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Abstract
Recently there has been renewed interest in bidirectional
heuristic search. New algorithms, e.g., MM, MMe, and NBS,
have been introduced which seem much closer to refuting the
accepted wisdom that “any front-to-end bidirectional heuris-
tic search algorithm will likely be dominated by unidirec-
tional heuristic search or bidirectional brute-force search” .
However, MM and MMe can still be dominated by their bidi-
rectional brute-force versions, i.e., they can show a “hump-
in-the-middle”. We introduce a novel general breadth-first
heuristic search algorithm, GBFHS, that unifies both unidi-
rectional and bidirectional search into a single algorithm. It
uses knowledge of the edge cost in unit cost domains to stop
on first-collision in unidirectional search and in bidirectional
search, unlike MM, MMe, and NBS. With no heuristic it
expands fewer nodes bidirectionally than Nicholson’s blind
bidirectional search algorithm. GBFHS expands substantially
fewer nodes than MM0, MM, MMe, and NBS. Additionally,
GBFHS does not show a “hump-in-the-middle”. GBFHS run
bidirectionally is not dominated by bidirectional brute-force
search, likewise, GBFHS run unidirectionally is not domi-
nated by A∗.

Introduction
Both bidirectional blind search and heuristic search can ex-
ponentially reduce the number of nodes expanded to solve a
problem. For almost 50 years now, since Pohl (1969) pub-
lished his PhD thesis “Bi-Directional and Heuristic Search
in Path Problems”, researchers have tried to combine bidi-
rectional (blind) search and heuristic search to produce a
bidirectional heuristic search algorithm that expands even
fewer nodes. The results have largely been disappointing.

Recently there has been renewed interest in bidirectional
heuristic search algorithms (Barker and Korf 2012; 2015;
Eckerle et al. 2017). New algorithms, MM (Holte et al. 2016;
2017), MMe (Sharon et al. 2016), and NBS (Chen et al.
2017), have been introduced which seem much closer to re-
futing the accepted wisdom that “any front-to-end bidirec-
tional heuristic search algorithm will likely be dominated by
unidirectional heuristic search or bidirectional brute-force
search” (Barker and Korf 2015). For example, A∗ can ex-
pand fewer nodes than these algorithms when the heuris-
tic is nearly perfect, but as Figure 1 shows, it quickly starts
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Figure 1: Average number of nodes expanded for A∗, MM, MMe,
and GBFHS on 50 random 10-pancake problems as the heuristic
accuracy degrades. The GAP-x heuristic ignores the gaps involving
the first x discs.

to expand many more nodes than MM, MMe and GBFHS
as the heuristic accuracy degrades. Figure 1 shows the av-
erage number of expanded nodes for A∗, MM, MMe, and
GBFHS on 50 random 10-pancake problems as the heuris-
tic accuracy degrades. For MM and MMe we used our re-
implementations taken from their descriptions (Holte et al.
2017), and we also adopted the method they used (Holte et
al. 2016)1 for degrading the GAP heuristic (Helmert 2010).
The x-axis in Figure 1 shows the gap heuristic degraded by
ignoring the gaps involving the first x discs.

The figure above shows MM is forced to expand nodes
that its blind variation does not expand (Holte et al. 2017). In
Figure 1, GAP-10 is the 0-heuristic, MM and MMe at GAP-
10 are MM0 while GBFHS at GAP-10 is GBFHS0. We see
that MM0 expands about a third more nodes than GBFHS0.
At GAP-4, MM expands about 50% more nodes than MM0,
effectively creating a “hump-in-the-middle”, while MMe ex-
pands slightly fewer nodes than MM0. Lastly, at GAP-4,
MM expands three times as many nodes as GBFHS and

1The description of their GAP-x heuristic is ambiguous and our
implementation of the GAP-x heuristic may be slightly different
than theirs. Our heuristic ignores gaps if either pancake id was less
than x and also ignores the table gap if the bottom pancake id was
less than x. We found this out too late to rerun the experiments.



MMe expands not quite twice as many nodes as GBFHS.
While others have noted this special case (Holte et al. 2017),
we are the first to describe the general problem.

We introduce a novel admissible general bidirectional
heuristic breadth-first type search algorithm, GBFHS. It has
the following improvements over existing algorithms:

1. its frontiers can be made to meet anywhere, it can be
made to behave as a forward, backwards, or bidirectional
heuristic search algorithm, unlike MM, MMe, and NBS;

2. in unit cost domains, as soon as it finds a solution, it is
guaranteed to be optimal whether going unidirectionally
or bidirectionally;

3. as a unidirectional algorithm, in unit cost domains, unlike
A∗, it does not expand all nodes whose f -values are less
than the optimal solution cost;

4. GBFHS is an arbitrary cost algorithm, unlike other
breadth-first heuristic algorithms (Zhou and Hansen 2004;
2006);

5. unlike current state-of-the-art bidirectional heuristic
search algorithms, it shows no “hump-in-the-middle”.

The paper is structured as follows: first, the general prob-
lem is presented; next, the related work is introduced. The
next section introduces GBFHS and provides evidence for
all the claims made above. The paper concludes with vari-
ous experiments and conclusions.

Ill-Behaved Bidirectional Heuristic Search
One of the main problems with bidirectional heuristic search
algorithms is that bidirectional blind search often per-
forms better than heuristic bidirectional search (Edelkamp,
Kissmann, and Torralba 2012) producing the hump-in-the-
middle phenomenon noted above. This is a special case of
a more general problem with these algorithms, namely, that
the algorithm can expand more nodes when given a more ac-
curate heuristic than it does with a less accurate one. As this
is a counter-intuitive phenomenon, we call these heuristic
search algorithms ill-behaved. As an example of ill-behaved
search algorithms, Holte et al. (2017) “present an example
in which MM, or any Bi-HS algorithm guided by f(n), ex-
pands more nodes than MM0, and witness this occurring
in our experiments.” Ill-behaved heuristic search algorithms
can show a hump-in-the-middle on some problems, such as
exhibited by MM in Figure 1. The opposite of ill-behaved is
well-behaved. Well-behaved search algorithms show the ex-
pected performance, i. e., to expand fewer nodes as heuristic
accuracy improves.

Related Work
Brute-force bidirectional search can be implemented in dif-
ferent ways. The first known algorithm guaranteed to meet in
the middle is Nicholson’s (1966). However, as observed by
Dreyfus (1969), stopping the search when a node is closed
in both directions is not sufficient to guarantee optimality,
and this algorithm might require additional expansions after
the first collision to ensure an optimal solution.

A number of algorithms have tried to use heuristics ef-
ficiently in a bidirectional setting. BS∗ (Kwa 1989) is an
A∗-like bidirectional search algorithm extended with var-
ious rules to hasten termination. It performs better than
BHPA (Pohl 1971), but sometimes worse than A∗.

Barker and Korf (2015) studied the influence of the
heuristic in bidirectional search and claimed that even with a
strong heuristic, bidirectional search can expand more nodes
than unidirectional search.

MM (Holte et al. 2016; 2017) (from Meet in the Mid-
dle) is the first bidirectional heuristic search algorithm that
is guaranteed to never expand nodes beyond the midpoint.
It expands nodes in both directions in ascending order of
their priority, computed as: pr(n) = max{2g(n), f(n)}.
When run with the blind heuristic, i.e., ∀n,h(n) = 0 (de-
noted as MM0), it is equivalent to Nicholson’s but with
a different termination condition. MM stops only when
the cost of the incumbent solution is less or equal to
max{prmin , fminF , fminB , gminF + gminF + ε}, where
F /B, and ε refer to the forward/backward directions and
cheapest operator cost respectively. Even if MM improves
the termination condition of Nicholson’s, it still can require
additional expansions after the first collision and, as shown
in Figure 1, it creates a “hump-in-the-middle” when the
heuristic accuracy degrades. The frontiers are said to col-
lide when nodes containing the same state appear in both
frontiers (see Definition 3).

MM was then enhanced by adding ε(n), the cheapest op-
erator applicable to n, to the term 2g(n) in the priority for-
mula. The resulting algorithm is denoted as MMe (Sharon et
al. 2016). However, it has been proved that neither algorithm
dominates the other. Even worse, it is known that both MM
and MMe can expand more nodes than MM0 (Holte et al.
2017), i.e., both MM and MMe are ill-behaved.

NBS (Chen et al. 2017) is based on the fact that any pair
of nodes n and m selected from both frontiers that lie on the
optimal path satisfy max{f(n), f(m), g(n)+g(m)} ≤ C∗,
i.e., it is a lower bound on the optimal cost. It expands at
each iteration any pair of nodes with the minimum value
of this lower bound. It terminates when this lower bound is
greater or equal to the cost of the incumbent solution. Even if
it guarantees to never expand more than twice the minimum
number of nodes required to optimally solve an instance, it
might still be required to expand additional nodes after a first
collision occurs (even in unit-cost domains).

Importantly, the theoretical results developed about NBS
apply only to bidirectional Deterministic Expansion-based
Blackbox (DXBB) algorithms. DXBB algorithms have no
a priori information about the instance(s) they are going to
solve, nor do they have any knowledge of the heuristic be-
sides that it is admissible (Shaham et al. 2017), and have
only black-box access to the expand, heuristic, and cost
functions (Chen et al. 2017). This precludes the consider-
ation of either MM or MMe as DXBB search algorithms,
as they have an extra piece of information, ε, which is de-
fined as the cost of the cheapest operator. As discussed be-
low, GBFHS also has access to ε and hence, it is not a DXBB
search algorithm. None of these algorithms are therefore di-
rectly affected by the theory of Chen et al. 2017.



As we will show in the next Section, GBFHS expands
nodes in g-layers. This idea has been tried before, for ex-
ample, Zhou and Hansen introduced Breadth-First Heuristic
Search (Zhou and Hansen 2004; 2006), which also expands
nodes in breadth-first order. There are significant differences
with GBFHS, other than the fact that their algorithm was
specifically designed to reduce the memory requirements of
best-first search algorithms, such as A∗: on one hand, their
algorithm is only applicable to unit-cost domains; on the
other hand, to limit the number of nodes generated in each
g-layer, they require an upper bound on the cost of the opti-
mal solution which is derived by other means, such as run-
ning a beam-search. Instead, GBFHS can be used both in
unit and arbitrary-cost domains. In unit-cost domains, both
their algorithm and GBFHS halt as soon as they find a solu-
tion. Finally, in the next Section we introduce a limit, fLim ,
to better bound the number of nodes in each g-layer, which
does not require any pre-computation.

Instead of computing an upper bound on the cost of the
optimal solution with beam-search, it is also possible to run
Breadth-First Heuristic Search as an IDA∗ (Korf 1985) with
an f -limit that is incremented at each iteration. The result-
ing algorithm is called BFIDA∗ (Zhou and Hansen 2004;
2006), and it was improved by Barker and Korf as a bidi-
rectional heuristic search algorithm (Barker and Korf 2012).
Basically, the idea consists of running two searches, one
from the start state, and another from the goal state using
BFIDA∗, i. e., in successive iterations, incrementing the f -
limit iteratively. Once both frontiers meet, an incumbent so-
lution is found, and the algorithm keeps track of its cost.
In their experiments, the optimal solution was always found
with a cutoff less than the cost of the incumbent solution.
Hence, before starting a new iteration with an f -limit which
equals the cost of the incumbent solution, the optimality of
this solution can be demonstrated, and the algorithm halts
saving the last iteration, the most costly one. While bidi-
rectional BFIDA∗ was only proved to be effective on Peg
Solitaire, GBFHS can be applied to any domain. The main
difference is that it does not run in successive iterations, and
it uses an OPEN list to select nodes for expansion as any
other breadth-first search algorithm.

The GBFHS Algorithm
In this Section, we: (1) describe the GBFHS algorithm; (2)
argue that GBFHS is admissible; (3) argue that in unit cost
domains, GBFHS can always stop on first collision; (4) show
that there are nodes which A∗ must expand and which the
unidirectional version, GBFHSF , does not; and (5) argue
that GBFHS is well-behaved.

Our Approach
GBFHS’s pseudo-code is shown in Algorithm 1. It uses the
function expandLevel whose pseudo-code is shown in
Algorithm 2 2. The inputs to GBFHS are: I , the initial state,
G, the goal state, ε, the minimum action cost for this do-
main, and split, a function GBFHS uses to determine how far
to search in each direction. The pseudo-code shown returns

2In the pseudocode, opp(dir) is the opposite direction of dir .

Algorithm 1 GBFHS(I,G,ε, split)→ optimalSolutionCost

1: if trivially solved then
2: return(0)
3: best ← unsolvable
4: openF ← {(I,0)}, openB ← {(G, 0)}
5: closedF ← closedB ← ∅

6: for fLim from max(hF (I), hB(G), ε) up by 1 until
openF = ∅ ∨ openB = ∅ do

7: if best = fLim then
8: return(best)
9: gLSum ← fLim − ε + 1

10: gLimF , gLimB ← split(gLSum, gLimF , gLimB)

11: expandLevel(gLimF , gLimB , fLim)
12: if best = fLim then
13: return(best)
14: return(best)

the optimal solution cost, not the actual solution. This sim-
plifies the code but is easy to modify to return the solution.
There are various global variables: the open and closed lists
(OPENF ,OPENB , CLOSEDF , and CLOSEDB), the lowest so-
lution cost found so far, best , and the two heuristics, hF and
hB used in the forward and backward direction respectively.
We will first briefly describe some general points and then
will look at the algorithm’s behavior in various contexts.

GBFHS is a bidirectional arbitrary cost heuristic search
algorithm that is a generalization of the standard unidi-
rectional unit cost blind search algorithm. fLim controls
GBFHS’s exploration of the search space. It is set to the
smallest possible solution cost (see line 6 in Algorithm 1)
and expandLevel (see Algorithm 2) checks whether a so-
lution with that cost (i.e., cost = fLim) exists. If none exist
then fLim is incremented by one, and this process repeats
until either a solution is found with a cost equal to fLim or it
determines no solution exists. GBFHS does not expand any
node in OPEND whose fD-value is greater than the current
fLim . The “D” simply indicates the direction of the open
list, we use this convention through the rest of this paper.

In addition to the f -value constraint imposed by fLim ,
GBFHS also uses g-value constraints to control the search in
each direction, gLimF and gLimB . GBFHS only expands
nodes, n, in OPEND where gD(n) < gLimD. This means
that if gLimD = 0 then no node in direction D can be ex-
panded. GBFHS’s use of the gLims enables GBFHS to be
either a unidirectional or a bidirectional heuristic breadth-
first algorithm.

One of the input parameters to GBFHS is ε, which is the
least cost edge in the search space. ε is used to determine
the smallest value, gLSum , that the two gLims can sum to
and still guarantee that all solutions with a cost of fLim
have been found by the end of that iteration. Specifically,
gLSum = fLim − ε + 1.

Another input parameter to GBFHS is the split function,
which takes three inputs: gLSum , gLimF , and gLimB and
returns two values: the updated gLims. The split function
determines how gLSum is split between the gLims. This de-
termines how much of the search is conducted in the forward



Algorithm 2 expandLevel(gLimF , gLimB , fLim)

1: expandableF ←{n ∣ n ∈ openF∧ isExpandable(n,F)}
2: expandableB ←{n ∣ n ∈ openB∧ isExpandable(n,B)}
3: while expandableF ≠ ∅ ∧ expandableB ≠ ∅ do
4: n ← pick(expandableF ∪ expandableB)
5: dir ← direction(n)
6: expandabledir ← expandabledir ∖ {n}
7: move(n, opendir , closeddir )
8: for all c ∈ expand(n, dir ) do
9: if c ∈ opendir ∪ closeddir ∧ gdir(n) + cost(n, c) ≥

gdir(c) then
10: continue
11: if c ∈ opendir ∪ closeddir then
12: remove(c, opendir ∪ closeddir )
13: gdir(c)← gdir(n) + costdir(n, c)
14: add(c, opendir )
15: if isExpandable(c, dir ) then
16: add(c, expandabledir )
17: if c ∈ openopp(dir) then
18: best←min(best, gdir(c) + gopp(dir)(c))
19: if best ≤ fLim then
20: return
21: return

direction and how much in the backward direction. With
an appropriate split function, GBFHS can search forward,
backward, or any bidirectional split.

We now look at algorithm 1, GBFHS. Line 6 tests whether
a collision is no longer possible. If one of the OPEN lists is
empty then all nodes in that direction have reached a dead
end and the algorithm goes to line 14 where it returns the
best solution found so far, if any. fLim is the current lowest
bound for the optimal solution cost, i.e., the algorithm has
determined that no solution cost can be lower than fLim . If
the test on line 7 is satisfied then our current best solution,
best, is an optimal solution.
Definition 1 (split Constraints). The split(gLSum, gLimF ,
gLimB ) function must satisfy two constraints: (1) the gLim
values it returns must not be lower than the old gLim values
supplied to it as parameters, and (2) the sum of the gLim val-
ues it returns must equal the value of the gLSum parameter
passed to it.

On line 9, gLSum is computed and on line 10 the split
function is called and divides gLSum between gLimF and
gLimB . The split function must satisfy the split constraints
specified in Defintion 1. On line 11 expandLevel is
called to expand all the nodes that are expandable given that
fLim and those gLims.

We now look at Algorithm 2, expandLevel. It has
three input parameters, fLim , gLimF , and gLimB which
determine which nodes in the search space need to
be expanded during this iteration. The boolean function
isExpandable(n,D) tests whether node n is expand-
able in direction D. A node n is expandable in direction D
if fD(n) ≤ fLim and gD(n) < gLimD (see Definition 2).

In lines 1 and 2 the set of nodes expandable this iteration
in the forward direction, expandableF , and in the backwards

direction, expandableB are initialized to those nodes, n, that
satisfy fD(n) ≤ fLim and gD(n) < gLimD. Assuming that
the search does not terminate during this iteration then all
nodes, n, in directionD, that satisfy these conditions, are ex-
panded. Since fLim increases on each iteration, new nodes
in both directions can be expanded. However, because fLim
only increases by 1, only one gLim is being increased per
iteration. Open nodes in the direction where the gLim has
not increased, can only be expanded because their expan-
sion had been deferred because their f -value had been too
high and now it is not. On line 3, if there are any nodes that
are still expandable then this iteration continues. On line 4,
we randomly pick a node from the union of the two sets of
expandable nodes.

The easiest way to understand our approach is by looking
at its simplest context: unidirectional blind search. In this
context, split always returns a 0 for gLimD and the search
will only go towards D’s root node. Let us assume that D
is backwards, then the search will be going forwards and
the goal G will be the only node in OPENB . If ε is 1 then
in line 9 in Algorithm 1, gLSum = fLim and split will set
gLimF = fLim and gLimB = 0. Since the heuristics are just
returning 0’s, a node’s f -value is simply its g-value and in
unit-cost domains, GBFHS is simply standard breadth-first
search. Which guarantees that the first time it generates a
goal state it has found an optimal solution path. Otherwise in
arbitrary-cost domains, GBFHS is simply standard uniform-
cost search and has no such guarantee.

The next easiest context adds a heuristic to unidirectional
search. Note that GBFHS does not become any known stan-
dard unidirectional heuristic search algorithm. In particu-
lar, it does not become textbook A∗! In fact, unidirectional
heuristic GBFHS can actually expand many fewer nodes
than A∗ and is still guaranteed to be admissible (see Theo-
rem 1). In unit-cost domains, GBFHS (regardless of whether
it is going unidirectionally or bidirectionally) can stop on
first collision (in unidirectional search this translates into the
first goal node being generated) and still be guaranteed to
have found an optimal solution (see Theorem 4). Textbook
A∗ has no such guarantees.

The last context is bidirectional blind search, where
GBFHS expands one side at a time because there are no
deferred nodes in the opposite direction. MM0 can expand
from both sides simultaneously. This causes MM0 to have
a higher upper bound than blind bidirectional GBFHS, see
Figure 3. This results in their expanding more nodes on aver-
age. For GBFHS , the order in which the sides are expanded
is determined by split. Given any order, in unit-cost domains,
GBFHS is guaranteed to find optimal solutions on first col-
lision.

Properties of GBFHS
We assume domains with non-negative edge costs. We begin
by defining what it means for a node to be expandable in a
specific direction.

Definition 2 (Expandable Node). Given fLim , and gLimD
where D is a direction. A node n is expandable in direction
D if fD(n) ≤ fLim and gD(n) < gLimD.



Definition 3 (Collision). Two nodes collide when they are
in opposite open lists and have the same state.
Lemma 1 (Expandable Solution Path). Given a solvable
problem P , admissible heuristics hF and hB , an optimal
solution cost of C∗ then an optimal solution path will either
be found by GBFHS when fLim = C∗ or before.
Proof Sketch. Given a solution path, S, of cost C∗, since
the path cost is simply the sum of the edge costs, for ev-
ery n in S, gF (n) + gB(n) = C∗. For fLim = C∗, every
node n will be expandable in direction D if fD(n) ≤ fLim
and gD(n) < gLimD. A solution path S will be generated as
long as at most one node in S is not expanded in either direc-
tion. If this is true then S must be generated by the end of the
level fLim = C∗. Since the heuristics are admissible then the
problem cannot be that some node, n, in S has f(n) > fLim .
When that last level begins, fLim = gLimF +gLimB +ε−1.
So the only way that a node, n, is not expandable is if
gF (n) = gLimF ∧ gB(n) = gLimB .

There are two cases: (1) ε > 0, and (2) ε = 0. In the first
case, since ε > 0 every node in S has a different pair of gF
and gB values. This means that there can be at most one
node, n, that has gF (n) = gLimF ∧ gB(n) = gLimB . So,
only that node will not be expandable in either direction.
Thus, S can be generated.

In the second case, when ε = 0, many nodes can have the
same pair of gF and gB values. However, when ε = 0 then
fLim + 1 = gLimF + gLimB . Thus every node, n, in S is
expandable because the sum of their gF and gB values is C∗
but the sum of gLim’s is equal toC∗+1, so one of the node’s
g-values must be less than its corresponding gLim . Thus, S
can be generated.

Therefore an optimal solution of cost, C∗, will be found
on or before fLim = C∗.
Lemma 2 (GBFHS stops when fLim equals optimal solu-
tion cost). If a problem has an optimal solution cost of C*
then GBFHS will stop when fLim equals C*.
Proof. From Lemma 1 we know that GBFHS finds an op-
timal solution before it finishes the fLim = C∗ level. On
line 12 of Algorithm 1 we see that when a level is done,
GBFHS checks whether the cost of the current best solution
equals the fLim just finished and if so then stops. Therefore
GBFHS will stop when fLim equals C∗.
Theorem 1 (GBFHS is Admissible). If P is a solvable prob-
lem, hF , hB are admissible consistent heuristics and the ac-
tion costs are non-negative integer valued, with a minimum
cost of ε, then GBFHS , using heuristics hF and hB , will
return an optimal solution cost for P .
Proof Sketch. P is the ordered pair (I,G), where I is the
initial state and G is the unique goal state. We show that
GBFHS, using heuristics hF and hB , will return the optimal
solution cost for P . If P is trivially solved, i.e., I equals G,
then line 1 in Algorithm 1 returns 0.

If P is not trivially solvable then GBFHS will find the
smallest fLim that has a solution, i.e., the optimal solu-
tion cost. GBFHS does this by calculating an initial fLim
ofmax{(hF (I), hB(G), ε)}. Because the heuristics are ad-
missible this is guaranteed to be a lower bound on the solu-
tion cost. If no solution is found with a cost of this fLim ,

fLim is increased by one and the search continues in this
fashion until fLim = best, the cost of the cheapest solution
found so far, or one of the open lists is empty. If an open
list is empty then there are no more solutions to be found. If
best = unsolvable then P is not solvable otherwise best is
the optimal solution cost.

Otherwise, GBFHS will search every fLim from
max(hF (I), hB(G), ε) up to, at most, the optimal solution
cost C∗. This process is guaranteed to find a solution with
the optimal solution cost as long as GBFHS is guaranteed
to always find solutions of cost C∗ at or before fLim = C∗.
Lemma 1 guarantees this, therefore GBFHS is guaranteed to
return the optimal solution cost.

GBFHSF is when gLimB is always set to 0.
Theorem 2 (Sufficient Conditions for GBFHSF Node Ex-
pansion). For any problem with optimal solution cost of C∗
and least edge cost of ε, GBFHS , with admissible heuris-
tics and the split function always returning gLimB equal
to 0, must expand every node n where fF (n) < C∗ and
gF (n) < C

∗ − ε.
Proof Sketch.

Let C∗ be the optimal solution cost and n be an unex-
panded node with fF (n) < C∗ and gF (n) < C∗ − ε. Since
gF (n) < C

∗ − ε and the least edge cost is ε there could be
an ε-cost edge connecting n to a goal node and if there were
then the cost of that solution would be gF (n) + ε, which
would be less than C∗, which contradicts C∗ being the opti-
mal solution cost. Therefore all nodes whose fF -values are
less than C∗ and whose gF -values are less than C∗− ε, must
be expanded to guaranteed that a solution costing C∗ is op-
timal.

A∗’s sufficient conditions for node expansion is f(n) <
C∗(Dechter and Pearl 1985). By A∗ we mean the algo-
rithm in textbooks, e. g., AIMA(Russell and Norvig 2016).
Specifically, it does not use knowledge of ε to control its
search. The set of nodes satifsying A∗’s sufficient conditions
is a superset of the set of nodes satisfying GBFHSF ’s suffi-
cient conditions, i. e., using the same tie-breaking order and
admissible consistent heuristic, A∗ can expand a substan-
tially larger number of nodes than GBFHSF . This is because
GBFHSF is using its knowledge of ε to reduce the number
of nodes that it must expand. This is similar to using the ε
heuristic (Larsen et al. 2010; Holte 2010) with A∗ and Fast-
Downwards’ (Helmert 2006) use of its blind heuristic 3. It
is easy to see that it could be used as a wrapper around any
heuristic, however, currently it only seems to be used with
the zero heuristic. It returns the larger of ε and the original
heuristic’s value. Also, it would be better to incorporate the
use of this knowledge into the algorithm instead of requir-
ing heuristics to be responsible for handling it. For example,
A∗ could incorporate this into its algorithm and either ap-
proach, we believe, would provide exactly the same reduc-
tion in node expansion as GBFHS’s use of ε. This allows A∗
to stop on first generation of a goal in unit cost domains and
changes its sufficient conditions to no longer be f(n) < C∗
but to become the same as GBFHSF ’s.

3See www.fast-downward.org/Doc/Heuristic\
#Blind\_heuristic



Now we look at the sufficient conditions for node expan-
sion in the general bidirectional case for GBFHS. The gen-
eral case is a little more complicated because we need to take
into account the split between the gLims and which was the
last gLim to be incremented.

Theorem 3 (Sufficient Conditions for GBFHS Node Expan-
sion). For any problem with optimal solution cost of C∗,
least edge cost of ε, the last gLim to be expanded being in
the D direction (with D′ being the opposite direction), and
using admissible heuristics, GBFHS must expand every node
n where fD(n) < C∗ and gD(n) < gLimD − 1 and expand
every node n where fD′(n) < C∗ and gD′(n) < gLimD′ −1.

Proof Sketch.
Let C∗ be the optimal solution cost. We look at the condi-

tions on the two directions, D and D′, separately. We will
first talk about the D direction. Let n be a node where
fD(n) < C∗ and gD(n) < gLimD − 1. Since gD(n) <

gLimD − 1 and since fD(n) < C∗ there could be an ε cost
edge that connects n to a goal node. If there were such an
edge then it would be a solution with a cost less than C∗
which would contradict our assumption that C∗ was the
optimal solution cost. Therefore all nodes whose fD val-
ues were less than C∗ and whose gD values were less than
gLimD − 1 must be expanded.

The same reasoning applies for nodes in the D′ direction.
Consequently, in both cases all such nodes in both directions
must be expanded to guarantee that the optimal solution cost
is C∗.
Theorem 4 (In Unit-Cost Domains, GBFHS can stop on
First Collision). If P is a solvable problem in a unit-cost do-
main, hF and hB are both admissible and consistent heuris-
tics, and GBFHS is using hF and hB , then the first time that
it finds a node with the same state in both open lists, it has
found an optimal solution for P .

Proof Sketch. Assume the optimal solution cost is C∗ and
all edges are of unit cost, ε. Essentially the proof shows that
since all edges cost the same, GBFHS cannot find any so-
lution, of cost C, before fLim = C. To have a collision be-
tween open lists of cost C before fLim = C requires an edge
on that solution path with a cost > ε.

This theorem, as seen by the proof sketch, is true whether
GBFHS is running bidirectionally or unidirectionally.

Definition 4 (Heuristic domination). A heuristic h1 is said
to dominate another heuristic h2 if and only if h1(n) ≥

h2(n) for all states n. (Russell and Norvig 2016)

Definition 5 (Stronger and Weaker Heuristic). Heuristic h1
is stronger than heuristic h2 if h1 dominates h2 but h2 does
not dominate h1. h2 is weaker than h1.

Definition 6 (Lower-bound). The lower-bound for an ad-
missible search algorithm on a problem, P , is the smallest
number of nodes that can be expanded to find a solution and
guarantee that it is an optimal solution for P .

Definition 7 (Upper-bound). The upper-bound for an ad-
missible search algorithm on a problem, P , is the largest
number of nodes that can be expanded before finding a so-
lution and guaranteeing that it is an optimal solution for P .

While the idea of a well-behaved heuristic search algo-
rithm seems intuitive, it is hard to nail down. One prob-
lem (Dechter and Pearl 1985) is that solving a problem
with a weaker heuristic can cause an algorithm to expand
fewer nodes than when solving it using stronger heuris-
tic just because of tie-breaking. This is why well-behaved
will be defined using lower-bounds which is independent
of tie-breaking. Also, in order to compare the behaviour of
GBFHS when using two different heuristics, we need to talk
about how the heuristics affect the split. The split is defined
as GBFHS’s final gLimF and gLimB values and which
direction was incremented last. For example, if using one
heuristic, GBFHS finished with both gLims = 12, and with
the other it finished with gLimF = 24 and gLimB = 0 then
we cannot fairly compare these two runs. Either one could
expand fewer nodes depending on the strength of the heuris-
tics. Likewise, if one direction’s branching factor is much
greater than the other’s then if using one heuristic, GBFHS
finished with both gLims equal but with one GBFHS ended
going forwards while with the other end going backwards,
we would expect the one going in the direction of the larger
branching factor to have expanded fewer nodes because the
penultimate level will be completely expanded but the last
might not be. Thus when comparing the behavior of GBFHS
with different heuristics it is important that GBFHS finishes
solving the problem with the same gLims values and going
in the same direction. For each fLim level, GBFHS’s split
function determines these three values.

Definition 8 (GBFHS gLim Split). For GBFHS the gLim
split for a problem is a trio of values. The first two are the
gLimF and the gLimB values for the last level and the third
value is the direction of the last level’s increased gLim .

Definition 9 (Well-behaved Bidirectional Algorithm). Let
admissible and consistent heuristics h1F and h1B dominate
heuristics, h2F and h2B respectively. An algorithm A is said
to be well-behaved if whenever A stops with the same gLim
split using the stronger heuristic pair as when using the
weaker pair, there are no problems where A’s lower bound,
when using the stronger pair, is larger than when using the
weaker pair.

Definition 10 (Ill-behaved ). An algorithm is ill-behaved if
there is a problem on which it is not well-behaved.

Theorem 5 (GBFHS guaranteed to be well-behaved). For
any problem P , any front-to-end admissible consistent
heuristic pairs h1F and h1B , and h2F and h2B such that h1F
dominates h2F and h1B dominates h2B , and if GBFHS, using
either pair of heuristics, stops with the same gLim splits,
then GBFHS’s lower-bound using the stronger heuristic is
never larger than when it uses the weaker heuristic.

Proof Sketch. Assume S1 is an optimal solution path that
enables GBFHS to expand the least number of nodes us-
ing the weaker pair of heuristics, and that this is less than
the least number of nodes that GBFHS, using the stronger
heuristics, expands. If we use the stronger pair of heuristics
on the nodes in S1 the only change is that some of the nodes
may now have a higher f -value, but none of the g-values
will change. This means that some nodes expanded using
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Figure 2: Average Nodes Expanded for A∗and GBFHS on 50 ran-
dom 10-pancake problems as the heuristic accuracy degrades

the weaker heuristics at an earlier level may now be deferred
until the last level. At the last level, only those nodes directly
on the solution path will be expanded, whereas at earlier lev-
els all those nodes, and possibly more of their descendants,
may need to be expanded. So, using a stronger heuristic can
only decrease the number of nodes expanded. Consequently,
GBFHS is well-behaved.

Experiments and Analysis4

In this section we discuss (1) why GBFHS is better than A∗,
(2) why GBFHS is better than MM and MMe, and (3) why
GBFHS is better than NBS as reported in Chen et al. (2017).

Analysing Why GBFHS Is Better Than A∗

It is important to remember that GBFHS run unidirectionally
is not A∗. Certainly in unit cost domains there can be states
that A∗ has to expand that GBFHS does not. GBFHS does
not expand all nodes n where f(n) < C∗. Figure 2 shows
the average number of nodes expanded by A∗ and GBFHS
run unidirectionally using the same heuristics and same
tie-breaking strategy. As the heuristic accuracy degrades,
A∗starts to expand substantially more nodes than GBFHS
run unidirectionally. If you use an “epsilon-enhanced” ver-
sion of A∗, h(n) = max{h(n), epsilon}, then you will
have the same effect as GBFHS and the “epsilon-enhanced”
version of A∗ will also not expand all the nodes, n, where
f(n) < C∗. Also in unit-cost domains, this enhanced A∗
would be able to stop on first collision in the same way that
GBFHS can. So in summary GBFHS dominates textbook
A∗ and is not dominated by an “epsilon-enhanced” version
of A∗.

Analysing Why GBFHS Is Better Than MM/MMe
In the Introduction, Figure 1 showed how well GBFHS
does against MM and MMe on average over 50 random
10-pancake problems. For the same 50 random problems,
Figure 3 shows the lower bounds, actual expanded nodes,
and upper bounds for each algorithm. Each algorithm uses
their own stylized line. GBFHS is a solid red line, MMe is a

4The code for running the experiments can be found at
https://www.cs.auckland.ac.nz/˜barley/SoCS2018GBFHS/.
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Figure 3: Actuals, Lower and Upper Bounds for MM, MMe, and
GBFHS on 50 random 10-pancake problems as the heuristic de-
grades.

dashed blue line, and MM is a dotted purple line. The upper
lines for each algorithm represents their upper bound, their
middle line is their actual node expansions with a particu-
lar tie-breaking strategy, and their lower line is their lower
bounds. We will refer to these with a LB, UB, TB for lower
bound, upper bound, and some choice of tie-break. From
now on, we will call the “number of nodes actually ex-
panded” the actuals.

At GAP-0, which is very accurate, all 3 algorithms expand
the same number of nodes. As the heuristic degrades, the gap
between GBFHS’s and MM/MMe’s widens until at GAP-4,
MMe is expanding almost twice as many nodes as GBFHS
and MM is expanding almost 3 times. At GAP-6, MM and
MMe’s number of expanded nodes converge.

As the heuristic degrades, MM exhibits a hump: MM’s
number of expanded nodes increases until GAP-4 where it
peaks at 4300, then it starts decreasing until GAP-6 where
it expands about 2900 nodes and stays there, at MM0’s
level, until the end. Neither MMe nor GBFHS exhibit such
a hump. MMe’s expanded nodes increase more slowly than
MM’s and levels off at GAP-5 where it stays at the MM0’s
level until the end. GBFHS’s actuals increase the least of
all 3 algorithms and never really levels off until it hits the
GBFHS0 level, expanding about 2100 nodes. Note that when
using GAP-10, i.e., the zero heuristic, MM/MMe expands
about a third more nodes than GBFHS. This is one of the
things we hope to explain in this section.

Before we discuss the lower and upper bounds, let us dis-
cuss how they were calculated for GBFHS, MM, and MMe.
Once an algorithm determines it has found a solution and
satisfies its stopping criteria, we continue that level until its
completion. We calculate the collision sets and stopping sets
on the last level. The collision set is the set of sets containing
all nodes that could be expanded to get an optimal collision.
The stopping set is the set of sets that contains all the nodes
that allow the algorithm to terminate. The lower bound is de-
fined as the size of the minimum union of these sets plus the
number of nodes expanded on the previous levels. The upper
bound is currently estimated as the size of the last level plus
the size of all previous levels.

The first possiblity is that GBFHS-LB is lower than MM-
LB and/or MMe-LB. Looking at the lower bounds, we note
that: (1) MM and MMe’s lower bounds are actually higher



domain heuristic GBFHS A∗ BS* MMe NBS
16 pancake GAP 279 125 339 283 335
16 pancake GAP-2 250,941 1,254,082 947,545 587,283 625,900
16 pancake GAP-3 2,140,718 unsolvable 29,040,138 7,100,998 6,682,497
15 puzzle MD 12,507,393 15,549,689 12,001,024 13,162,312 12,851,889

Table 1: Modified table from NBS paper

than GBFHS-TB until GAP-5; (2) both MM-LB and MMe-
LB are ill-behaved, we see them peaking at GAP-4 and then
coming back down; and (3) GBFHS-LB is lower than MMe-
LB until GAP-5 and GAP-6 for MM-LB, where they con-
verge. After which all lower bounds are identical. So, part of
the reason for GBFHS’s superior performance is that, at least
up to GAP-5, both GBFHS-LB and GBFHS-TB are lower
than MM-LB and MMe-LB. Note this rules out the perfor-
mance difference, up to GAP-5, being due to tie-breaking.

However, even at GAP-5 and beyond, GBFHS-TB still
expands many fewer nodes than MM-TB/MMe-TB. Why?
To understand that, we need to look at their upper bounds.
What we see is that up to GAP-2 for MMe and up to GAP-3
for MM, GBFHS-UB’s are worse than MM-UB and MMe-
UB. However, from GAP-4 to the end, GBFHS-UB’s are
substantially lower than those of MM/MMe, 3500 versus
5000, i.e., MM-UB/MMe-UB are almost 50% higher than
GBFHS-UB. This is the primary reason for the difference
in performance, that, on average, GBFHS has many fewer
nodes to explore to find a guaranteed optimal solution. Note
this is different than the number of nodes to find a solution or
even than finding an optimal solution. Both MM and MMe
can find a solution/optimal solution before GBFHS, but of-
ten, they still need to satisfy their termination conditions (in
unit-cost domains, GBFHS’s first collision is guaranteed to
be an optimal solution — when it finds a collision the stop-
ping criteria is always satisfied).

So, GBFHS-LB are lower than MM-LB/MMe-LB up to
GAP-5 and the same from then on but GBFHS-UB are al-
most always lower than or equal to MM-UB/MMe-UB. In
short, except when the heuristic is very good, e.g., GAP,
GBFHS has a much smaller space to explore and conse-
quently, while MM and MMe can sometimes do better than
GBFHS, we expect GBFHS’s average performance to be
better. MM and MMe’s use of max{f(n),2g(n)} to cal-
culate a node’s priority causes them to expand two GBFHS
levels simultaneously, causing them to have a much greater
chance of expanding nodes that are not in GBFHS ’s current
search space.

Comparision of GBFHS’s Performance to NBS
Chen et al. (2017) report results comparing NBS, A∗,
GBFHS, MMe, and BS∗. We use two of their four domains,
namely, the 16 pancake and the 15 puzzle domains to com-
pare GBFHS with NBS. We use their 50 16-pancake prob-
lems and Korf’s standard 100 problems for the 15 puzzle.

In Table 1, GBFHS always does better than both MMe
and NBS. As the heuristic becomes weaker, GBFHS perfor-
mance becomes better by comparison. For GAP-3, GBFHS
does substantially better than both MMe and NBS. NBS ex-

pands more than three times the nodes as GBFHS and MMe
is a bit more.

The reader might be suprised that NBS expands more
than twice as many nodes as GBFHS, given the theoreti-
cal underpinnings of the NBS algorithm. But (Eckerle et al.
2017) states the algorithm must be DXBB. Since GBFHS
has knowledge of ε it is not a DXBB algorithm so we are
not bound by their proof. Neither are MM nor MMe because
of their use of ε. GBFHS is beaten by A∗ but this does not
refute our earler A∗ results because this is GBFHS running
bidirectionally and meeting in the middle.

Conclusions and Future Research
We introduced, GBFHS, a novel front-to-end bidirectional
heuristic search algorithm and showed it is admissible. It is
the first bidirectional heuristic search algorithm proved to
be well-behaved, i.e., its lower bounds exhibit no hump-in-
the middle as the heuristic degrades. Our experiments show
GBFHS can expand substantially fewer nodes than NBS,
MM, and MMe.

The GBFHS algorithm can run bidirectionally or unidi-
rectionally, with unit-cost or arbitrary-cost, with or with-
out a heuristic. Let us look at each of these cases in turn.
When run bidirectionally, GBFHS is not dominated by
bidirectional brute-force search. When run unidirectionally,
GBFHS dominates textbook A∗ and is not dominated by
“epsilon-enhanced” A∗. With unit-cost domains GBFHS can
always stop on first collision, regardless of whether running
unidirectionally or bidirectionally, whether using a heuristic
or not. With arbitrary-cost domains GBFHS cannot neces-
sarily stop on first collision. Without a heuristic, GBFHS is
not dominated by brute-force search either unidirectionally
nor bidirectionally. GBFHS with an admissible and consis-
tent heuristic is well-behaved and is not dominated by bidi-
rectional brute-force search nor, when run unidirectionally,
dominated by A∗. These improvements allow unidirectional
and bidirectional search to be unified into one general al-
gorithm. By varying the split between the gLimF and the
gLimB , our algorithm behaves as either a unidirectional
or bidirectional search algorithm. Assuming a method can
be found to automatically determine the split, Barker and
Korf’s earlier observation will no longer hold.

In Holte’s (2010) common misconceptions paper, he
states that the following are misconceptions: “In search
spaces whose operators all have the same cost A∗ with the
heuristic function h(s) = 0 for all states, s, is the same as
breadth-first search” and “Bidirectional A∗ stops when the
forward and backward search frontiers meet”. While these
are misconceptions for A∗, the first one is certainly true for
GBFHS , and the second one, while not true in general, is



certainly true for GBFHS in unit cost domains.
In the future we will look into the following: (1) Auto-

matically determine the value for ε from the problem and
domain description; (2) Finding a method for automatically
determining a good split; and (3) Investigate arbitrary-cost
domains in more depth.
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los Linares López was supported by the MINECO projects
TIN2017-88476-C2-2-R and TIN2014-55637-C2-1-R. We
thank Alvaro Torralba, Vidal Alcazar Saiz, Rob Holte, and
Nathan Sturtevant for discussions about bidirectional heuris-
tic search, Jingwei Chen for the 50 pancake problems used
in their 2017 IJCAI paper, Nathan Sturtevant for the sup-
plying us with the NBS, MM, and MMe code, and the New
Zealand eScience Infrastructure (NeSI) organisation for in-
valuable access to their supercomputers.

References
Barker, J. K., and Korf, R. E. 2012. Solving peg solitaire
with bidirectional BFIDA∗. In Twenty-Sixth AAAI Confer-
ence on Artificial Intelligence, 420–426.
Barker, J. K., and Korf, R. E. 2015. Limitations of front-
to-end bidirectional heuristic search. In Twenty-Ninth AAAI
Conference on Artificial Intelligence, 1086–1092.
Chen, J.; Holte, R. C.; Zilles, S.; and Sturtevant, N. R. 2017.
Front-to-end bidirectional heuristic search with near-optimal
node expansions. In International Joint Conference on Arti-
ficial Intelligence (IJCAI), 489–495.
Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A∗. Journal of the ACM
(JACM) 32(3):505–536.
Dreyfus, S. 1969. An appraisal of some shortest-path algo-
rithms. Operations Research 395–412.
Eckerle, J.; Chen, J.; Sturtevant, N.; Zilles, S.; and Holte,
R. 2017. Sufficient conditions for node expansion in bidi-
rectional heuristic search. In International Conference on
Automated Planning and Scheduling (ICAPS), 79–87.
Edelkamp, S.; Kissmann, P.; and Torralba, Á. 2012. Sym-
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