Enforcing Encrypted Dynamic Security Constraints in the Cloud

Muhammad Rizwan Asghar, Giovanni Russello, Bruno Crispo

University of Trento, Italy

August 28, 2015

UNIVERSITÀ DEGLI STUDI DI TRENTO

WHY CLOUD STORAGE

Cost saving

Scalability

- Efficiency
- Availability

APPLICATION

Data in cleartext raises privacy issues

A POSSIBLE SOLUTION

A POSSIBLE SOLUTION, BUT

Access policies may leak sensitive information

What kind of access policies?

ROLE-BASED ACCESS CONTROL (RBAC) POLICIES

- RBAC₀
 - Permissions are assigned to roles while roles are assigned to users
 - Encrypted RBAC₀ [Asghar'13 COSE]
- RBAC₁
 - Role hierarchies
 - Encrypted RBAC₁ [Asghar'13 COSE]
- RBAC₂
 - Separation of duties and Chinese wall constraints
 - Focus of this work!
- $RBAC_3 = RBAC_1 + RBAC_2$

SEPARATION OF DUTIES

- Separation of Duties (SoD) constraints aim at providing multiuser control over the resources when there is any conflict-of-interest for completing a business process
- E.g., a clerk issues the purchase order while a manager approves it
- Types
 - Static SoD
 - A user cannot be active in two mutually exclusive roles
 - Dynamic SoD (DSoD)
 - A user can be active in two mutually exclusive roles but ...
 - Simple DSoD (SDSoD) not in the same session
 - Object-Based DSoD (ObDSoD) not the same object
 - Operational DSoD (OpDSoD) not all actions in a workflow
 - History-Based DSoD (HBDSoD) = ObDSoD + OpDSoD

- HBDSoD is the most fine-grained category of DSoD
- A user active in both clerk and manager roles can either *issue* or *approve* a particular instance of the *purchase order*

- It aims at providing confidentiality by preventing illegitimate information flow between domains that are in conflict-of-interest
- Imagine a consultant organisation that provides services to companies that are in conflict-of-interest, say Google and Microsoft

- E-GRANT protects queries and policies stored in outsourced environments
- Our scheme is based on EI-Gamal proxy encryption
- An encrypted session is maintained
- It is a multiuser scheme in which entities do not share any encryption keys
- A compromised user can be removed without requiring re-encryption of policies

E-GRANT ARCHITECTURE

Outsourced Environment

E-GRANT PROTOTYPE

We developed a prototype of E-GRANT in Java

- We tested our prototype using a standard machine
 - Microsoft XP Professional version 2002 (SP3)
 - Intel Core2 Duo 2.2 GHz
 - 2 GB RAM

DEPLOYMENT OF CONSTRAINTS

a denotes actions: Clerk or manager ... d denotes domains:Google/Marketing/Project ...o represents object (or instance)

REQUEST GENERATION

EVALUATION OF HBDSoD

Time complexity per constraint: number of actions * number of records

EVALUATION OF CHINESE WALL

Time complexity per constraint: number of domains * number of records

COST OF UPDATING SESSION

CONCLUSIONS AND FUTURE WORK

- E-GRANT enforces separation of duties and Chinese wall constraints in an encrypted manner
- We are capable of providing full-fledged encrypted RBAC style of policies [Asghar'13 PhD-Thesis]
- It is a multiuser scheme where each user has her own key, i.e., removing a user does not require reencryption of stored policies
- As future work, exploring how encrypted RBAC could be made accountable would be an interesting direction

 Muhammad Rizwan Asghar, Giovanni Russello, Bruno Crispo,

E-GRANT: Enforcing Encrypted Dynamic Security Constraints in the Cloud,

Pages 135-144,

The 3rd International Conference on Future Internet of Things and Cloud (FiCloud) – Special Track on Security, Privacy and Trust,

Rome, Italy, August 2015

(Acceptance rate: 55/178**≈30%**).

Best Paper Award!

r.asghar@auckland.ac.nz

https://www.cs.auckland.ac.nz/~asghar/