has been
implemented.

The next steps are: to usability test the sketching
environment, build the rule system to combine glyphs and
allow users to define the mapping to VB controls. We
also plan to integrate an appropriate handwriting
recognition module.

7 C o n c l u s i o n s

Sketching is a valuable part of the design process. It
allows the designer to quickly represent their design ideas
in a physical medium. Although most designs are
rendered on a computer, most designers choose not to use
a computer for the first stage of design because the
currently available interfaces do not support the
informality of sketching. We have described the essential
elements of a sketch. We contend that unlike most
interfaces a sketch environment should delay feedback
until the user requests it. We are developing a sketch
interface for Visual Basic to test these ideas.

8 R e f e r e n c e s

APPERLEY, M., DAHLBERG, B., JEFFERIES, A.,
PAINE, L., PHILLIPS, M. and ROGERS, B., (2001):
Lightweight capture of presentations for review, To
appear in Proc. IHM-HCI, Lille, ACM

BEKKER, M. M., (1993): Representational issues related
to communication in design teams, Proc. Chi '93, Interact
'93 and Chi '93 Conference companion on human factors
in computing systems, 151-152, ACM

DAMM, C. H., HANSEN, K. M. and THOMSEN, M.,
(2000): Tools support for cooperative object-oriented
design: Gesture based modeling on and electronic
whiteboard, Proc. Chi 2000, 518-525, ACM

GOEL, V., (1995): Sketches o f thought, Cambridge,
Massachusetts, The MIT Press

GOLDSCHMIDT, G., (1999): The backtalk of self-
generated sketches, In Visual and spatial reasoning in
design, 163-184, GERO, J. S. and TVERSKY, B. (eds),
Sydney, Key Centre, University of Sydney

GROSS, M., (1998): The proverbial back of an envelope,
1EEE Intelligent Systems, 13 (3) 10-13

GROSS, M. and DO, E. Y.-L., (1996): Ambiguous
intentions: a paper-like interface for creative design,
Proc. UIST '96, Seattle Washington, 183-192, ACM

LANDAY, J., (1996): Interactive sketching for the early
design stages of user interface design,PhD., Carnegie
Mellon University, Pittsburgh, PA

LANDAY, J. and MYERS, B., (1995): Interactive
sketching for the early stages of user interface design,
Proc. Chi '95 Mosaic of Creativity, ACM, 43-50,

LIN, J., NEWMAN, M. W., HONG, J. I. and LANDAY,
J. A., (2000): Denim: Finding a tighter fit between tools
and practice for web design, Proc. Chi 2000, 510-517,
ACM

MIMIO, (1999): Mimio, http://www.virtualink.com

PALM_COMPUTING, (1994): http://www.paim.com

PEDERSEN, E. R., MCCALL, K., MORAN, T. P. and
HALASZ, F. G., (1993): Tivoli: An electronic
whiteboard for informal workgroup meetings, Proc.
Interchi '93, 391-398, ACM

PLIMMER, B. E. and APPERLEY, M., (2001): From
sketch to form on a large interactive display surface,
Proc. National Advisory Committee on Computing
Qualifications, Napier, 371-374,

RUBINE, D., (1991): Specifying gestures by example,
Proc. Proceedings of Siggraph '91,329-337, ACM

S M A R T B 0 A R D, (2 0 0 0) : SmartBoard,
http://www.smarttech.com

STAHOVICH, T. F., (1998): The engineering sketch,
IEEE Intelligent Systems, 13 (3) 17-19

TVERSKY, B., (1999): What does drawing reveal about
thinking, Proc. Visual and spatial reasoning in design,
Cambridge USA,

