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Abstract. Searchable encryption scheme allows a client to carry out keyword

search on encrypted data. However, almost all the schemes proposed in the lit-

erature so far either fail to avoid the leakage of extra information which leads to

the scheme vulnerable to inference attacks or are inefficient to support multi-user

read and write operations independently.

We propose an sublinear searchable encryption scheme that achieves the least

leakage so far and efficiently supports multi-user access. In particular, our scheme

could resist against inference attack and allows multiple users to carry out com-

plex SQL-like queries in sublinear search time on the encrypted data without

sharing any secret key or re-encrypting operation. Finally, the construction is im-

plemented and showed its practical efficiency.

1 Introduction

Cloud computing is a successful paradigm offering companies virtually unlimited data

storage and computational power at very attractive costs. Despite its benefits, cloud

computing raises new challenges for ensuring data confidentiality. Once the data is out-

sourced to the cloud environment, the data owner lacks a valid mechanism for protect-

ing the data from unauthorised accesses. This poses serious confidentiality and privacy

concerns on data being stored in the cloud. To mitigate this problem, the hybrid cloud

computing approach is getting more popular among large enterprises [1]. In a hybrid

cloud approach, the organisation maintains sensitive data and services within their in-

frastructure and outsource the rest to a public cloud. However, the issue of identifying

sensitive assets is not an easy task and once the data and services leaves the internal

infrastructure, there is no turning back, in particular if not properly protected.

In recent years, several searchable encryption schemes have been proposed to grad-

ually reduce confidentiality barrier in cloud computing. These schemes allow the cloud

to perform encrypted search operations on encrypted data. Unfortunately, most of the

existing searchable schemes suffer from the issues listed below.

Information Leakage. During data search and updates, there is information that is

leaked to the cloud server just by analysing encrypted data and operations performed

by the authorised users. A recent study by Cash et al. [2] shows that information leakage

can be exploited by a determined attacker to break the encryption scheme. As shown

by Naveed et al. [3], using statistical analysis, it is possible to successfully attack the

deterministic encryption scheme used in CryptDB [4] and recover nearly 100% of the

queries within seconds.



To minimise such leakage, one might employ protection techniques based on Obliv-

ious RAM (ORAM) [5–7] or Private Information Retrieval (PIR) [8,9]. However, these

schemes are very costly and/or can only be applied in static settings, meaning they do

not scale well when dealing with dynamic data updates and delete operations.

Forward and Backward Privacy. Concerning the information leakage issues, most of

the work in literature do not support forward privacy property: if a query q is performed

and later a new record r is added (or updated) to match the query q, the cloud server

does not learn that r matches any query q used in the past. On the contrary, backward

privacy means the cloud server is unable to match queries over deleted documents. Sup-

porting these properties is fundamental to limit the power of the cloud server to collect

information on the data stored in the database and queries performed by the authorised

users. From the existing schemes, only [10] is able to support forward privacy but no

scheme is able to support both properties simultaneously.

Linear Search. To provide an efficient data retrieval, database engines use indexing

techniques. However, supporting indexing of encrypted data is not trivial. Besides, us-

ing an index might leak extra information to the cloud server.

Lack of support for Fully-Fledged Multi User Scheme. In a Fully-Fledged Multi

User (FFMU) scheme, any authorised user is able to read and write data from and to the

database, respectively, without requiring any key sharing [11]. A FFMU scheme better

supports the needs of modern organisations, where users need to access and update data.

The vast majority of existing approaches supports either Single User (SU) or Semi-

Fledged Multiple User (SFMU) schemes: in the former case, a single key is used for

reading and writing data to the database; in the latter case, there is a single key for

writing data and the rest of the users might have separate keys for read operations. Both

of these options are impractical in modern organisations, where users should be able to

join and leave their organisation or role at any time, potentially without impacting the

rest of the users.

In this paper, we present ObliviousDB, an encrypted searchable database for the hy-

brid cloud environment that is able to overcome all the issues discussed above. ObliviousDB

is based on our earlier work [11]. As such, it is an encrypted search scheme that sup-

ports the FFMU management. However, compared to our previous work, ObliviousDB

has been extended to take advantage of the hybrid cloud computing approach. At the

core of ObliviousDB, there is the Oblivious Proxy Server (OPS) that is deployed in the

private infrastructure of an organisation. The OPS plays a major role in ensuring confi-

dentiality of the data and manages the data structures for supporting sub-linear search

operations. In terms of its functionality, the OPS is similar to the proxy server used in

CryptDB [4]. Unlike CryptDB, we have designed the OPS to be robust against attacks:

a compromised OPS will not reveal sensitive data to adversaries. This paper provides

several fundamentally novel contributions listed as follows:

1. ObliviousDB does not leak information to the cloud server when executing opera-

tions. Through the use of the OPS, we can prevent the cloud server to recognise if

two queries correspond to related search terms – achieving search and access pat-

tern privacy – by dynamically shuffling the locations of records within the database

and re-randomising the encrypted data. To achieve operation pattern privacy, where



the cloud server is not able to distinguish between select, delete and update queries,

the OPS ensures that every query contains both read and write operations;

2. ObliviousDB supports both forward and backward privacy by using nonces in the

searchable encryption so that a search query cannot be repeated at a later time or

new queries cannot be executed over deleted records.

3. Our scheme achieves sub-linear search efficiency. For each query, the OPS gener-

ates an optimised query so that the cloud server only needs to search a group of

records, instead of the whole database. Still, our indexing scheme will not reveal

sensitive information to the cloud server.

To the best of our knowledge, we are the first to propose a scheme that solves all

aforementioned issues while supporting the FFMU management. To show feasibility of

our approach, we have implemented ObliviousDB and measured its performance.

The rest of this paper is organised as follows. In Section 2, we define some prelimi-

naries. The related work is reviewed in Section 3. In Section 4, we provide an overview

of ObliviousDB. Solution and construction details of ObliviousDB can be found in Sec-

tions 5 and 6, respectively. In Section 7, we analyse security of ObliviousDB. Section 8

reports the performance. Finally, we conclude this paper in Section 9.

2 Preliminaries

In this section, in regards to ObliviousDB, we set the context and informally define

some of the properties that are supported by ObliviousDB.

Often, encrypted searchable schemes are associated with Searchable Symmetric En-

cryption (SSE), where documents can be encrypted and associated with a set of key-

words that are also encrypted. An encrypted search is performed by matching encrypted

keywords with keyword tokens that constitute encrypted queries. However, in SSE, the

document collection cannot be changed once it has been encrypted and encrypted key-

words are generated. Oblivious RAM (ORAM) [5–7] has been proposed in this context.

It offers a great level of privacy but it is very costly and static. In contrast, several works

have been proposed for Dynamic SSE (DSSE), where the document and keywords can

be inserted and/or deleted. The main disadvantage is that it leaks information to the

cloud server.

ObliviousDB is a searchable encryption scheme that supports complex SQL-like

queries including conjunctions, disjunctions and range queries. Nevertheless, ObliviousDB

could also be used to store encrypted documents (as objects in a database) and support

simple keyword queries to search and retrieve documents.

Definitions of information leakage that have been proposed in the literature are

mostly capturing the SSE or DSSE schemes, where queries are represented by a sim-

ple keyword search [12]. In ObliviousDB, these definitions need to be adapted to in-

clude more general queries with complex WHERE clauses. In the following, we will

informally define some of the properties for reducing leakage of information. Later, in

Section 3, we used these properties to classify related work.

The first property is Search Pattern Privacy (SPP), which requires that the cloud

server should not be able to distinguish if two (or more) queries are the same or not. This



property can be achieved if the scheme used for encrypting the query is semantically

secure, where the encryption of the same queries should generate different ciphertexts.

However, even if a searchable scheme achieves SPP, the cloud server could learn

if two queries are the same or not just by looking at the identifiers of the matching

encrypted records in the result set. If the result sets return records with the same iden-

tifiers, the cloud server can guess with a high probability that the two queries are the

same.This is referred in literature as access pattern leakage [12]. Therefore, a scheme

achieves Access Pattern Privacy (APP) if the cloud server is not able to infer anything

by just looking at the records identifiers in the result set of a query.

Size pattern [12] refers to the size of the result set in our context. A scheme achieves

Size Pattern Privacy (SzPP) if the cloud server is not able to infer the real size of the

result set for a query.

In the context of databases, a query is not just a retrieving operation but it might be

an insert, update or delete. When the cloud server is able to learn the operation executed

by a query, we refer to this information leakage as operation pattern. Hence, Operation

Pattern Privacy (OPP) is supported if the scheme is able to hide the operation pattern

from the cloud server.

Forward and backward privacy were first introduced in [10] and defined in the con-

text of SSE with a simple keyword-document setting. In this work, we stress that we

are focusing on more general database settings, where forward privacy means that the

cloud server does not learn if a new or updated record r matches a query q executed in

the past. Backward privacy means that the cloud server is not able to executed queries

on records that have been deleted or modified.

Table 1. The comparison of searchable encryption schemes.

Schemes

Search

pattern

privacy

Access

pattern

privacy

Size

pattern

privacy

Operation

pattern

privacy

Forward

privacy

Backward

privacy

Sub-linear

search

Key

management

Hang et al. [13] × × × × × × × #

Ferretti et al. [14] × × × × × × × #

Sarfraz et al. [15] × × × × × × ×  

Sun et al. [16] X × × × × × × #

Asghar et al. [11] × × × × × × ×  

Stefanov et al. [10] × × × × X × X #

Hahn et al. [17] × × × × × × X #

Kamara et al. [18] × × × × × × X #

Cao et al. [19] X × × – Static Static × G#

Naveed et al. [20] × × X X × × × #

Wang et al. [21] X X X – Static Static × G#

Naveed [22] X X X – Static Static – #

Our work X X X X X X X  

X and × indicate that the property is achieved or not achieved, respectively. # represents a

single user scheme. G# represents a semi-fledged multi-user scheme.  represents a full-fledged

multi-user scheme. Static means it is not possible to insert or delete the data.



3 Related Work

In this section, we discuss the approaches presented in the literature. Since the semi-

nal paper by Song et al. [23], many searchable schemes have been proposed and the

research in this area has been extended in several directions. In this work, we focus

mainly on three aspects of the encrypted search: information leakage, search efficiency

and key management. As such, the following discussion on related work is organised

around these three aspects. Table 1 categories the literature based on these aspects.

Several works have concentrated on supporting multi-user access and simplifying

key management. Hang et al. [13] present a scheme that supports complex queries in a

multi-user scenario. This scheme also supports a collusion-resistant mechanism by en-

crypting the data with different access rights using different encryption keys. However,

these keys have to be shared among the authorised users. This means a single compro-

mised user will require all others users to get a new set of keys, thus making this SU

scheme inefficient in handling user revocation.

Ferretti et al. [14] introduce a scheme that is resistant against collusions. They pro-

pose a hierarchical encryption mechanism to indirectly share the secret key among mul-

tiple users. However, it requires multiple re-encryption operations to deal with user re-

vocation. Not only the data should be re-encrypted with a new secret key, but also each

layer in the hierarchical structure should be re-encrypted. Although the keys are shared

in a indirect way, strictly speaking, [14] is the SU scheme.

Sarfraz et al. [15] design the FFMU searchable scheme with a fine-grained access

control by leveraging the attribute based group key management scheme as introduced

in [24]. Instead of assigning the key to users, they store them into a proxy. Since the

user never knows the underlying encryption key, it does not require to change the key

for user revocation. The problem is that this mechanism requires the proxy to be online

for performing operations on behalf of the users. As a result, the proxy represents a

single point of failure: an attacker that compromises the proxy will gain access to all

the logged-in users’ keys and data.

Sun et al. [16] utilise a CP-ABE mechanism to achieve a scalable and searchable

FFMU scheme that supports multi-user read and write operations without sharing any

key. However, for user revocation, the data has to be re-encrypted with a new access

structure and secret keys of all the other users need to be updated with a new attribute

set. Strictly speaking, this scheme is also the SU scheme.

Asghar et al. [11] propose the FFMU scheme with an efficient and flexible key

management method, where each user has her own key and does not require any re-

encryption when an authorised user is revoked. This key management mechanism is

integrated in the work presented in this paper.

All of the above schemes neither provides any protection against information leak-

age nor supports sub-linear search.

Both [10] and [17] present sub-linear SSE schemes. In [10], the authors proposed

a dynamic sub-linear searchable scheme based on the hierarchical data-structure and it

achieves forward privacy by dynamically encrypting the data with fresh keys. This focus

mainly on supporting a high-rate query throughput and exploits the data in RAM and

parallel computation. The scheme achieves high level performance but compromises on



information leakage, despite it supports forward privacy. The scheme only supports the

SU key management mechanism, where all the users share a single key.

The scheme presented in [17] achieves asymptotically optimal search efficiency

by learning the inverted index from the access pattern. Kamara et al. leverage the ad-

vances in multi-core architectures and proposed a sub-linear dynamic parallel search-

able scheme [18]. Unfortunately, both approaches do not take any measures to hide SPP,

APP, OPP and SzPP, and failed to achieve forward and backward privacy. Moreover, all

of them are SU schemes, where the secret keys have to be shared among users.

Several recent works have addressed the issue of information leakage. Cao et al. [19]

design a scheme that supports multi-keyword ranked searches. The scheme achieves

SPP by hiding the trapdoor linkability. However, they do not protect the access pattern

from which the search pattern can still be inferred. Although they provide an index

for speeding up search operations, this requires a static building procedure and is very

expensive. As key management, this scheme is the SFMU scheme, where users have

different access rights linked to the key they own. Here, the data owner does not share

the secret key with the other users, but it has to generate the search tokens and decrypt

the search results for them.

In [20], Naveed et al. achieve SzPP. The basic idea is to divide each document into a

set of blocks. When a document is requested, a larger set of blocks will be downloaded

and decrypted by the client. This scheme also achieves OPP since the cloud server only

sees uploads and downloads of data blocks. However, it aggravates the computation and

storage overheads on the client side. Moreover, it fails to achieve both SPP and APP,

since the same query always requests the same block set. Besides, this scheme is the

SU scheme.

Wang et al. [21] propose a public multi-keyword searchable encryption scheme that

achieves SzPP, SPP and APP. However, it suffers from the same problems as [19]. First,

the construction is static and does not support insert and delete operations. Also, it is

the SFMU scheme. For each query, the reader has to get the encrypted keywords and

decrypted search results from the writer. Besides, the search efficiency of this scheme

is linear.

Naveed [22] analyse the applicability of ORAM to SSE. He emphasise that it is

necessary to stream the entire outsourced data to achieve SPP. Otherwise, the cloud

server can distinguish one query from another, since the sizes of the retrieved results

are different. However, this point is not tenable if the retrieved data size is variable for

all queries, no matter they are same or not.

From our discussion on related work, it is clear that none of the reviewed approaches

are able to limit information leakage, support sub-linear search or a flexible key man-

agement mechanism that is FFMU. We stress here that our approach is the first to ad-

dress all of the three aspects.

4 Overview of ObliviousDB

In this section, we provide an overview of the proposed approach.



4.1 System Model

The system involves five main entities shown in Figure 1:

• Cloud Server (CS): A CS is part of the infrastructure provided by a cloud service

provider, such as Amazon S3 [25] and Google Drive [26]. It stores the encrypted

data and access policies to regulate access on the data. If an access policy is satis-

fied, it executes encrypted queries on the encrypted data.

• Database Administrator (DBA): The DBA is responsible for the management of

databases (including creation of tables and dropping them), access control poli-

cies for regulating access to tables in the database (including selecting, inserting,

updating and deleting records in the table) and database users.

• Database User (DBU): It represents the authorised user who can execute select,

insert, update and delete queries over the encrypted data. After executing encrypted

queries, a DBU can retrieve the result, if any, and decrypt it.

• Oblivious Proxy Server (OPS): It is employed for achieving more security and

search efficiency. It serves as a proxy between DBUs and the CS. In order to hide

sensitive information, it pre-processes DBU queries and filters out the result, if any,

for DBUs. For improving the performance, it stores some indexing information.

Technically, it is part of the private cloud in the hybrid cloud environment, which

is linked with a more powerful public cloud infrastructure.

• Key Management Authority (KMA): This entity is responsible for generating

keying material once a new DBU joins the system. Furthermore, the KMA revokes

the DBU, when she is compromised or no longer part of the database.

Threat model. We assume that the KMA is fully trusted. The KMA does not need

to be online all the times. In particular, it has to be online only when the system is

initialised and a new DBU is created or existing one is removed from the system. For

normal operations it can be taken off-line. In this way the organisation can easily secure

the KMA from external attacks.

We consider that DBUs are responsible for keeping their keys (and decrypted data)

securely. DBUs can collude together as well as DBUs and the CS can also collude, but

they do not learn more than what each of them can learn individually.

The CS is modelled as honest-but-curious. More specifically, the CS would honestly

perform the operations requested by the DBA and DBUs according to the designated

protocol specification. However, it is curious to analyse the stored and exchanged data

so as to learn additional information. We assume that the CS will not mount active

attacks, such as modifying the message flow or denying access to the database.

We assume the OPS is semi-trusted. In particular, the OPS is employed to strengthen

data privacy. However, it could be compromised given it is responsible for the commu-

nication with external world. Therefore, the data stored on the OPS is possibly exposed

to attackers.

In this work, we assume that there are mechanisms in place for data integrity and

availability. Last but not least, access policy specification is out of the scope of this

paper, but the approach introduced in [11, 27] can be utilised in ObliviousDB.
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Fig. 1. Overview of ObliviousDB: A DBU is responsible for running setup (Step I then Step II).

A DBU can insert the data (Step 1a) or execute a select query (Step 1b) to receive matching

records (Step 4). Regardless of the query type, to control information disclosure, the OPS always

transforms the query (Step 2) to perform the search (Step 3) followed by an oblivious protocol

(Step 5).

4.2 Proposed approach

ObliviousDB represents the first practical encrypted scheme for database that support

efficient search with controllable leakage. Using ObliviousDB, queries can be executed

without any pattern leakage including SPP, APP, SzPP and OPP. To achieve SPP, we

encrypt queries using a semantically secure encryption scheme. APP, SzPP and OPP

are achieved by running the Oblivious algorithm explained in Section 5.4. In order to

achieve efficiency, an indexing mechanism is implemented. Technically, we divide the

data into groups, which enables sub-linear search. To promise forward and backward

privacy, ObliviousDB uses nonces.

In ObliviousDB, a DBA initialises the system by setting up the OPS (Step I) and

the CS (Step II) as illustrated in Figure 1. After the system is initialised, the DBA can

add DBUs. For each DBU, keying material is generated by bringing online the KMA.

After a DBU receives her keying material, she can execute encrypted queries. In case of

an insert query (Step 1a), a DBU encrypts the query and sends to the OPS and does not

need to expect any result set1 However, if the query is select (Step 1b), a DBU receives

some pre-decrypted results, which are finally decrypted by the DBU using her private

key. Once the OPS receives an encrypted query, no matter the operation type, the OPS

and the CS run a predefined protocol (consisting of Steps 2, 3 and 5) in order to achieve

OPP. The OPS first performs transformation and then sends the transformed query to

the CS (Step 2). The purpose of this transformation is to rewrite the query, without

performing decryption, based on indexing information stored by the OPS.

It is important to note that, although the data is encrypted, the CS can still infer

some statistical information from the encrypted data. For preventing such inference, a

number of dummy records are inserted by the OPS. Therefore, when the OPS receives

search results back from the CS (Step 3), it can easily filter out dummy records. After

1The actual implementation of the protocol sends back an acknowledgement that the insert

operation has succeeded or an error code, otherwise. However, these steps are not shown here as

they do not require any encryption/decryption operations.



receiving the results back, the OPS can achieve obliviousness by executing update,

delete and insert as part of the oblivious algorithm (Step 5).

In ObliviousDB, the OPS knows the query type and number of records in the re-

sult set; however, it cannot distinguish queries or records, which are encrypted using

randomised encryption and are explained in Sections 5 and 6. Unlike existing solu-

tions (such as CryptDB [4]), we assume that the OPS can also be compromised, but the

adversary can neither learn group information, which is encrypted, nor she can distin-

guish between real and dummy entries, unless she colludes with the CS. However, such

collusion does not reveal content of the database.

5 Solution Details

ObliviousDB limits information leakage, offers forward and backward privacy, imple-

ments indexing mechanism to enable sub-linear search and supports full-fledged multi-

user access. In this section, we provide details of how we achieve desired features.

5.1 Key Management

One of the main aspects of ObliviousDB is to employ a flexible key management ap-

proach, which not only supports FFMU access, but also supports efficient DBU reg-

istration and revocation. In this regard, we build on top of [11] in which we assume

a simplistic model involving two main entities: namely a DBU and a CS, where the

latter one manages the server side keys for the proxy encryption [28]. Unfortunately,

the collusion between a single compromised DBU and the curious CS will render the

system-wide master secret key, thus rendering the encryption useless. In contrast, in

ObliviousDB, we limit such collusion attacks by managing the server side keys at the

OPS.

The KMA is initialised with some security parameters in order to generate public

parameters and a master secret key MSK, which is securely stored by the KMA. After

the KMA is initialised, it generates and distributes the key material. For each DBU

i, the KMA splits MSK, generates a pair of keys (KUi
,KPi

) and distributes them to

the DBU and the OPS, respectively. The DBU securely keeps her user side key KUi
.

The OPS stores the corresponding OPS side key KPi
in the key stored managed by the

OPS. The DBU performs encryption before storing the data or processing query over

encrypted data on the CS. Basically, all the data stored on the CS gets encrypted under

MSK, which is only known to the KMA. This is what makes ObliviousDB FFMU,

where entities do not share any key and each DBU holds a unique key. Any registered

DBU can retrieve the encrypted data. To do so, the OPS fetches the data from the CS,

performs the pre-decryption using KPj
for the DBU j, who can finally decrypt the data

using her private key KU j
.

In ObliviousDB, if two or more DBUs collude putting together their user side keys

they cannot obtain the master key. To do so, a DBU should collude with a DBA to

put together the user side and the corresponding key on the OPS: possible but a very

unlike event. An adversary cannot learn sensitive information from the data exchanged

between the DBU and the OPS as well as the OPS and the CS. Compromising the



CS will not reveal any information. However, compromising the OPS will only reveal

limited indexing information about the data being accessed by DBUs that are logged in.

If no DBU is logged in, compromising the OPS will not put any data at risk. Considering

the OPS is trusted, we do not consider the collusion between the malicious DBU and

the OPS.

A DBU (say a compromised one) can be removed from the system. In order to

revoke her access, the OPS is instructed to remove the OPS side key corresponding to

the DBU. Consequently, the revoked DBU would not be able to store, retrieve the data

or execute any query due to missing her OPS side key.

Table 2. A sample database table (a) staff (which is viewed by DBUs) and (b) its indexing

information (only a logical view). (c) indexing information of encrypted data is stored by the

OPS. Whereas, the CS stores (d) the encrypted staff table.

(a) Staff

ID Name Age

1 Alice 25

2 Anna 30

3 Bob 27

(b) Groups

GID Index List

gid1 {1,3}
gid2 {2}
gida {1,2}
gidb {3}

(c) Encrypted groups

GID Index List

{gid1}GE (n1,{1,4}),(n3 ,{3})
{gid2}GE (n2,{2})
{gida}GE (n1,{1,4}),(n3 ,{2})
{gidb}GE (n3,{3})

(d) Encrypted Staff

ID {Name}SE {Name}DE {Age}SE {Age}DE

1 {Alice}SEn1
{Alice}DE {25}SEn1

{25}DE

2 {Anna}SEn2
{Anna}DE {30}SEn2

{30}DE

3 {Bob}SEn3
{Bob}DE {27}SEn3

{27}DE

4 {Alice}SEn1
{XYZ}DE′ {25}SEn1

{00}DE′

5.2 Data Representation

Using ObliviousDB, DBUs can store or retrieve data while preserving confidentiality in

the cloud. To achieve this, we employ the Data Encryption (DE) scheme. Since DBUs

should be able to perform encrypted search, we use the Searchable Encryption (SE)

scheme. Both DE and SE are based on the proxy encryption scheme [28]. Table 2 illus-

trates an example of how we represent and store the data. Let us assume that we have a

table Staff (Table 2(a)) containing name and age attributes. The CS store an encrypted

version of this, which is illustrated in Table 2(d), where each attribute is encrypted

under SE as well as DE. Similarly, we encrypt each value in the table. Note that SE

and DE representations do not leak information about encrypted values. Although SE

is semantically secure, using it for encrypting data or query may leak information on

number of matching records returned by the CS. That is, SE alone does not guarantee

SzPP. In order to achieve SzPP, the OPS adds some dummy records. The idea is that

the CS should not be able to distinguish between a dummy and a real record when any

search is performed. Therefore, the OPS picks dummy records (the SE part only) from

existing records already stored on the CS. For instance, the last record in Table 2(d) is

a dummy record and its SE part is generated based on the first record.

Efficiency is another important concern for searchable scheme. In order to improve

the search efficiency, we support indexing, which enables sub-linear search. Techni-

cally, we divide the data into groups and performs search within a group instead of the

whole table. For example, we can group the values of Name in the Staff table based on

the first letter. That is, both Alice and Anna belong to group gida; whereas, Bob is part



of group gidb, as illustrated in Table 2(b). Similarly, we can divide age into two groups:

say both 25 and 27 are in group gid1 while 30 is in group gid2. The group function that

is used should be made public to all the DBUs. An alternate approach is to manage the

group information at the OPS (or even the CS), which could only be retrieved by the

DBUs. In the former case, since group information is public, it could reveal information

about the data if not protected, in particular if the OPS gets compromised. In order to

avoid an extra round between the DBU and the OPS to exchange group information,

in this paper, we focus on publishing group functions and protect group information by

employing Group Encryption (GE). Basically, we use GE to encrypt gid, but indices,

belonging to a group, are stored in cleartext, as illustrated in Table 2(c). If we compare

Table 2(b) and Table 2(c), we can notice that index list in former one is smaller than that

of the latter one. The reason behind that is introduction of dummy records (i.e., record

4 in Table 2(d)) added by the OPS to achieve SzPP.

It is worth mentioning that ObliviousDB also achieves both forward and backward

privacy. That is, the CS is unable to run previous queries on new records, or run new

queries on deleted records. To achieve both forward and backward privacy, the OPS

includes a one-time nonce in each value in a record (or query). This nonce is updated 2

only for those values that are processed as a result of query execution. Only the query

with a correct (i.e., latest) nonce can generate valid results. Once the query is executed

on the CS, the OPS updates the results’ nonces. The executed query and the matched

records marked with old nonce will not be valid anymore. The nonce is also managed

by and stored on the OPS. As we can see in Table 2(c), indexes of the records marked

with the same nonce are aggregated into a sublist. For instance, the index list {1,3,4}
for group gid1 is divided into two sublists, {1,4} for n1 and {3} for n3. As shown in

Table 2(d), the values encrypted under SE are augmented with nonces.

5.3 Query Execution

In this subsection, we discuss in details the steps executed when a query is processed in

ObliviousDB. Figure 2 illustrates these steps. Let assume that the DBU wants to execute

the following SQL-like query Q: SELECT * FROM Staff WHERE Name= Alice AND

Age= 25. As illustrated in Stage 1 of Figure 2, the DBU client encrypts under SE the

following: table name, attribute names and values in the query, similar to the approach

proposed in [11]. DE is only used for insert and update queries to encrypt the new data.

The DBU also calculates and encrypts group information using GE. The outcome of

Stage 1 is an encrypted query EQ, which is sent to the OPS.

In Stage 2, the OPS transforms the encrypted query and gets two index lists IL

and UL First, it checks if the encrypted group information is found in Table 2(c).

Since the query includes two conditions, involving two encrypted groups {gida}GE

and {gid1}GE , the lookup returns two different index lists: (n1,{1,4}),(n3,{2}) and

(n1,{1,4}),(n3,{3}), respectively. As both conditions are conjuncted with AND, Group-

Match outputs intersection IL and union set UL of both index lists, which are {n1,{1,4}}
and {1,2,3,4}, respectively. IL is used to set the search range on the CS. UL will be

2Technically, updating a nonce and re-randomising an encrypted value achieve the same ob-

jective, though the former is for DE and the latter one is for SE, respectively.
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2. TEQ: SELECT  *  FROM {Staff}SE

WHERE {Name}SE ={Alice}SEn1
AND {Age}SE ={25}SEn1,

{1,4}
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Fig. 2. An example query in process.

Algorithm 1 Oblivious

Input: The search result SR, the random result RR, the unmatched

record set UR in UL, the encrypted query EQ, dummy records

number du, real records number re and the threshold t indicat-

ing a ratio between du and re.

Output: A set of records to be updated UP, an indexes list of

records to be deleted DEL, an insert query INS.

1: for each record rcd in SR do

2: if Noise-Match(rcd) = true then

3: if du/re < t then

4: rcd =Re-Randomise(rcd)

5: rcd =Nonce-Update(rcd)

6: UP =UP∪ rcd

7: else

8: DEL = DEL∪ id(rcd)
9: else

10: if EQ.type = select or EQ.type = insert then

11: rcd =Re-Randomise(rcd)

12: if EQ.type = update then

13: rcd=update(rcd)

14: if EQ.type = delete then

15: rcd =Noise-Gen(rcd)
16: rcd =Nonce-Update(rcd)

17: UP =UP∪ rcd

18: for each record rcd in RR do

19: rcd =Re-Randomise(rcd)

20: UP =UP∪ rcd

21: Shuffle UP

22: if EQ.type = insert then

23: EQ =Nonce-Update(EQ)

24: INS = EQ

25: else

26: Pick a record s from RR∪SR randomly

27: rcd =Noise-Gen(s)
28: rcd =Nonce-Update(rcd)

29: INS = insert(rcd)
30: for each record rcd in UR do

31: rcd =Nonce-Update(rcd)

32: UP =UP∪ rcd

33: return UP, DEL and INS to the CS



used in the oblivious algorithm. As we can see in Figure 2, the nonce (i.e., n1) is used

by Query-Transformation to update values in the query that are encrypted under SE. If

the query is INSERT, a new nonce is generated and Table 2(c) is updated accordingly.

As we already explained in Section 5.2, these nonces ensure forward and backward

privacy. The OPS generates a transformed encrypted query TEQ that includes indices

where the requested information could be located.

Stage 3 is to execute TEQ on the CS. For each index, the CS searches if the WHERE

clause evaluates to true. The CS matched records that includes real (i.e., {1}) and some

dummy ones (i.e., {4}). The CS returns search results SR to the OPS.

If the original query issued by the DBU is SELECT, the OPS will filter out dummy

elements from the SR by running Noise-Match and pre-decrypt the encrypted results as

illustrated in Stage 4a. The pre-decrypted results can only be decrypted by the DBU.

The DBU client runs User-Dec to finally decrypt the results (see Stage 4b).

No matter the query type, an Oblivious algorithm is run between the OPS and the

CS in Stage 5. Before that, in Stage 5a, for achieving both SPP and APP, the OPS

runs Pre-Oblivious to ask for two sets of records UR and RR from the CS. UR is the

unmatched record set in UL. RR is a set of random records, which has the same size as

SR.

One can argue why we need to execute a select again when one (i.e., TEQ) is already

executed after Stage 2. There are two main reasons. First, if the original query is select,

the DBU should not experience high latency. That is, the OPS will immediately send

back results to the DBU after Stage 2. Second, REQ is issued to better achieve APP and

SzPP i.e., by maximising number of records that are shuffled. It is important to note that

REQ is always fake, but it does not leak information on the original query, which could

be one of select, insert, update and delete. REQ contains some valid indices (i.e., 2 and

3) that can be located on the CS. After executing REQ, in Stage 5b, the CS returns

results RR. In Stage 5c, the OPS runs an Oblivious algorithm, which is explained in

Section 5.4 in detail. The output of Stage 5c is a list of commands that will be committed

by the CS in Stage 5d.

5.4 Oblivious Algorithm

The Oblivious algorithm ensures APP, OPP and SzPP as well as forward and backward

privacy. To achieve SzPP, the OPS adds a set of dummy records. OPP is guaranteed

by executing all four queries (i.e., select, insert, update and delete) no matter what the

original query is. Every time after a query is executed, shuffling of matched records (in-

cluding real and dummy ones) together with re-randomisation ensures APP. The nonce

in each query and each record in the result set promises both forward and backward

privacy.

The algorithm takes as input the search result SR, the return result RR, the un-

matched records UR in UL and the encrypted query EQ. The OPS also keeps the total

number of dummy records du, the total number of real records re and the threshold t

indicating a ratio between dummy and real records. It also takes as input du, re and t. It

outputs a set of records to be updated UP, an index list of records to be delete DEL and

an insert query INS.



The algorithm is executed as follows. First, for each record in SR (Line 1), it eval-

uates if the record is a dummy one (Line 2). If so, it checks if the ratio between du

and re is less than t (Line 3) so that we can control du. In case of yes, it re-randomises

the record (Line 4), updates nonces on the record (Line 5) and adds the record to the

UP list (Line 6). Ultimately, we achieve APP by re-randomising the record including

DE and SE. At the same time, updating nonce (Line 5) ensures forward and backward

privacy. Otherwise, (Line 7), it adds the record to the DEL list (Line 8) so that we re-

move unnecessary volume of dummy records. If the record is real (Line 10), there are

four cases: select, insert, update and delete. If the query is select or insert (Line 10), we

re-randomise the record (Line 11) to achieve APP. If the query is update (Line 12), the

SQL update is run on the record (Line 13). Since the record is update, we do not need

to re-randomise because we automatically achieve APP. If the query is delete (Line 14),

the algorithm generates a dummy record out of the original one (Line 15) and achieves

SzPP. Consequently, the CS cannot learn if the original query is delete. No matter the

query type, in order to ensure forward and backward privacy, it updates the nonce (Line

16) before adding the record to the UP list (Line 17). After all records in SR are pro-

cessed, to achieve APP, the algorithm re-randomises each record in RR (Line 19) and

adds re-randomised records to the UP list (Line 20), which are finally shuffled (Line

21). If the original query is insert (Line 22), we update the nonce (Line 23) and then

mark the record as INS (Line 24). Otherwise (Line 25), to achieve OPP as well as SzPP,

a record is chosen randomly from SR or RR (Line 26) in order to generate a dummy

record (Line 27). Next, its nonce is updated (Line 28) and it becomes the new SQL

insert (Line 29). To achieve SPP, we need to update all unmatched records UR of the

group that was part of the query (Lines 30-32).

By running all four types of queries, we achieve OPP. Finally, the algorithm returns

UP, DEL and INS (Line 30).

6 Definition And Construction Details

This section gives the definitions and details of algorithms used by different modules

including the KMA, the DBU and the OPS.

6.1 Definitions

The proposed scheme consists of the following algorithms:

• Init(1k). It is a probabilistic algorithm run by the KMA. It takes as input a security

parameter k and outputs the public parameter Param and the master secret key set

MSK.

• Key-Gen(MSK, i). It is a probabilistic algorithm run by the KMA to generate key-

ing material for all entities. For each DBU i, using MSK, it generates two key sets

KUi
and KPi

, where KUi
is the user key set for the DBU i and KPi

is its corresponding

OPS side key.

• GID-Gen(D). It is a deterministic algorithm run by the DBU i to generate the gid

for data D. It takes as input the data D, and outputs gid.



• GE-Enc(gid). It is a deterministic algorithm run by the DBU to encrypt the group

information. It takes as input gid and outputs the encrypted group information

GE(gid). In the following, we simplify GE(gid) as GE(D) for clear description.

• SE-Enc(D,KUi
). It is a probabilistic algorithm run by the DBU i to encrypt D. It

takes as input the data D and the key KUi
. It outputs the encrypted data SE(D),

which is used for keyword search.

• DE-Enc(D). It is a probabilistic algorithm run by the DBU to encrypt the records.

It results in DE(D) from which the original data element D can be retrieved.

• Nonce-Update(SE(D)). It is a probabilistic algorithm run by the OPS to add or

update the nonce on SE(D), It takes as input SE(D), and outputs the nonce n and

SE ′(D).
• Noise-Gen(GE(D),SE(D)). It is a randomised algorithm run by the OPS to gen-

erate a dummy record. It takes as input the real encrypted data SE(D) and GE(D),
and outputs a dummy record (SE ′(D), DE(D′)) that can be matched with interested

keyword D but indistinguishable from real data by the CS.

• Re-Randomise(SE(D),DE(D)). It is a probabilistic algorithm run by the OPS to

update the encrypted data stored in the CS. It takes as input the encrypted record

(SE(D),DE(D)) and outputs (SE ′(D),DE ′(D)).
• Group-Match(GE(Q),GE(D)). The OPS runs this deterministic algorithm to check

if the DBU generated trapdoor GE(Q) matches with the stored encrypted group

information GE(D). This algorithm outputs true if there is a match and false other-

wise.

• Data-Match(SE(Q),SE(D)). The CS runs this deterministic algorithm to check if

the encrypted data SE(D) stored in the CS matches with the query SE(Q). It returns

true if there is a match and false otherwise.

• Search(Indexlist,SE(Q)) It is a probabilistic algorithm run by the CS to get the

matched records for query Q. With the input (Indexlist,SE(Q)), it returns the result

set R to the OPS.

• Noise-Match(GE(Q),DE(D)). This deterministic algorithm is run by the OPS to

check if an encrypted record DE(D) is dummy or not. It outputs true if DE(D) is

dummy and false otherwise.

• OPS-Pre-Dec(DE(D),KPj
). The OPS runs this deterministic algorithm to partially

decrypt the encrypted data DE(D) for the DBU j. It takes DE(D) and KPj
as input

and results in the pre-decrypted data DE∗j (D).
• User-Dec(DE∗j (D),KU j

). The DBU j runs this algorithm to finally decrypt the data

DE∗j (D). It takes as input DE∗j (D) and KU j
, and returns the plaintext data D.

• Revoke(i). The DBA runs this algorithm to revoke DBU i from ObliviousDB.

6.2 Concrete Construction

• Init(1k). The KMA takes as input the security parameter k. It outputs a prime num-

ber p, two multiplicative cyclic groups G and GT of order p. It defines a bilinear

map: e : G×G→ GT, which has the properties of bilinearity, computability and

non-degeneracy [29]. Let g be the generator of G. It chooses a random x from Z∗p
and outputs h = gx. Next, it chooses a collision-resistant keyed hash function H,

two pseudorandom functions ψ and f and a random key s for f . It also initialises



the key store managed by the OPS. That is, KS← φ . Finally, it publishes the pub-

lic parameters Params = (e,G,GT, p,g,h,H, f ,ψ) and keeps securely the master

secret key MSK = (x,s).
• Key-Gen(MSK, i). For the DBU i, the KMA splits MSK into two values xi1 and xi2,

where x = xi1 + xi2 and xi1,xi2 ∈ Z∗p. Then, the KMA transmits KUi
= (xi1,s) and

KPi
= (i,xi2) securely to the DBU i and the OPS, respectively. The OPS adds KPi

to

its key store: KS← KS∪KPi
.

• GID-Gen(D). The DBU i generates gid for D by computing gid← ψ(D).
• GE-Enc(gid). The DBU encrypts gid by computing GE(gid)← fs(gid). Finally,

GE(gid) is sent to the OPS.

• SE-Enc(D,KUi
). For the data D, the DBU i first computes σ ← fs(D), then chooses

a random r from Z∗p. Next, the DBU i computes SE(D) = (c1,c2), where c1 = gr

and c2 = gσr. Finally, the DBU i sends SE(D) to the OPS.

• DE-Enc(D). For the data D, the DBU chooses a random r from Z∗p and calculates

DE(D) = (e1,e2), where e1 = gr and e2 = hrD. Finally, DE(D) is sent to the OPS.

• Nonce-Update(SE(D)). With the input SE(D) = (c1,c2), the OPS get SE ′(D) =
(c′1,c

′
2) by computing c′1 = cn

1,c
′
2 = c2, where n is random from Z∗p. SE ′(D) is sent

to the CS. n is stored in the OPS.

• Noise-Gen(GE(D),SE(D)). With the input SE(D) = (c1,c2) and GE(D), the OPS

runs this algorithm to generate a dummy record (SE ′(D) = (c′1,c
′
2),DE(D′) =

(e1,e2)), where c′1 = cr
1 and c′2 = cr

2, r is a random from Z∗p, e2 is a random chosen

from G and e1 = HGE(D)(e2).
• Re-Randomise(SE(D),DE(D)). The OPS chooses a random r from Z∗p to update

the encrypted record. The updated SE ′(D) = (c′1,c
′
2), where c′1 = cr

1, c′2 = cr
2. The

updated DE ′(D) = (e′1,e
′
2). If this record is real, e′1 = e1 ·g

r and e′2 = e2 ·h
r. Other-

wise, e′2 is new random, and e′1 = Hs(e
′
2).

• Group-Match(GE(Q),GE(D)). When receiving GE(Q) from the DBU, the OPS

fetches the GE(D) from the group store. This algorithm checks if GE(Q)
?
=GE(D).

The OPS runs this algorithm to insert the index of a new record into its correspond-

ing index list or to get the index list to narrow down the search scope.

• Data-Match(SE(Q),SE(D)). This algorithm, which is run by the CS, is used to

determine if the encrypted data SE(D) = (c1D
,c2D

) = (grni , grσD) is matched the

query SE(Q) = (c1Q
,c2Q

) = (grn j ,grσQ) by checking if e(c1D
,c2Q

)
?
= e(c1Q

,c2D
).

On successful match, it returns true and false otherwise.

• Search(Indexlist,SE(Q)). The CS runs this algorithm to find which record in indexlist

matches with SE(Q). Data-Match is invoked to check if the related field in a record

match with the corresponding condition node in SE(Q). The record matches with

SE(Q) will be returned.

• Noise-Match(GE(Q),DE(D)). DE(D) = (e1,e2) is the returned result. The OPS

runs this algorithm to filter out the dummies for decryption. It is performed by

checking if e1
?
= HGE(Q)(e2). It yes, it means this record is dummy; otherwise, it is

a real record.3

3There is a negligible probability that a real record is classified as a dummy one. To address

this issue, we can check if e1
?
= HGE(D)(e2) when DE(D) = (e1,e2) is generated. If yes, we can

re-randomise DE(D) and check again.



• OPS-Pre-Dec(DE(D),KPj
). The OPS runs this algorithm to partially decrypt the

data using KPj
. The ciphertext DE(D) is decrypted as ê2 = e2 · (e1)

−x j2 = gr‘·x j1 D.

The OPS sends DE∗j (D) = (ê1, ê2) to the DBU j, where ê1 = gr‘
.

• User-Dec(DE∗j (D),KU j
). The DBU j decrypts the cihpertext as D = ê2 · (ê1)

−x j1 =

grx j1 ·D ·g−rx j1 .

• Revoke(i). Given DBU i, the DBA removes KPi
from the key store managed by the

OPS. That is, KS← KS\KPi
.

6.3 Correctness

• Data-Match. The encrypted data used for search is SE(D) = (c1D
,c2D

). The query

is encrypted as SE(Q) = (c1Q
,c2Q

). For each query, the CS performs the match

between SE(D) and SE(Q) by checking if

e(c1D
,c2Q

)
?
= e(c1Q

,c2D
) (1)

where

e(c1D
,c2Q

) = e(grDni ,grQσQ)

= e(g,g)rDrQniσQ

e(c1Q
,c2D

) = e(grQn j ,grDσD)

= e(g,g)rQrDn jσD

It is true, iff ni = n j and σQ = σD, where σD ← fs(D) and σQ ← fs(Q). Namely,

there a match between the record and the query only when the related data are same

and marked with the same nonce.

• Noise-Match. The OPS distinguishes a dummy record from a real one though their

DE part. For a dummy record, DE(D′) = (e1,e2), where e2 is a legal random and

e1 = HGE(D)(e2). Noise-Match is performed by checking if

e1
?
= HGE(Q)(e2) (2)

Namely,

HGE(D)(e2)
?
= HGE(Q)(e2) (3)

It is true if GE(D) = GE(Q). Since GE is deterministic, it needs Q = D. GE(D)
suggests the SD part of the dummy record is borrowed and re-randomised from

data D. Q is the query being processed currently. According to Equation 1, only

when Q = D the record will be returned. Therefore, Equation 3 is always true if the

record is dummy.

For a real record, DE(D) = (gr,hrD), however, it is possible that gr =HGE(D)(h
rD).

In order to avoid the false negative, we can check if e1
?
=HGE(D)(e2) when DE(D)=

(e1,e2) is generated, and then re-randomise it and check again if yes. Fortunately,

the false detection possibility is negligible.



7 Security Analysis

In this section, we analysis the security of ObliviousDB. Particularly, we prove SPP,

APP, SzPP, OPP, forward and backward privacy.

SPP. Informally speaking, SPP means the CS can not learn if the queries are same

or not from their ciphertext. ObliviousDB supports complex query, however, we did not

take measures to hide the query structure, including the query length, the conjunctions

and disjunctions. These leakage can be avoided by padding and reordering queries into

same structure. Here we only define and prove SPP for the queries with same structures.

Here we give its formal definition.

Definition 1 (SPP). Let k be the security parameter of ObliviousDB over group G.

The SPP game between a Probabilistic Polynomial-Time (PPA) adversary A and a

challenger B is described as below

• Setup. The challenger B runs Init (1k) and to get Params and MSK. Then he runs

Key-Gen(MSK, i) to generate the secret key pair (KUi
,KPi

). He publishes Params

to the adversary A , and keeps MSK and (KUi
,KPi

) secret.

• Phase 1. A requests B to encrypt a set of queries Q = {q1, ...qt}. The only re-

striction is that all the queries should have the same structure. B generates the

encrypted query and the index list (teq j, l j) for each query q j ∈ [1, t] by running

SE, Nonce-Update and Group-Match. Then, B sends them to A .

• Challenge. A sends two pairs of queries Q0 = (q0,q0) and Q1 = (q0,q1). q0 and

q1 can belong to Q, but should have the same structure. B flips a coin b ∈ {0,1},
returns < (teq0, il0),(teqb, ilb)> to A , where

teq0 ← Nonce−U pdate(SE(q0,KUi
))

il0 ← Group−Match(SE(q0,KUi
))

teqb ← Nonce−U pdate(SE(qb,KUi
))

ilb ← Group−Match(SE(qb,KUi
))

• Phase 2. Same as phase 1.

• Guess. A submits his guess b′ of b.

The advantage of A in this SSP game is defined as AdvSSP
A

(1k). We say ObliviousDB

achieves SPP, if for all PPA adversaries have at most negligible advantage in the above

game:

AdvSSP
A

(1k) = Pr[b′ = b]− 1/2≤ negl(k) (4)

where negl(k) denotes as a negligible function in k.

Proof. The encrypted queries get by A are

< teq0, teqb >=< (c1,c2),(c
′
1,c
′
2)>=< (gnr,grσ ),(gn′r′ ,gr′σ ′)> (5)

where n and n′ are the nonces stored on the OPS, σ ← fs(q0), σ ′← fs(qb). Since r and

r′ are random numbers that picked from Z∗p uniformly. They are also independent of σ ,



σ ′ and the nonces. This means just from the cipertext, A does not have advantage to

success.

Alternatively, A could guess by checking if

e(c1,c
′
2)

?
= e(c′1,c2) (6)

As described in Equation 1, it is true only when n′ = n and qb = q0. According to

ObliviousDB, after each query, the nonce in the corresponding group is updated. Since

the nonce is random number picked from Z∗p uniformly. The probability of getting same

nonce is negligible. So in this way, we still have that

AdvSSP
A

(1k) = Pr[b′ = b]− 1/2≤ negl(k) (7)

Besides, A also get the index list for search. In ObliviousDB, after the oblivious

algorithm, not only the group size but also the index inside this group is refreshed. As

a result, if there is an interaction between two index lists, A is uncertain if the two

queries are in the same group.

SzPP. If the real size of the search result is unknown to the CS, the scheme achieves

SzPP. In this work, the search result size is hidden by a random number of dummy

records. If the CS wants to learn the size pattern, it should know which records in the

search result set are real. Therefore, the SzPP prove could be reduced to prove the

indistinguishability between dummy and real records. In order to achieve the SzPP, the

dummy record should be indistinguishable from the real one in terms of both the DE

and SE parts.

Proof. On the CS, a real record D and a dummy record are represented by (SE(D),DE(D))
and (SE ′(D),DE(D′)), where

SE(D) = (gr,grσ )

SE ′(D) = (gr′ ,gr′σ )

DE(D) = (gr,hrD)

DE(D′) = (HGE(D)(e2),e2)

Since r and r′ are random numbers picked from Z∗p uniformly, c1, c′1, c2, c′2, e1 and e2

could uniformly be any element in group G. e′2 is randomly picked from G. Although

e′1 is determined by e′2, it can be any element in G since e′2 is random. So the dummy

records and the real one are indistinguishable.

APP. The leakage of the matched items is inevitable if the search is performed by

the CS. The key point is he CS should not learn any useful information from them.

The CS nearly learn nothing from an independent search result. However, from the

relationship between search results, it could infer the search pattern. We say APP is

achieved if the CS is unable to infer the search pattern from the search result. Here we

give the formal definition of APP.

Definition 2 (APP). Let k be the security parameter of ObliviousDB over group G.

The APP game between a Probabilistic Polynomial-Time (PPA) adversary A and a

challenger B is described as below



• Setup. Same as the Setup in Def. 1.

• Phase 1. A requests the search results from B for a set of queries Q = {q1, ...qt}.
B searches the result SR j and sends it to A for each query q j, j ∈ [1, t].

• Challenge. A sends two queries q0 and q1, which can belong to Q. B flips a coin

b ∈ {0,1}, returns SRb to A .

• Phase 2. Same as phase 1.

• Guess. A submits his guess b′ of b.

The advantage of A in this APP game is defined as AdvAPP
A

(1k). We say ObliviousDB

achieves APP, if for all PPA adversaries have at most negligible advantage in the above

game:

AdvAPP
A (1k) = Pr[b′ = b]− 1/2≤ negl(k) (8)

where negl(k) denotes as a negligible function in k.

In ObliviousDB, we achieve APP with two techniques. On the one hand, we change the

index of each record in the result set by shuffling them with a number of unmatched

records. On the other hand, we randomise the shuffled records to make them look dif-

ferent and untraceable. Consequently, the search results will be completely different for

the same query.

Proof. Assume the search result for query Q is SR= {id1, ..., idm}, where m≥ 1. Ac-

cording to the oblivious algorithm, SR will shuffle with another m unmatched records

RR = {id′1, ..., id
′
m} randomly. After the shuffling, the record with index idi, i ∈ [1,m]

could be one of the ever matched records or unmatched record with the same prob-

ability. That is, if idi, i ∈ [1,m] returns to another query, it could be same to Q with

50% probability. Furthermore, both SE and DE parts of all the shuffled records are

re-randomised. A is unable to trace the record according to its ciphetext. Besides, we

should note that since the dummy records are refreshed dynamically, even the search

result for all the requested queries are different, A does not have any advantage to win

the game.

OPP. We hide the operation pattern by extending all the types of query into two

select queries, a set of update queries, a set of delete queries and one insert query, as

described in Algorithm 1. From none of these queries, the CS could learn the operation

pattern.

Only when the original query is select the first select query is real. If the original

query is update or delete, we change it into ‘select *’ and keep their where-clause. To

some extent, they are still real queries. For insert query, the fake query can be obtained

by re-randomising an executed query. Hence, the fake query is indistinguishable from

the real one.

The second select query is to fetch a number of random records. No matter what

the original query is, this query will be always executed. Which and how many records

should be fetched is not affected by the type of the original query. Therefore, from the

second select query, the CS gets nothing about the type of the original query.

Similarly, a set of update queries will be always executed by the CS. The difference

is when the original query is update, the search result of the first query will be updated

into the new encrypted value. Otherwise, they are re-randomised. The re-randomised



value is indistinguishable from the original encrypted data. So this operation neither

leaks the type of the original query.

The size of the delete operation set is depend on the number of dummy records.

It could be empty or not whatever the original query is. When the original query is

delete, the search result of the first query will be changed into dummy records. Since

the dummy record is indistinguishable from the real one, the CS could not perceive if

the original query is delete or not.

When the original query is insert, the real record will be inserted. Otherwise, a

dummy record is inserted. Since the dummy record is indistinguishable from the real

one, the real insert query is protected.

Forward and backward privacy. Forward and backward privacy should be guar-

anteed if a scheme aims to achieve SPP and APP. Assume the CS could run the executed

queries on the updated database or run queries on deleted data. The same result set will

be returned for the same query. Consequently, the CS can infer the search pattern.

We use nonce to ensure the forward and backward privacy As shown in Equation

1, only when the query marked with a valid nonce, the record will be matched. In the

oblivious algorithm, the nonces marked in the matched records will be replaced with a

new one. Since the executed query is still marked with the old nonce, it will get nothing

if the CS run this query arbitrarily. Similarly, assume the CS keeps a copy of the records

before committing the update operation, it is unable to get the search result.

8 Performance Analysis

In this section, we evaluate the performance of ObliviousDB. We implemented the

scheme in C using MIRACL 7.0.0 library for cryptographic primitives. The imple-

mentation of the overall system including the functions on the DBU, the OPS and the

CS was tested on a single cluster with 64 Intel i5 3.3 GHz processor with 256 GB

RAM, running Ubuntu 14.08 Linux system. For our experimentation, we considered

the RAM-based database. In our testing scenario, all operations ran on one cluster and

ignore the network latency occurring in a real deployment. In the following, all the

results are averaged over 10 trials.

We first present the results of end-to-end latency measured at the DBU when per-

forming a search operation on a database with 100,000 real records and with a result set

of 1,000 real records. In this experiment, we want to measure the effect of the number

of groups as well as the ratio between dummy and real records on latency.

The graphs in Figure 3 illustrate the latency in millisecond (ms). The graph in Fig-

ure 3(a) shows the results for the query ‘select ∗ from staff where name=Alice’. The

graph in Figure 3(b) provides the latency for performing a range query on a numerical

attribute: ‘select ∗ from staff where 20 < age < 31’. In both graphs, the X-axis shows

different group numbers: that is, we change the granularity of the indexing going from

no indexing (where all the records are part of one group) to a more fine-grained index-

ing. For a given number of groups, the same was executed 5 times, each time changing

the ratio (from 0% to 100%) between dummy and real records, represented by different

lines in both graphs.
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Fig. 3. End-to-end latency on the DBU for getting 1,000 real records from the database with

100,000 real records. The database size goes up to 200,000 with the increase of the ratio between

dummy and real records. The tested single keyword and range queries are: ‘select ∗ from staff

where name=Alice’ and ‘select ∗ from staff where 20 < age < 31’, respectively.

As we expected, for both queries, increasing the number of groups reduces the DBU

latency. For a given size of a database, more groups means less records within a given

group. This reduces searching time on the CS and in turn reduces the latency on the

DBU.

On the other hand, increasing the ratio between dummy and real records degrades

the performance. For both queries, for a given group size, the latency increases when

we go from 0% dummy records (in other words, only real records) to a ratio of 100%

(as many dummy records as real ones). This is explained mainly by two facts: i) with a

higher ratio, the CS has to retrieve more records (including real and dummy ones), and

ii) the OPS needs to filter out more records before sending the real records to the DBU.
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Fig. 4. Latency on the DBU, the OPS and the CS for executing ‘select ∗ from staff where

name=Alice’ with three different ratios of dummy records.

It is worth mentioning here that, for the DBU latency experiment, we did not mea-

sure the time the OPS spends in executing the oblivious protocol. The main reason is



that the OPS will forward to the DBU the result sets and then initiates the oblivious

protocol.

In the following, we want to provide some details on the time each entity, namely

the DBU, the OPS and the CS, spend to execute a single keyword query. Figure 4 shows

the graphs for the execution of the same select query. For each graph, the ratio is kept

constant while we vary only the number of groups (shown on the X-axis). As we can

see, the increasing of the number of groups affects mainly the performance on the CS

while time taken by the DBU and the OPS remains constant. However, increasing the

ratio between dummy and real records increases the latency on the OPS and the CS.

9 Conclusions and Future Work

In this work, we propose the first sub-linear searchable scheme for outsourced database,

which achieves forward privacy and the privacy of search pattern, access pattern, size

pattern and operation pattern without streaming the whole database and supports multi-

user to carry out complex SQL-like queries on encrypted data.

As future work, we plan to optimize and parallelise the oblivious algorithm to im-

prove the the performance of the OPS and the CS. Secondly, the size of each query

is unprotected in our scheme, which is probably a potential useful leakage for the CS.

Thus, we are going to take some measures to hide this kind of size pattern from the CS.
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