
ESPOONERBAC: Enforcing Security Policies
in Outsourced Environments

Muhammad Rizwan Asghara,c, Mihaela Iona,c, Giovanni Russellob, Bruno Crispoc

aCREATE-NET, International Research Center, Trento Italy
bDepartment of Computer Science, The University of Auckland, Auckland New Zealand

cDepartment of Information Engineering and Computer Science, University of Trento, Trento Italy

Abstract

Data outsourcing is a growing business model offering services to individuals and enterprises for processing and storing a huge
amount of data. It is not only economical but also promises higher availability, scalability, and more effective quality of service
than in-house solutions. Despite all its benefits, data outsourcing raises serious security concerns for preserving data confidentiality.
There are solutions for preserving confidentiality of data while supporting search on the data stored in outsourced environments.
However, such solutions do not support access policies to regulate access to a particular subset of the stored data.

For complex user management, large enterprises employ Role-Based Access Controls (RBAC) models for making access de-
cisions based on the role in which a user is active in. However, RBAC models cannot be deployed in outsourced environments
as they rely on trusted infrastructure in order to regulate access to the data. The deployment of RBAC models may reveal private
information about sensitive data they aim to protect. In this paper, we aim at filling this gap by proposingESPOONERBACfor enforc-
ing RBAC policies in outsourced environments.ESPOONERBAC enforces RBAC policies in an encrypted manner where a curious
service provider may learn a very limited information aboutRBAC policies. We have implementedESPOONERBAC and provided
its performance evaluation showing a limited overhead, thus confirming viability of our approach.

Keywords: Encrypted RBAC, Policy Protection, Sensitive Policy Evaluation, Secure Cloud Storage, Confidentiality;

1. Introduction

In recent years, data outsourcing has become a very attractive
business model. It offers services to individuals and enterprises
for processing and storing a huge amount of data at very low
cost. It promises higher availability, scalability, and more ef-
fective quality of service than in-house solutions. Many sectors
including government and healthcare, initially reluctantto data
outsourcing, are now adopting it [25].

Despite all its benefits, data outsourcing raises serious se-
curity concerns for preserving data confidentiality. The main
problem is that the data stored in outsourced environments are
within easy reach of service providers that could gain unautho-
rised access. There are several solutions for guaranteeingcon-
fidentiality of data in outsourced environments. For instance,
solutions as those proposed in [13, 19] offer a protected data
storage while supporting basic search capabilities performed on
the server without revealing information about the stored data.
However, such solutions do not support access policies to regu-
late the access to a particular subset of the stored data.

Email addresses:asghar@create-net.org (Muhammad Rizwan
Asghar),ion@create-net.org (Mihaela Ion),
g.russello@auckland.ac.nz (Giovanni Russello),
crispo@disi.unitn.it (Bruno Crispo)

1.1. Motivation

Solutions for providing access control mechanisms in out-
sourced environments have mainly focused on encryption tech-
niques that couple access policies with a set of keys, such as
the one described in [10]. Only users possessing a key (or a set
of hierarchy-derivable keys) are authorised to access the data.
The main drawback of these solutions is that security policies
are tightly coupled with the security mechanism, thus incurring
high processing cost for performing any administrative change
for both the users and the policies representing the access rights.

A policy-based solution, such the one described for the Pon-
der language in [28], is more flexible and easy to manage be-
cause it clearly separates the security policies from the enforce-
ment mechanism. However, policy-based access control mech-
anisms are not designed to operate in outsourced environments.
Such solutions can work only when they are deployed and op-
erated within a trusted domain (i.e., the computational environ-
ment managed by the organisation owning the data). If these
mechanisms are outsourced to an untrusted environment, the
access policies that are to be enforced on the server may leakin-
formation on the data they are protecting. As an example, letus
consider a scenario where a hospital has outsourced its health-
care data management services to a third party service provider.
We assume that the service provider is honest-but-curious,sim-
ilar to the existing literature on data outsourcing (such as[12]),
i.e., it is honest to perform the required operations as described
in the protocol but curious to learn information about stored or

Preprint submitted to Computers& Security July 4, 2013

exchanged data. In other words, the service provider does not
preserve data confidentiality. A patient’s medical record should
be associated with an access policy in order to prevent an un-
intended access. The data is stored with an access policy. As
an example, let us consider the following access policy:only a
Cardiologist may access the data. From this policy, it is possi-
ble to infer important information about the user’s medicalcon-
ditions (even if the actual medical record is encrypted). This
policy reveals that a patient could have heart problems. A mis-
behaving service provider may sell this information to banks
that could deny the patient a loan given her health conditions.

Now-a-days, the most widely used security model is Role-
Based Access Controls (RBAC) [30] that makes decision based
on role in which a user is active in [24]. However, the current
variants of RBAC model cannot be deployed in outsourced en-
vironments as they assume a trusted infrastructure in orderto
regulate access on data. In RBAC models, RBAC policies may
leak information about the data they aim to protect. Asgharet
al. [1] proposeESPOONthat aims at enforcing authorisation
policies in outsourced environments. They extendESPOON
[1] to support RBAC policies and role hierarchies [2]. How-
ever, they consider that the role assignment is performed bythe
Company RBAC Manager, which is run in the trusted environ-
ment.

1.2. Research Contributions

In this paper, we present an RBAC mechanism for outsourced
environments where we support full confidentiality of RBAC
policies. We named our solutionESPOONERBAC(Enforcing Se-
curity Policies in OutsOurced envirOnmeNts with Encrypted
RBAC). One of the main advantages ofESPOONERBAC is that
we maintain the clear separation between RBAC policies and
the actual enforcing mechanism without loss of policies con-
fidentiality under the assumption that the service provideris
honest-but-curious. Our approach allows enterprises to out-
source their RBAC mechanisms as a service with all the benefits
associated with this business model without compromising the
confidentiality of RBAC policies. Summarising, the research
contributions of our approach are threefold. First, the service
provider does not learn anything about RBAC policies and the
requester’s attributes during the policy deployment or evalua-
tion processes. Second,ESPOONERBAC is capable of handling
complex contextual conditions (a part of RBAC policies) in-
volving non-monotonic boolean expressions and range queries.
Third, the system entities do not share any encryption keys and
even if a user is deleted or revoked, the system is still able
to perform its operations without requiring re-encryptionof
RBAC policies. As a proof-of-concept, we have implemented
a prototype of our RBAC mechanism and analysed its perfor-
mance to quantify the overhead incurred by cryptographic op-
erations used in the proposed scheme.

1.3. Organisation

The rest of this paper is organised as follows: Section 2 re-
views the related work. Section 3 provides an overview of
RBAC models. Section 4 presents the proposed architecture

of ESPOONERBAC. Section 5 and Section 6 focus on solution
details and algorithmic details, respectively. Section 7 provides
security analysis ofESPOONERBAC. Section 8 analyses the per-
formance overhead ofESPOONERBAC. Finally, Section 9 con-
cludes this paper and gives directions for the future work.

2. Related Work

Work on outsourcing data storage to a third party has been
focusing on protecting the data confidentiality within the out-
sourced environment. Several techniques have been proposed
allowing authorised users to perform efficient queries on the
encrypted data while not revealing information on the data and
the query [32, 6, 14, 9, 17, 7, 34, 4, 27, 31, 13]. However, these
techniques do not support the case of users having different ac-
cess rights over the protected data. Their assumption is that
once a user is authorised to perform search operations, there
are no restrictions on the queries that can be performed and the
data that can be accessed.

The idea of using an access control mechanism in an out-
sourced environment was initially explored in [11, 12]. In this
approach, Vimercatiet al. provide a selective encryption strat-
egy for enforcing access control policies. The idea is to have a
selective encryption technique where each user has a different
key capable of decrypting only the resources a user is autho-
rised to access. In their scheme, a public token catalogue ex-
presses key derivation relationships. However, the publiccata-
logue contains tokens in the clear that express the key derivation
structure. The tokens could leak information on access control
policies and on the protected data. To circumvent the issue of
information leakage, in [10] Vimercatiet al. provide an encryp-
tion layer to protect the public token catalogue. This requires
each user to obtain the key for accessing a resource by travers-
ing the key derivation structure. The key derivation structure is
a graph built (using access key hierarchies [3]) from a classical
access matrix. There are several issues related to this scheme.
First, the algorithm of building key derivation structure is very
time consuming. Any administrative actions to update access
rights require the users to obtain new access keys derived from
the rebuilt key derivation structure and it consequently requires
data re-encryption with new access keys. Therefore, the scheme
is not very scalable and may be suitable for a static environment
where users and resources do not change very often. Second,
the scheme does not support complex policies where contex-
tual information may be used for granting access rights. For
instance, only specific time and location information associated
with an access request may be legitimate to grant access to a
user.

Another possible approach for implementing an access con-
trol mechanism is protecting the data with an encryption
scheme where the keys can be generated from the user’s creden-
tials (expressing attributes associated with that user). Although
these approaches are not devised particularly for outsourced en-
vironments, it is still possible to use them as access control
mechanisms in outsourced settings. For instance, a recent work
by Narayanet al. [22] employ the variant of Attribute Based
Encryption (ABE) proposed in [5] (i.e., Ciphertext Policy ABE,

2

or CP-ABE in short) to construct an outsourced healthcare sys-
tem where patients can securely store their Electronic Health
Record (EHR). In their solution, each EHR is associated witha
secure search index to provide search capabilities while guaran-
teeing no information leakage. However, one of the problems
associated with CP-ABE is that the access structure, represent-
ing the security policy associated with the encrypted data,is not
protected. Therefore, a curious storage provider might getin-
formation on the data by accessing the attributes expressedin
the CP-ABE policies. The problem of having the access struc-
ture expressed in cleartext affects in general all the ABE con-
structions [29, 15, 26, 5]. Therefore, this mechanism is notsuit-
able for guaranteeing confidentiality of access control policies
in outsourced environments.

Asgharet al. [1] proposeESPOONthat aims at enforcing au-
thorisation policies in outsourced environments. InESPOON,
a data owner (or someone on the behalf of data owners) may
attach an authorisation policy with the data while storing it on
the outsourced server. Any authorised requester may get access
to the data if she satisfies the authorisation policy associated
with that data. However,ESPOONlacks to provide support for
RBAC policies. In [2], Asgharet al. extendedESPOONto sup-
port RBAC policies and role hierarchies. However, in [2] the
role assignment is performed by the Company RBAC Manager,
which is run in the trusted environment. On the other hand,
in our current architecture, the role assignment is performed
by the service provider running in the outsourced environment.
In other words, we have eliminated the need of an additional
online-trusted-server i.e., the Company RBAC Manager.

Related to the issue of the confidentiality of the access struc-
ture, the hidden credentials scheme presented in [16] allows one
to decrypt ciphertexts while the involved parties never reveal
their policies and credentials to each other. Data can be en-
crypted using an access policy containing monotonic boolean
expressions which must be satisfied by the receiver to get ac-
cess to the data. A passive adversary may deduce the policy
structure, i.e., the operators (AND, OR, m-of-n threshold en-
cryption) used in the policy but she does not learn what cre-
dentials are required to fulfill the access policy unless shepos-
sesses them. Bradshawet al. [8] extend the original hidden
credentials scheme to limit the partial disclosure of the policy
structure and speed up the decryption operations. However,in
this scheme, it is not easy to support non-monotonic boolean
expressions and range queries in the access policy. Last, hidden
credentials schemes assume that the involved parties are online
all the time to run the protocol.

3. Overview of RBAC Models

RBAC [30] is an access control model that logically maps
well to the job-function specified within an organisation. In the
basic RBAC model, a system administrator or a security officer
assigns permissions to roles and then roles are assigned to users.
A user can make an access request to execute permissions cor-
responding to a role only if he or she is active in that role. A
user can be active in a subset of roles assigned to him/her by

making a role activation request. In RBAC, a session keeps
mapping of users to roles that are active.

In [30], Sandhuet al. extend the basic RBAC model with role
hierarchies for structuring roles within an organisation.The
concept of role hierarchy introduces the role inheritance.In the
role inheritance, a derived role can inherit all permissions from
the base role. The role inheritance incurs extra processingover-
head as requested permissions might be assigned to the base
role of one in which the user might be active.

The RBAC model may activate a role or grant permis-
sions while taking into account the context under which the
user makes the access request or the role activation request
[20, 18, 33, 23, 21]. The RBAC model captures this context by
defining contextual conditions. A contextual condition requires
certain attributes about the environment or the user makingthe
request. These attributes are contextual information, which may
include access time, access date and location of the user whois
making the request. The RBAC model grants the request if the
contextual information satisfy the contextual conditions.

4. TheESPOONERBAC Approach

ESPOONERBACaims at providing RBAC mechanism that can
be deployed in an outsourced environment. Figure 1 illustrates
the proposed architecture that has similar components to the
widely accepted architecture for the policy-based management
proposed by IETF [35]. In
ESPOONERBAC, anAdmin User deploys (i) RBAC policies and
sends them to theAdministration Point that stores (ii) RBAC
policies1 in thePolicy Store. These policies may include per-
missions assigned to roles, roles assigned to users and the role
hierarchy graph that are stored in the Permission Repository,
the Role Repository and the Role Hierarchy repository, respec-
tively.

A Requestermay send (1) the role activation request to the
Policy Enforcement Point(PEP). This request includes the Re-
quester’s identifier and the requested role. The PEP forwards
(2) the role activation request to thePolicy Decision Point
(PDP). The PDP retrieves (3) the policy corresponding to the
Requester from the Role Repository of thePolicy Store and
fetches (4) the contextual information from thePolicy Infor-
mation Point (PIP). The contextual information may include
the environmental and Requester’s attributes under which the
requested role can be activated. For instance, consider a contex-
tual condition where a role doctor can only be activated during
the duty hours. For simplicity, we assume that the PIP collects
all required attributes and sends all of them together in onego.
Moreover, we assume that the PIP is deployed in the trusted
environment. However, if attributes forgery is an issue, the PIP
can request a trusted authority to sign the attributes before send-
ing them to the PDP. The PDP evaluates role assignment poli-
cies against the attributes provided by the PIP checking if the
contextual information satisfies contextual conditions and sends
to the PEP (5) the role activation response. In case ofpermit,

1In the rest of this paper, by termpolicieswe meanRBAC policies.

3

������

�	
��

�������

���

�	�
����������������

��������� ��������
���

����������	��
��

���

�����

����

�����

���

�������

���

���� �����������

������ �������

���

��� ����

�!�

�����

�"#�

$������

%�&�'(�����

�"��

)����*����

%�&�'(�����

�+�

����

����������

�������

��� ����
�,#�

- .���

$������

�����������

�	
�

/��010�23

�	
�

��4	���	03

5�06����	7

��4	���	03

81�1 9�	0�

�,��

:���

;�3 9�	0�

<�����'��. =���'��(���

>'����.

>'����.

���?�'���.
>'����.

�����������

����������

������

Figure 1: TheESPOONERBACarchitecture for enforcing RBAC policies in outsourced environments

the PEP activates the requested role by updating theSession
containing the Active Roles repository (6a). Otherwise, incase
of deny, the requested role is not activated. Optionally, a re-
sponse can be sent to the Requester (7) with eithersuccessor
failure.

After getting active in a role, a Requester can make the ac-
cess request that is sent to the PEP (1). This request includes
the Requester’s identifier, the requested data (target) andthe ac-
tion to be performed. The PEP forwards (2) the access request
to the PDP. After receiving the access request, the PDP first re-
trieves from the Session information about the Requester ifshe
is already active in any role (3a). If so, the PDP evaluates ifthe
Requester’s (active) role is permitted to execute the requested
action on the requested data. For this purpose, the PDP retrieves
(3) the permission assignment policy corresponding to the ac-
tive role from the Permission Repository of the Policy Storeand
fetches (4) the contextual information from the PIP required for
evaluating contextual conditions in the permission assignment
policy. For instance, consider the example where aCardiologist
can access the cardiology report during the office hours. The
PDP evaluates the permission assignment policies against the
attributes provided by the PIP checking if the contextual infor-
mation satisfies any contextual conditions and sends to the PEP
(5) the access response. In case ofpermit, the PEP forwards the
access action to theData Store (6b). In case if no contextual
condition is satisfied, the PDP retrieves the role hierarchyfrom
the Role Hierarchy repository of the Policy Store and then tra-
verses this role hierarchy graph in order to find if any base role,
the Requester’s role might be derived from, has permission to
execute the requested action on the requested data. If so, the
PEP forwards the access action to the Data Store (6b). Oth-
erwise, in case ofdeny, the requested action is not forwarded.

Optionally, a response can be sent to the Requester (7) with
eithersuccessor failure.

The main difference with the standard proposed by IETF
is that theESPOONERBAC architecture is outsourced in an un-
trusted environment (see Figure 1). The trusted environment
comprises only a minimal IT infrastructure that is the appli-
cations used by the Admin Users and Requesters, together
with the PIP. This reduces the cost of maintaining an IT in-
frastructure. Having the reference architecture in the cloud
increases its availability and provides a better load balancing
compared to a centralised approach. In outsourced environ-
ments, ESPOONERBAC guarantees that the confidentiality of
policies is protected not only when they are deployed but also
when they are enforced. This offers a more efficient evaluation
of policies. For instance, a naive solution would see the en-
crypted policies stored in the cloud and the PDP deployed in the
trusted environment. At each evaluation, the encrypted policies
would be sent to the PDP that decrypts the policies for a cleart-
ext evaluation. After that, the policies need to be encrypted and
send back to the cloud. TheService Provider, where the ar-
chitecture is outsourced, is honest-but-curious. This means that
the provider allows theESPOONERBAC components to follow
the specified protocols, but it may be curious to find out infor-
mation about the data and the policies regulating the accesses
to the data. As for the data, we assume that data confidential-
ity is preserved by one of the several techniques available for
outsourced environments [13, 27, 31]. However, to the best of
our knowledge, no solution exists that addresses the problem of
guaranteeing the policy confidentiality while allowing an effi-
cient evaluation mechanism that is clearly separated from the
policies. Most of the techniques discussed in the related work
section require the security mechanism to be tightly coupled

4

if 〈CONDITION〉 then 〈US ER〉 can be active in 〈{R1,R2, . . . ,Rn}〉

Figure 2: RBAC Policy: Role assignment

with the policies. In the following section, we can show that
it is possible to maintain a generic PDP separated from the se-
curity policies and able to take access decisions based on the
evaluation of encrypted policies. In this way, the policy confi-
dentiality can be guaranteed against a curious provider andthe
functionality of the access control mechanism is not restricted.

4.1. System Model

Before presenting the detail of the scheme used in
ESPOONERBAC, it is necessary to discuss the system model. In
this section, we identify the following system entities:

• Admin User: This type of user is responsible for the ad-
ministration of policies stored in the outsourced environ-
ment. An Admin User can deploy new policies or up-
date/delete already deployed policies.

• Requester: A Requester is a user that requests an access
(e.g., read, write or search) over the data residing in the
outsourced environment. Before the access is permitted,
policies deployed in the outsourced environment are eval-
uated.

• Service Provider (SP):The SP is responsible for man-
aging the outsourced computation environment, where the
ESPOONERBAC components are deployed and to store the
data, and policies. It is assumed the SP is honest-but-
curious (as [12] does), i.e., it allows the components to fol-
low the protocol to perform the required actions but curi-
ous to deduce information about the exchanged and stored
policies.

• Trusted Key Management Authority (TKMA): The
TKMA is fully trusted and responsible for generating and
revoking the keys. For each type of authorised users (in-
cluding an Admin User and a Requester), the TKMA gen-
erates two key sets and securely transmits the client key
set to the user and the server key set to the Administra-
tion Point. The Administration Point inserts the server side
key set in theKey Store. The TKMA is deployed on the
trusted environment. Although requiring a TKMA seems
at odds with the need of outsourcing the IT infrastructure,
we argue that the TKMA requires less resources and less
management effort. Securing the TKMA is much easier
since a very limited amount of data needs to be protected
and the TKMA can be kept offline most of the time.

It should be clarified that in our settings an Admin User is
not interested in protecting the confidentiality of policies from
other Admin Users and Requesters. Here, the main goal is to
preserve the confidentiality of data and policies from the SP.

if 〈CONDITION〉 then 〈R〉 can execute 〈{(A1,T1), (A2,T2), . . . , (An,Tn)}〉

Figure 3: RBAC Policy: Permission assignment

�

�

���������	�
���������
�

��������

�

�

���������

���������

��������

��������

����������������

�������� ��������

Figure 4: An example of contextual condition illustratingLocation =
Cardiology-ward andAT > 9#5 andAT < 17#5

4.2. Representation of RBAC Policies/Requests

In this section, we provide details about how to represent
policies and requests used in our approach. An RBAC pol-
icy contains a role assignment policy, a permission policy and
a role hierarchy graph. In the following, we discuss each of
them. Figure 2 illustrates how we represent role assignment
policies in ESPOONERBAC. The meaning of role assignment
policy is as follows: if contextual condition,CONDITION, is
true then US ERcan be active in any role(s) out of role set
{R1,R2, . . . ,Rn}. Figure 3 illustrates how we represent permis-
sion assignment policies inESPOONERBAC. The meaning of
permission assignment policy is as follows: if contextual condi-
tion, CONDITION, is true then roleR can execute any permis-
sion(s) out of permission set{(A1,T1), (A2,T2), . . . , (An,Tn)}.

The PDP evaluates contextual conditions of both role assign-
ment and permission assignment policies before granting the
access. In order to evaluate a contextual condition, the PDP
requires contextual information. The contextual information
captures the context in which a Requester makes access or role
activation requests. The PIP collects and sends required contex-
tual information to the PDP. To represent contextual conditions,
we use the tree structure described in [5] for CP-ABE policies.
This tree structure allows an Admin User to express contextual
conditions as conjunctions and disjunctions of equalitiesand in-
equalities. Internal nodes of the tree structure are AND, ORor
threshold gates (e.g., 2 of 3) and leaf nodes are values of condi-
tion predicates either string or numerical. In the tree structure,
a string comparison is represented by a single leaf node. How-
ever, the tree structure uses thebag of bitsrepresentation to
support comparisons between numerical values that could ex-
press time, date, location, age, or any numerical identifier. For
instance, let us consider a contextual condition stating that the
Requester location should beCardiology-ward and that the ac-
cess time should be between 9:00 and 17:00 hrs. Figure 4 illus-

5

R1 extends 〈{Ri ,Rii , . . . ,Rk1 }〉

R2 extends 〈{Ri ,Rii , . . . ,Rk2 }〉

.

.

.
Rn extends 〈{Ri ,Rii , . . . ,Rkn }〉

Figure 5: RBAC Policy: Role hierarchy

Cardiologist Assistant

Doctor

Cardiologist

Intern

Figure 6: Role hierarchy graph

trates the tree structure representing this contextual condition,
where access time (AT) is in a 5-bit representation (#5).

A Requester can make a role activation requestACT or an
access requestREQ. In ACT = (i,R), a Requester includes her
identity i along with roleR to be activated. After a Requester
is active inR, she can execute permissions assigned toR. For
executing any permission, a Requester sendsREQ= (R,A,T)
that includesR she is active in, actionA to be taken over target
T. A Requester sendsACT or REQrequests to the PEP.

The PEP receives and forwards requestsACT or REQ
to the PDP. The PDP fetches policies corresponding to re-
quests from the Policy Store. The PDP may require con-
textual information in order to evaluate contextual conditions
to grant ACT or REQ. Let us considerCONDITION illus-
trated in Figure 4 requiring location of Requester and ac-
cess time. We assume the Requester makes the request when
she is inCardiology-ward and access time (AT) is 10:00 hrs.
The PIP collects and then transforms this contextual informa-
tion as follows: Location= Cardiology-ward, AT : 0 ∗ ∗ ∗ ∗,
AT : ∗1 ∗ ∗∗, AT : ∗ ∗ 0 ∗ ∗, AT : ∗ ∗ ∗1∗,
AT : ∗ ∗ ∗ ∗ 0, where AT is in a 5-bit representation (same as
it is in CONDITION). After performing transformation, the
PIP sends contextual information to the PDP. The PDP re-
ceives contextual information and then evaluatesCONDITION
by first matching attributes in contextual information against
leaf-nodes in theCONDITION tree and then evaluating inter-
nal nodes according to AND and OR gates.

TheESPOONERBACarchitecture supports role inheritance. In
role inheritance, a derived role can execute all permissions from
its base role. Before denyingREQ, the PDP may need to check
if base role of one inREQcan execute requested permissions.
In order to find base roles, we store a role hierarchy graph on the
SP. InESPOONERBAC, the PDP traverses in the role hierarchy
graph to find base roles. Figure 5 illustrates how we represent

a role hierarchy graph. In Figure 5, each line represents a role
that may extend a set of roles. All these inheritance rules may
form a role hierarchy graph. For instance, consider an example
from healthcare domain where aCardiologist Assistantextends
Intern, a Doctor extendsIntern and finally aCardiologistex-
tends bothCardiologist AssistantandDoctor. If we combine
all these inheritance rules then it can form a graph as shown in
Figure 6.

In this representation, leaf-nodes inCONDITION, R, A, T
of both ACT andREQ, roles in the role hierarchy graph, and
attributes in contextual information are in cleartext. Therefore,
such information is easily accessible in the outsourced envi-
ronment and may leak information about the data that policies
protect. In the following, we show how we protect such rep-
resentation while allowing the PDP to evaluate policies against
requests and contextual information.

5. Solution Details

ESPOONERBAC aims at enforcing policies in outsourced en-
vironments. The main idea of our approach is to use an
encryption scheme for preserving confidentiality of policies
while allowing the PDP to perform the correct evaluation. In
ESPOONERBAC, we can notice that the operation performed by
the PDP for evaluating policies (against attributes in the request
and contextual information) is similar to the search operation
executed in a database. In particular, in our case the policyis a
query; while, attributes in the request (ACT or REQ) and con-
textual information represent the data.

For ESPOONERBAC, as a starting point we consider the mul-
tiuser Searchable Data Encryption (SDE) scheme proposed by
Donget al. in [13]. The SDE scheme allows an untrusted server
to perform searches over encrypted data without revealing to the
server information on both the data and elements used in the re-
quest. The advantage of this method is that it offers multi-user
access without requiring key sharing between users. Each user
in the system has a unique set of keys. The data encrypted by
one user can be decrypted by any other authorised user. How-
ever, the SDE implementation in [13] is only able to perform
keyword comparison based on equalities. One of the major
extensions of our implementation is that we are able to sup-
port the evaluation of contextual conditions containing complex
boolean expressions such as non-conjunctive and range queries
in multi-user settings.

In general, we distinguish four phases inESPOONERBAC for
managing life cycle of policies in outsourced environments.
These phases includeinitialisation, policy deployment, policy
evaluation anduser revocation. In the following, we provide
details of each phase.

5.1. Initialisation Phase

In ESPOONERBAC, each user (including an Admin User and a
Requester) obtains a client side key from the TKMA while the
SP (as a proxy server) receives a server side key set correspond-
ing to the user. The client side key set serves as a private key
for a user. The SP stores all key sets in the Key Store. The Key

6

Store is accessible to the Administration Point, the PEP andthe
PDP.

5.2. Policy Deployment Phase

For deploying (or updating existing) policies, an Admin User
performs a first round of encryption using her client side key
set. An Admin User encrypts elements of policies. In role as-
signment policies, an Admin User encrypts all roles assigned
to a user. In permission assignment policies, an Admin User
encrypts both action and target parts of each permission and
also encrypts the role to which these permissions are assigned.
As we know that a tree represents condition conditions of both
role assignment and permission assignment policies (as shown
in Figure 4), an Admin User encrypts each leaf node of the
tree while non-leaf (internal) nodes representing AND, OR or
threshold gates are in cleartext. In a role hierarchy graph (as
shown in Figure 6), an Admin User encrypts each of its node
representing a role. After completing the first round of encryp-
tion on policies, an Admin User sends client encrypted policies
to the Administration Point on the SP. These client encrypted
policies are protected but cannot be enforced as these are not in
common format. To convert client encrypted policies to com-
mon format, the Administration Point performs a second round
of encryption using server side key set corresponding to theAd-
min User. The second round of encryption serves as a proxy
re-encryption. In the second round of encryption, the Adminis-
tration Point encrypts all elements that are encrypted in the first
round of encryption. Finally, the Administration Point stores
server encrypted policies in the Policy Store.

5.3. Policy Evaluation Phase

A Requester can make a role activation requestACT. Before
sendingACT to the SP, a Requester generates a client trapdoor
of the role inACT. A Requester generates client trapdoor us-
ing her client side key set. The trapdoor representation does
not leak information on elements of requests. Similarly, a Re-
quester can make an access requestREQafter getting active in a
role. A Requester generates a client trapdoor for each element
in REQ including the role, the action and the target. A Re-
quester sends requests containing client generated trapdoors to
the PEP on the SP. The PEP performs another round of trapdoor
generation for converting all trapdoors into a common format.
After performing a second round of trapdoor generation on the
server side, the PEP forwards server generated trapdoors tothe
PDP. The PDP fetches policies from the Policy Store and then
performs encrypted matching of trapdoors in request against
encrypted elements in policies. The encrypted matching in out-
sourced environments does not leak information about elements
of requests or policies.

The PDP may require contextual information in order to eval-
uate the contextual conditions of policies. The PIP collects con-
textual information and generates client trapdoors for elements
of contextual information using her client side key set. ThePIP
sends client generated trapdoors of contextual information to
the PDP. The PDP performs another round of trapdoor genera-
tion using server side key set corresponding to the PIP. Finally,

the PDP evaluates the contextual condition by matching trap-
doors of contextual information against encrypted leaf nodes
of the tree representing the contextual condition (as shownin
Figure 4). After evaluating leaf nodes, the PDP evaluates non-
leaf nodes of the tree based on AND, OR and threshold gates.
The PDP grants the access request if (the root node of) the tree
evaluates totrue.

The PDP may need to find base roles corresponding to the
role in REQconsidering the fact that a derived role has all per-
missions from its base role. In order to find base role, the PDP
fetches the role hierarchy graph from the Policy Store. The PDP
matches trapdoor of role inREQagainst server encrypted roles
in the role hierarchy graph. While deploying the role hierar-
chy graph, we store also server generated trapdoor of the role
along with each server encrypted of role because the PDP needs
a trapdoor of each base role so that it can match this trapdoor
against roles in the Permission Repository. After traversing in
the role hierarchy graph, the PDP extracts server generatedtrap-
doors of all base roles of one that matches with trapdoor of role
in REQ. The PDP verifies if any base role has requested per-
missions. If so, the PDP grants the request.

5.4. User Revocation Phase

In ESPOONERBAC, users do not share any keys and a com-
promised user can be revoked without requiring re-encryption
of policies or re-distribution of keys. For revoking a compro-
mised user, the Administration Point removes the server side
key set (corresponding to the user) from the Key Store.

Algorithm 1 Init
Input: A security parameter 1k.
Output: The public parametersparamand the master secret keymsk.

1: Generate primes p and q of size 1k such thatq | p− 1
2: Create a generatorg such thatG is the unique orderq subgroup ofZ∗p
3: Choose a randomx ∈ Z∗q
4: h← gx

5: Choose a collision-resistant hash functionH
6: Choose a pseudorandom functionf
7: Choose a random keys for f
8: param← (G, g, q, h,H, f)
9: msk← (x, s)
10: return (param,msk)

6. Algorithmic Details

In this section, we provide details of algorithms used in each
phase for managing life cycle of policies. All these algorithms
constitute the proposed schema.

6.1. Initialisation Phase

In this phase, the system is initialised and then the
TKMA generates required keying material for entities in
ESPOONERBAC. During the system initlisation, the TKMA
takes a security parameterk and outputs the public parameters
paramsand the master key setmskby runningInit illustrated
in Algorithm 1. The detail ofInit is as follows: the TKMA
generates two prime numbersp andq of sizek such thatq di-
vides p − 1 (Line 1). Then, it creates a cyclic groupG with a

7

),(1 sxK AuA
=

@ABCDEF GHI

JKL MNOPK

QRQIFSTU VCEA

),(1 sxK PuP
=

),(2As xAK
A

=
),(2Rs xRK

R
=

AsK
RsK

WXYZ[Z\NP]NZO[

^OZ[N

_EA`TaE QAb`TFEA

cEdBECDEA

),(1 sxK RuR
=

),(2Ps xPK
P

=

PsK

Figure 7: Key distribution

generatorg such thatG is the unique orderq subgroup ofZ∗p
(Line 2). Next, it randomly choosesx ∈ Z

∗
q (Line 3) and com-

puteh asgx (Line 4). Next, it chooses a collision-resistant hash
function H (Line 5), a pseudorandom functionf (Line 6) and
a random keys for f (Line 7). Finally, it publicises the pub-
lic parametersparams= (G,g,q,h,H, f) (Line 8) and keeps
securely the master secret keymsk= (x, s) (Line 9).

Algorithm 2 KeyGen
Input: The master secret keymsk, the user identityi and the public parametersparams.
Output: The client side key setKui and server side key setKsi .

1: Choose a randomxi1 ∈ Z
∗
q

2: xi2 ← x− xi1
3: Kui ← (xi1, s)
4: Ksi ← (i, xi2)
5: return (Kui ,Ksi)

For each user (including an Admin User and a Requester),
the TKMA generates the keying material. For generating the
keying material, the TKMA takes the master secret keymsk,
the user identityi and the public parametersparamsand out-
puts two key sets: the client side key setKui and the server side
key setKsi by runningKeyGen illustrated in Algorithm 2. In
KeyGen, TKMA randomly choosesxi1 ∈ Z

∗
q (Line 1) and com-

putesxi2 = x − xi1 (Line 2). It creates the client side key set
Kui = (xi1, s) (Line 3) and the server side key setKsi = (i, xi2)
(Line 4).

After running Algorithm 2, the TKMA sends the client side
key setKui and the server side key setKsi to useri and the
Administration Point on the SP, respectively. The client side
key setKui serves as a private key for useri. The Administra-
tion Point of the SP insertsKsi in the Key Store by updating
it as follows: KS = KS ∪ Ksi . The Key Store is initialised
as: KS ← φ. Figure 7 illustrates key distribution where Ad-
min UserA, RequesterR and PIPP receiveKuA, KuR andKuP,
respectively. The TKMA sends the corresponding server side
key setsKsA, KsR andKsP to the Administration Point on the SP.
The Administration Point inserts server side key sets into the
Key Store. Please note that only the Administration Point, the

������

��	

���������

policye∈∀

AuK

)(* ecA

efg

hijkf

AsK

ljmnog

hijkf

)(ec

)()(policycec ∈∀ �	
��	�

�
����	

��������
������

�����	�
��
�����

Figure 8: Policy deployment phase

PDP and the PEP are authorised to access the Key Store.

Algorithm 3 ClientEnc
Input: Elemente, the client side key setKui corresponding to Admin Useri and the public

parametersparams.
Output: The client encrypted elementc∗i (e).

1: Choose a randomre ∈ Z
∗
q

2: σe← fs(e)
3: ĉ1 ← gre+σe

4: ĉ2 ← ĉ
xi1
1

5: ĉ3 ← H(hre)
6: c∗i (e)← (ĉ1, ĉ2, ĉ3)
7: return c∗i (e)

Algorithm 4 ServerReEnc
Input: The client encrypted elementc∗i (e) and the server side key setKsi corresponding

to Admin Useri.
Output: The server encrypted elementc(e).

1: c1 ← (ĉ1)xi2 .ĉ2 = ĉ
xi1+xi2
1 = (gre+σe)x = hre+σe

2: c2 = ĉ3 = H(hre)
3: c(e) = (c1, c2)
4: return c(e)

6.2. Policy Deployment Phase

In the policy deployment phase, an Admin User defines and
deploys policies. In general, a policy can be deployed afterper-
forming two rounds of encryptions. An Admin User performs
a first round of encryption while the Administration Point on
the SP performs a second round of encryption. For perform-
ing a first round of encryption, an Admin User runsClientEnc
illustrated in Algorithm 3. ClientEnc takes as input (policy)
elemente, the client side key setKui corresponding to Admin
Useri and the public parametersparamsand outputs the client
encrypted elementc∗i (e). In ClientEnc, an Admin User ran-
domly choosesre ∈ Z

∗
q (Line 1), computesσe as fs(e) (Line 2),

and then computes ˆc1, ĉ2 andĉ3 asgre+σe (Line 3), ĉxi1
1 (Line 4)

andH(hre) (Line 5), respectively. ˆc1, ĉ2 andĉ3 constitutec∗i (e)
(Line 6). An Admin User transmits to the Administration Point
the client encrypted elements of a policy as shown in Figure 8.

8

The Administration Point retrieves the server side key set
corresponding to the Admin User and performs a second round
of encryption by runningServerReEncillustrated in Algorithm
4. ServerReEnc takes as input the client encrypted element
c∗i (e) and the server side key setKsi corresponding to Admin
Useri and outputs the server encrypted elementc(e). The Ad-
ministration Point calculatesc1 andc2 as (ĉ1)xi2.ĉ2 = ĉxi1+xi2

1 =

(gre+σe)x = hre+σe (Line 1) andĉ3 = H(hre) (Line 2), respec-
tively. Both c1 andc2 form c(e) (Line 3). The Administration
Point stores the server encrypted policies in the Policy Store as
shown in Figure 8.

In the following, we describe how to deploy different (parts
of) policies including role assignment, permission assignment,
contextual conditions and role hierarchy graph. For the deploy-
ment of each (part of) policy, we follow general strategy as al-
ready described in this section and also illustrated in Figure 8.

Algorithm 5 RoleAssignment:ClientSide
Input: List of rolesL to be assigned to Requesterj, the client side key setKui correspond-

ing to Admin Useri and the public parametersparams.
Output: The client encrypted role assignment listLCi .

1: LCi ← φ
2: for each roler in list L do
3: c∗i (r)← call ClientEnc (r, Kui , params) {see Algorithm 3}
4: LCi ← LCi ∪ c∗i (r)
5: end for
6: return (j, LCi)

Algorithm 6 RoleAssignment:ServerSide
Input: The client encrypted role assignment listLCi for Requesterj and identityi of

Admin User.
Output: The server encrypted role assignment listLS.

1: Ksi ← KS[i] {retrieve the server side key corresponding to Admin Useri}
2: LS ← φ
3: for each client encrypted rolec∗i (r) in list LCi do
4: c(r)← call ServerReEnc(c∗i (r), Ksi) {see Algorithm 4}
5: LS ← LS ∪ c(r)
6: end for
7: return (j, LS)

Deployment of Role Assignment Policies: In order to assign
roles to a Requester, an Admin User can deploy role assignment
policies. For this purpose, an Admin User runsRoleAssign-
ment:ClientSide illustrated in Algorithm 5. This algorithm
takes as input a list of rolesL to be assigned to Requesterj,
the client side key setKui corresponding to Admin Useri and
the public parametersparamsand outputs the client encrypted
role assignment listLCi . First, it creates and then initialises
new list LCi (Line 1). For each role inL (Line 2), it gener-
ates client encrypted role by callingClientEnc illustrated in
Algorithm 3 (Line 3) and then it updatesLCi by adding client
encrypted role (Line 4). An Admin User sends the client en-
crypted role assignment list to the Administration Point. During
the second round of encryption, the Administration Point runs
RoleAssignment:ServerSideillustrated in Algorithm 6. This
algorithm takes as input the client encrypted role assignment
list LCi for Requesterj and identityi of Admin User and ouputs
the server encrypted role assignment listLS. While running
RoleAssignment:ServerSide, the Administration Point first re-
trieves the server side keyKsi corresponding to Admin Useri

(Line 1). It creates and initialises new listLS (Line 2). For
each role inLCi (Line 3), it generates server encrypted role by
calling ServerReEnc illustrated in Algorithm 4 (Line 4) and
updatesLS by adding the server encrypted role (Line 5).

Algorithm 7 PermissionAssignment:ClientSide
Input: List of permissionsL to be assigned to roler, the client side key setKui corre-

sponding to Admin Useri and the public parametersparams.
Output: The client encrypted permission assignment listLCi assigned to the client gener-

ated rolec∗i (r).

1: c∗i (r)← call ClientEnc (r, Kui , params)
2: LCi ← φ
3: for each permission (action, target) in L do
4: c∗i (action)← call ClientEnc (action, Kui , params)
5: c∗i (target)← call ClientEnc (target, Kui , params)
6: LCi ← LCi ∪ (c∗i (action), c∗i (target))
7: end for
8: return (c∗i (r), LCi)

Algorithm 8 PermissionAssignment:ServerSide
Input: The client encrypted permission assignment listLCi for client generated rolec∗i (r)

and identityi of Admin User.
Output: The server encrypted permission assignment listLS and the server generated role

c(r).

1: Ksi ← KS[i] {retrieve the server side key corresponding to Admin Useri}
2: c(r)← call ServerReEnc(c∗i (r), Ksi)
3: LS ← φ
4: for each client encrypted permission (c∗i (action), c∗i (target)) in list LCi do
5: c(action)← call ServerReEnc(c∗i (action), Ksi)
6: c(target)← call ServerReEnc(c∗i (target), Ksi)
7: LS ← LS ∪ (c(action), c(target))
8: end for
9: return (c(r), LS)

Deployment of Permission Assignment Policies: An Admin
User can assign permissions to a role. In order to deploy poli-
cies regarding permissions assignment to roles, an Admin User
runs Algorithm 7. This algorithm takes as input a list of permis-
sionsL to be assigned to roler, the client side key setKui cor-
responding to Admin Useri and the public parametersparams
and outputs the client encrypted permission assignment list LCi

assigned to client generated rolec∗i (r). First, it generates client
encrypted rolec∗i (r) by calling ClientEnc illustrated in Algo-
rithm 3 (Line 1). Next, it creates and initialises new listLCi

(Line 2). For each permission inL (Line 3), it generates the
client encrypted actionc∗i (action) (Line 4) and the client en-
crypted targetc∗i (target) (Line 5) and updatesLCi by adding the
client encrypted permission (Line 6). An Admin User sends the
client encrypted permission list along with the client encrypted
role to the Administration Point. The Administration Pointruns
another round of encryption by running Algorithm 8. This algo-
rithm takes as input the client encrypted permission assignment
list LCi for client generated rolec∗i (r) and identityi of Admin
User and outputs the server encrypted permission assignment
list LS and the server generated rolec(r). First, it retrieves from
the Key Store the server side key setKsi corresponding to Ad-
min Useri (Line 1). Next, it generates the server encrypted role
by calling ServerReEnc illustrated in Algorithm 4 (Line 2).
Then, it creates and initialises new listLS (Line 3). For each
client encrypted role inLCi (Line 4), it generates the server en-
crypted action (Line 5) and the server encrypted target (Line
6) and updatesLS by adding the server encryption permission

9

(Line 7).

Algorithm 9 ContextualConditionDeployment:ClientSide
Input: The contextual conditionT, the client side key setKui corresponding to Admin

Useri and the public parametersparams.
Output: The client encrypted contextual conditionTCi .

1: TCi ← T
2: for each leaf nodee in TCi do
3: c∗i (e)← call ClientEnc (r, Kui , params)
4: replaceeof TCi with c∗i (e)
5: end for
6: return TCi

Algorithm 10 ContextualConditionDeployment:ServerSide
Input: The client encrypted contextual conditionTCi and identity of Admin Useri.
Output: The server encrypted contextual conditionTS

1: Ksi ← KS[i] {retrieve the server side key corresponding to Admin Useri}
2: TS ← TCi
3: for each client encrypted leaf nodec∗i (e) in TS do
4: c(e)← call ServerReEnc(c∗i (e), Ksi)
5: replacec∗i (e) of TS with c(e)
6: end for
7: return TS

Deployment of Contextual Conditions: The contextual con-
dition (part of role assignment and permission assignment poli-
cies) can be deployed in two steps. In the first step, an Admin
User performs a first round of encryption by running Algorithm
9. This algorithm takes as input the contextual conditionT,
the client side key setKui corresponding to Admin Useri and
the public parametersparamsand outputs the client encrypted
contextual conditionTCi . First, it copiesT to TCi (Line 1).
For each leaf node inTCi (Line 2), it generates the client en-
crypted element by callingClientEnc illustrated in Algorithm
3 (Line 3) and then updatesTCi by replacing elementewith the
client encrypted elementc∗i (e) (Line 4). An Admin User sends
the client encrypted contextual condition to the Administration
Point. In the second step, the Administration Point performs
another round of encryption by running Algorithm 10. This
algorithm takes as input the client encrypted contextual condi-
tion TCi and identity of Admin Useri and outputs the server
encrypted contextual conditionTS. First, it retrieves from the
Key Store the server side keyKsi corresponding to Admin User
i (Line 1). Next, it copiesTCi to TS (Line 2). For each each
client encrypted leaf node inTS (Line 3), it generates the server
encrypted element by callingServerReEncillustrated in Algo-
rithm 4 (Line 4). Then, it replaces the client encrypted element
c∗i (e) of TS with the server encrypted elementc(e) (Line 5).

Algorithm 11 RoleHierarchyDeployment:ClientSide
Input: The role hierarchy graphG, the client side key setKui corresponding to Admin

Useri and the public parametersparams.
Output: The client generated role hierarchy graphGCi .

1: GCi ← G
2: for each noder in GCi do
3: c∗i (r)← call ClientEnc (r, Kui , params)
4: td∗i (r)← call ClientTD (r, Kui , params) {see Algorithm 13}
5: replacer of GCi with (c∗i (r), td∗i (r))
6: end for
7: return GCi

Algorithm 12 RoleHierarchyDeployment:ServerSide
Input: The client generated role hierarchy graphGCi and identity of Admin Useri.
Output: The server generated role hierarchy graphGS

1: Ksi ← KS[i] {retrieve the server side key corresponding to Admin Useri}
2: GS ← GCi
3: for each client generated node (c∗i (r), td∗i (r)) in GS do
4: c(r)← call ServerReEnc(c∗i (r), Ksi)
5: td(r)← call ServerTD (td∗i (r), Ksi) {see Algorithm 14}
6: replace (c∗i (r), td∗i (r)) of GS with (c(r), td(r))
7: end for
8: return GS

Deployment of Role Hierarchy Graph: We know that a de-
rived role inherits all permissions from its base role. In case if
requested permissions are not assigned to the Requester’s role,
the PDP may need to traverse in the role hierarchy graph to
find base roles corresponding to the Requester’s role and then
PDP verifies if any base role can fulfil requested permissions.
For this purpose, the PDP needs a trapdoor of each base role so
that it can match this trapdoor against roles in the Permission
Repository. Therefore, a role hierarchy graph stores a roletrap-
door along with each encrypted role. The deployment of role
hierarchy graph takes place in two steps. In the first step, an
Admin User runs Algorithm 11. This algorithm takes as input
the role hierarchy graphG, the client side key setKui corre-
sponding to Admin Useri and the public parametersparams
and outputs the client generated role hierarchy graphGCi . First,
it copiesG to GCi (Line 1). For each noder in GCi (Line 2), it
generates the client encrypted role by callingClientEnc illus-
trated in Algorithm 3 (Line 3) and the client trapdoor by calling
ClientTD (Line 4) illustrated in Algorithm 13 that is explained
later in this section. Next, it replacesr of GCi with the client
encrypted role and the client generated trapdoor (Line 5). An
Admin User sends the client generated role hierarchy graph to
the Administration Point. In the second step, the Administra-
tion Point runs Algorithm 12. This algorithm takes as input
the client generated role hierarchy graphGCi and identity of
Admin Useri and outputs the server generated role hierarchy
graphGS. First, it retrieves from the Key Store the server side
key Ksi corresponding to Admin Useri (Line 1). Next, it copies
GCi to GS (Line 2). For each client generated node (Line 3),
it generates the server encrypted role by callingServerReEnc
illustrated in Algorithm 4 (Line 4) and the server trapdoor by
calling ServerTD (Line 5) illustrated in Algorithm 14 that is
explained later in this section and then updatesGS by replacing
the client generated node with the server generated node (Line
6).

Algorithm 13 ClientTD
Input: Elemente, the client side key setKui corresponding to useri and the public param-

etersparams.
Output: The client generated trapdoortd∗i (e).

1: Choose a randomre ∈ Z
∗
q

2: σe← fs(e)
3: t1 ← g−regσe

4: t2 ← hreg−xi1regxi1σe = gxi2regxi1σe

5: td∗i (e)← (t1, t2)
6: return td∗i (e)

10

Algorithm 14 ServerTD
Input: The client generated trapdoortd∗i (e) and the server side key setKsi corresponding

to useri.
Output: The server generated trapdoortd(e).

1: td(e)← t
xi2
1 .t2 = gxσe

2: return td(e)

���������
��������

requeste∈∀

RuK

pqr

stuvq

RsK

���	
�����	
���

�

)(* etdR

T

)(? 1
12

−TcHc
	
���

),()(21 ccec =

wxyz {x

|}~�z

attributese∈∀

�
��������

PuK

�������
PsK

)(* etdP

T�

�������

)()(policycec ∈∀

�u���r

stuvq

Figure 9: Policy evaluation phase

6.3. Policy Evaluation Phase

The policy evaluation phase is executed when a Requester
makes a request eitherACT or REQ. In this phase, a Requester
sends client generated trapdoors (using Algorithm 13) of a re-
quest to the PEP. The PEP converts client generated trapdoors
into server generated trapdoors (using Algorithm 14) and sends
them to the PDP. The PDP matches server encrypted trapdoors
of the request with server encrypted elements of the policy (us-
ing Algorithm 15). Optionally, the PDP may require contex-
tual information in order to evaluate contextual conditions. The
PIP sends client generated trapdoors of contextual information
to the PDP. The PDP converts client generated trapdoors into
server generated trapdoors and then evaluates contextual condi-
tions based on contextual information. Finally, the PDP returns
eithertrue or falseas shown in Figure 9. In the following, we
describe how we generate trapdoors and perform the match.

For calculating client generated trapdoors of a request
(or contextual information), a Requester (or the PIP) runs
ClientTD illustrated in Algorithm 13.ClientTD takes as in-
put each elemente of the request, the client side key setKui

corresponding to useri and the public parametersparamsand
outputs the client generated trapdoortd∗i (e). First, it choose
randomly re ∈ Z

∗
q (Line 1). Next, it calculatesσe as fs(e)

(Line 2). Then it calculatest1 and t2 asg−regσe (Line 3) and
hreg−xi1regxi1σe = gxi2regxi1σe (Line 4), respectively. Botht1 and
t2 form td∗i (e) (Line 5). A Requester sends client generated trap-
doors of the request to the PEP. The PEP receives client gener-
ated trapdoors and runsServerTD illustrated in Algorithm 14
for calculating server generated trapdoors.ServerTD takes as

Algorithm 15 Match
Input: The server encrypted elementc(e) = (c1, c2) and the server generated trapdoor

td(e) = T.
Output: true or false

1: if c2
?
= H(c1.T−1) then

2: return true
3: else
4: return false
5: end if

input the client generated trapdoortd∗i (e) and the server side key
setKsi corresponding to useri and outputs the server generated
trapdoortd(e). It calculatestd(e) astxi2

1 .t2 = gxσe (Line 1).
In order to match a server encrypted element of a policy with

a server generated trapdoor of a request, the PDP runsMatch
illustrated in Algorithm 15. Match takes as input the server
encrypted elementc(e) = (c1, c2) and the server generated trap-
door td(e) = T and returns eithertrue or false. It checks the

conditionc2
?
= H(c1.T−1) (Line 1). If the condition holds, it re-

turnstrue (Line 2) indicating that the match is successful. Oth-
erwise, it returnsfalse(Line 4).

In the following, we describe how to evaluate (parts of) poli-
cies including role assignment, permission assignment, contex-
tual conditions and role hierarchy graph. For the evaluation of
each (part of) policy, we follow general strategy as alreadyde-
scribed in this section and also illustrated in Figure 9.

Algorithm 16 SearchRole
Input: The client generated trapdoor of roletd∗i (r) and the server encrypted role assign-

ment list (or list of active roles in session)LS for Requesteri
Output: true or false

1: Ksi ← KS[i] {retrieve the server side key corresponding to Requesteri}
2: td(r)← call ServerTD (td∗i (r), Ksi)
3: for each server encrypted rolec(r) in LS do
4: match← call Match (c(r), td(r)) {see Algorithm 15}

5: if match
?
= true then

6: return true
7: end if
8: end for
9: return false

Searching a Role: A Requester can make a role activation
requestACT and sends it to the SP. In order to grantACT, the
SP runsSearchRoleillustrated in Algorithm 16. This algorithm
takes as input the client generated trapdoor of roletd∗i (r) and the
server encrypted role assignment listLS for Requesteri. First, it
retrieves from the Key Store the server side keyKsi correspond-
ing to Requesteri (Line 1). Next, it calculates the server gener-
ated trapdoortd(r) by calling Algorithm 14 (Line 2). For each
server encrypted rolec(r) in LS (Line 3), it performs matching
againsttd(r) by calling Algorithm 15 (Line 4). If any match is
successful (Line 5), it returnstrue (Line 6), meaning thatACT
is granted. Otherwise, it returnsfalse(Line 9).

After ACT is granted, the PEP updates Session by adding
in the Active Roles repository the server generated trapdoor of
role. Once a Requester is active in a role, she can make an
access requestREQ. Before grantingREQ, the SP checks if the
Requester is already in the role inREQ. For this purpose, the
SP runs Algorithm 16, whereLS shows a list of active roles in
the session. Furthermore, the PDP also runs Algorithm 16 for

11

searching the role inREQin the Permission Repository with a
slight modification of ignoring the server trapdoor generation
(in Line 2) as it is already generated when the role ofREQ is
searched in the session.

Algorithm 17 SearchPermission
Input: The client generated trapdoor of permission (td∗i (action), td∗i (target) and the server

encrypted permission assignment listLS for Requesteri
Output: true or false

1: Ksi ← KS[i] {retrieve the server side key corresponding to Requesteri}
2: td(action)← call ServerTD (td∗i (action), Ksi)
3: td(target)← call ServerTD (td∗i (target), Ksi)
4: for each server encrypted permission (c(action), c(target)) in LS do
5: matchaction← call Match (c(action), td(action))
6: matchtarget← call Match (c(target), td(target))

7: if matchaction
?
= true andmatchtarget

?
= true then

8: return true
9: end if
10: end for
11: return false

Searching a Permission: A Requester can sendREQfor ex-
ecuting certain permissions. The PEP on the SP checks if the
Requester is active in the role indicated inREQand then the
searches that role in the Permission Repository by running Al-
gorithm 16. After a role is matched in the Permission Repos-
itory, the PEP searches the permission inREQby running Al-
gorithm 17. This algorithm takes as input the client generated
trapdoor of permission (td∗i (action), td∗i (target) and the server
encrypted permission assignment listLS for Requesteri and re-
turns eithertrue or false. First, it retrieves from the Key Store
from the Key Store the server side keyKsi corresponding to Re-
questeri (Line 1). Next, it calculates server generated trapdoors
of both action (Line 2) and target (Line 3) by calling Algorithm
14. For each server encrypted permission (c(action), c(target))
in LS (Line 4), it matches the server encrypted action with the
server generated action (Line 5) and the server encrypted target
with the server generated taret (Line 6), respectively, by calling
Algorithm 15. If both matches are successful (Line 7) for any
permission (c(action), c(target)) in LS, it returnstrue (Line 8).
Otherwise, it returnsfalse(Line 11).

Algorithm 18 ContextualConditionRequest
Input: List of attributes contextual attributesL, the client side key setKui corresponding

to Requesteri and the public parametersparams.
Output: The client generated list of trapdoors of contextual attributesLCi .

1: LCi ← φ
2: for each attributee in L do
3: td∗i (e)← call ClientTD (r, Kui , params)
4: LCi ← LCi ∪ td∗i (e)
5: end for
6: return TCi

Generating Contextual Attributes: The PIP runsContex-
tualAttributesRequest illustrated in Algorithm 18 to calculate
client generated trapdoors of contextual information.Contex-
tualAttributesRequest takes as input a list of contextual at-
tributesL, the client side key setKui corresponding to Requester
i and the public parametersparamsand outputs the client gen-
erated list of trapdoors of contextual attributesLCi . First, it cre-
ates and initialises new listLCi (Line 1). For each attributee in
L (Line 2), it calculates the client generated trapdoortd∗i (e) by

calling Algorithm 13 (Line 3) and addstd∗i (e) in LCi (Line 4).

Algorithm 19 EvaluateTree
Input: Noden and treeT.
Output: true or false.

1: if n.decision, null then
2: return n.decision
3: end if
4: for each childc of n in treeT do
5: call EvaluateTree(c, T) {recursive call}
6: end for
7: t ← 0
8: m← 0
9: for each childc of n in treeT do
10: t ← t + 1
11: if c.decision

?
= true then

12: m← m+ 1
13: end if
14: end for
15: if (n.gate

?
= AND andm

?
= t) or (n.gate

?
= ORandm≥ 1) then

16: n.decision← true
17: else
18: n.decision← f alse
19: end if
20: return n.decision

Evaluating Contextual Conditions: For evaluating any con-
textual condition, the PDP runsContextualConditionEvalu-
ation illustrated in Algorithm 20. This algorithm takes as in-
put the client generated list of trapdoors of contextual attributes
LCi , the server encrypted contextual conditionTS and identity
of Requesteri and returns eithertrue or false. First, it retrieves
from the Key Store the server side keyKsi corresponding to Re-
questeri (Line 1). Next, it creates and initialises a new listLS

(Line 2). For each client generated trapdoortd∗i (e) in LCi (Line
3), it calculates the server generated trapdoortd(e) by calling
Algorithm 14 (Line 4) and addstd(e) in LS (Line 5). Next,
it copiesTS to TREE(Line 7) and adds decision field to each
node inTREE(Line 8). For each noden in TREE(Line 9), it
initialises n.decisionas null (Line 10). For each leaf noden
in TREE(Line 12), it checks if any server generated trapdoor
td(e) in LS (Line 13) matches with it by calling Algorithm 15
(Line 14). Next, it evaluates non-leaf nodes ofTREEby run-
ning Algorithm 19 (Line 20). Finally, it returns eithertrue or
falsedepending upon the evaluation ofTREE(Line 21).

EvaluateTree evaluates a tree containing AND and OR
gates. It takes as input root noden and treeT and returns ei-
thertrueor false. First, it checks if the decision forn is already
made (Line 1). If so, it returns the decision (Line 2). For each
child c of n in treeT (Line 4), it recursively callsEvaluateTree
(Line 5). Next, it creates and initialisest (Line 7) andm (Line
8) indicating total children ofn and a count of matched chil-
dren, respectively. For each childc of n in treeT (Line 9), it
counts total children (Line 10) and matched children by check-
ing made decisions (Line 12). Next, it checks if non-leaf node
is AND and all children are matched or non-leaf node is OR
and at least one child is matched (Line 15). If so, it is set as
true (Line 16) andfalse(Line 18) otherwise.

Searching Roles in Role Hierarchy Graph: The PDP may
need to search base roles of one inREQsince a derived role
inherits all permissions from its base role. The PDP runs
SearchRoleHierarchyGraph illustrated in Algorithm 21 to
find base roles from the encrypted role hierarchy graph. This

12

Algorithm 20 ContextualConditionEvaluation
Input: The client generated list of trapdoors of contextual attributesLCi , the server en-

crypted contextual conditionTS and identity of Requesteri.
Output: true or false

1: Ksi ← KS[i] {retrieve the server side key corresponding to Requesteri}
2: LS ← φ
3: for each client generated trapdoortd∗i (e) in LCi do
4: td(e)← call ServerTD (td∗i (e), Ksi)
5: LS ← LS ∪ td∗i (e)
6: end for
7: TREE← TS

8: Add decision field to each node inTREE
9: for each noden in TREEdo
10: n.decision← null
11: end for
12: for each leaf noden in TREEdo
13: for each server generated trapdoortd(e) in LS do
14: n.decision← call Match (n.c(e), td(e))

15: if n.decision
?
= true then

16: return break;
17: end if
18: end for
19: end for
20: call EvaluateTree(TREE.root, TREE) {see Algorithm 19}
21: return TREE.root.decision

Algorithm 21 SearchRoleHierarchyGraph
Input: The server generated trapdoor of roletd(r) and the server generated role hierarchy

graphGS

Output: true or false

1: for each server encrypted rolec(r) in GS do
2: match← call Match (c(r), td(r))

3: if match
?
= true then

4: return true
5: end if
6: end for
7: return false

algorithm takes as input the server generated trapdoor of role
td(r) and the server generated role hierarchy graphGS and re-
turns true if any base role is found andfalse otherwise. For
each server encrypted rolec(r) in GS (Line 1), it checks iftd(r)
matches with anyc(r) by calling Algorithm 15 (Line 2). If any
match is found (Line 3), it returnstrue (Line 4). Otherwise, it
returnsfalse(Line 7).

Algorithm 22 UserRevocation
Input: The user identityi.
Output: true or false.

1: if exits(KS[i])
?
= f alsethen

2: return false
3: end if
4: Ksi ← KS[i]
5: KS← KS\Ksi
6: return true

6.4. Revocation Phase

In this phase, the PEP can remove a compromised user from
the system. In order to remove a user, the PEP runsUserRevo-
cation illustrated in Algorithm 22. This algorithm takes as in-
put the user identityi and returns eithertrue (indicating that the
user has been removed successfully) or false (indicating that the
user does not exist in the system). First, it checks if the given
user exists by checking the Key Store. If no, it returnsfalse
(Line 2). Otherwise, it retrieves from the Key Store the server

side key setKsi corresponding to useri (Line 4), removesKsi

from the Key Store (Line 5) and returnstrue (Line 6).

7. Security Analysis

In this section, we analyse the security of the policy deploy-
ment phase that includes Role Assignment (RA) encryption
(Algorithms 5 and 6), Permission Assignment (PA) encryption
(Algorithms 7 and 8), Contextual Condition (CC) encryption
(Algorithms 9 and 10), and Role Hierarchy (RH) encryption
(Algorithms 11 and 12). We then analyse the security of the
policy evaluation phase that include Search Role (SR) (Algo-
rithms 13 and 16), Search Permission (Algorithms 13 and 17),
Contextual Condition Evaluation (Algorithms 18 and 20) and
Search Role Hierarchy (Algorithms 13, 14 and 21).

We first define some basic concepts on which we build our
security proofs.

7.1. Preliminaries

In general, a scheme is considered secure if no adversary
can break the scheme with probability significantly greaterthan
random guessing. The adversary’s advantage in breaking the
scheme should be a negligible function of the security parame-
ter.

Definition 1 (Negligible Function). A function f is negligible if
for each polynomial p() there exists N such that for all integers
n > N it holds that f(n) < 1

p(n) .

We consider a realistic adversary that is computationally
bounded and show that our scheme is secure against such an
adversary. We model the adversary as a randomised algorithm
that runs in polynomial time and show that the success proba-
bility of any such adversary is negligible. An algorithm that is
randomised and runs in polynomial time is called a Probabilis-
tic Polynomial Time (PPT) algorithm.

Our scheme relies on the existence of a pseudorandom func-
tion f . Intuitively, the output a pseudorandom function cannot
be distinguished by a realistic adversary from that of a truly ran-
dom function. Formally, a pseudorandom function is defined
as:

Definition 2 (Pseudorandom Function). A function f : {0,1}∗×
{0,1}∗ → {0,1}∗ is pseudorandom if for all PPT adversariesA,
there exists a negligible function negl such that:

|Pr[A fk(·) = 1] − Pr[AF(·) = 1]| < negl(n)

where k→ {0,1}n is chosen uniformly randomly and F is a
function chosen uniformly randomly from the set of function
mapping n-bit strings to n-bit strings.

Our proof relies on the assumption that the Decisional Diffie-
Hellman (DDH) is hard in a groupG, i.e., it is hard for an ad-
versary to distinguish between group elementsgαβ andgγ given
gα andgβ.

13

Definition 3 (DDH Assumption). The DDH problem is hard
regarding a groupG if for all PPT adversariesA, there exists
a negligible function negl such that|Pr[A(G,q,g,gα,gβ,gαβ) =
1]−Pr[A(G,q,g,gα,gβ,gγ) = 1]| < negl(k) whereG is a cyclic
group of order q(|q| = k) and g is a generator ofG, andα, β, γ ∈
Zq are uniformly randomly chosen.

Encryption algorithms in policy deployment phase are based
on ClientEnc andServerReEncfunctions that is equivalent to
encrypting a single keyword in the SDE scheme [13]. Dong
et al. [13] show that the single keyword encryption scheme is
indistinguishable under chosen plaintext attack (IND-CPA). A
cryptosystem is considered IND-CPA secure if no PPT adver-
sary, given an encryption of a message randomly chosen from
two plaintext messages chosen by the adversary, can identify
the message choice with non-negligible probability. Donget
al. [13] prove the following theorem about the single Keyword
Encryption (KE) scheme:

Theorem 1. If the DDH problem is hard relative toG, then
the single keyword encryption scheme KE is IND-CPA secure
against the server S, i.e., for all PPT adversariesA there exists
a negligible function negl such that:

S uccAKE,S(k) = Pr

b′ = b

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(param,msk)← Init(1k)
(Ku,Ks)← KeyGen(msk,U)
w0,w1← A

ClientEnc(Ku,·)(Ks)

b
R
←− {0,1}

c∗i (wb) = ClientEnc(xi1,wb)
b′ ← AClientEnc(Ku,·)(Ks, c∗i (wb))

< 1
2 + negl(k)

(1)

Proof. See Theorem 1 in [13].

7.2. Security of Encryption Algorithms in the Policy Deploy-
ment Phase

Using the fact that theKE scheme is IND-CPA secure, we
show that the four encryption schemes: RA, PA, CC and RH
are also IND-CPA against the server. We give the proof details
for the Roles Assignment encryption schemeRA. We will show
that the following theorem holds:

Theorem 2. If the single keyword encryption KE scheme is
IND-CPA secure against the server, then the RA encryption
scheme RA is also IND-CPA, i.e., for all PPT adversariesA,
there exists a negligible function negl such that S uccA

RA,S(k) <
1
2 + negl(k).

Proof. We prove the theorem by showing that breaking the
RA encryption reduces to breaking theKE encryption. We
define the following game in which the adversaryA chal-
lenges the game with two lists of rolesL0 and L1 having the
same number of rolest. We construct the following vec-
tor containing the encryption of roles from both lists:~C(i) =

C(r1
0), . . . ,C(r i

0),C(r i+1
1), . . . ,C(r t

1). The success probability of
the adversary in distinguishing the encryption of the two lists of
roles is defined as:

S uccA(k) =
1
2

Pr[A(~C0) = 0] +
1
2

Pr[A(~Ct) = 1] (2)

In the following, we show that breaking theRA scheme re-
duces to breaking theKE game. In theKE game from [13], the
adversary challenges the game with two keywordsw0 andw1

and tries to distinguish between their encryptions. Let us con-
sider a PPT adversaryA′ who attempts to challenge the single
keyword encryption schemeKE using the correspondingRA
adversaryA as a sub-routine The game is the following:

• A′ is given the parameters (G,q,g,h,H, f) as input and
for each useri is given (i, xi2).

• A′ passes these parameters toA.

• A generates two lists of rolesL0 andL1 having the same
number of rolest and gives them toA′.

• A′ choosesi
r
←− [1, t]. It then usesr i

0, r
i
1 to challenge the

single keyword encryptionKE game. The adversary gets
backci

b as the result, whereci
b is the encryption of either

r i
0 or r i

1. A′ uses this result to construct a hybrid vector
(c1

0, . . . , c
i−1
0 , c

i
b, c

i+1
1 , . . . , c

t
1) and sends it toA.

• A′ outputsb′, the bit output byA.

A is required to distinguish~C(i) and~C(i−1) and the probability
ofA’s success in distinguishing correctly is:

S ucciA(k) =
1
2

Pr[A(~C(i)) = 0] +
1
2

Pr[A(~C(i−1)) = 1] (3)

Becausei is randomly chosen, it holds that:

S uccA′ (k) =
∑t

i=1 S ucci
A

(t) · 1
t

= 1
2t Pr[A(~C0) = 0] +

∑t−1
i=1(Pr[A(~Ci) = 0]

+Pr[A(~Ci) = 1]) + 1
2Pr[A(~Ct) = 1]

= 1
t (1

2Pr[A(~C0) = 0] + 1
2Pr[A(~Ct) = 1]) + t−1

2t
= 1

t S uccA(k) + t−1
2t

(4)
Because the success probability ofA′ to break the single key-

word encryption scheme isS uccA′ (k) < 1
2 + negl(k), it follows

thatS uccA(k) < 1
2 + negl(k).

The proof for the other encryption schemes is similar and for
lack of space we do not show all the details.

7.3. Security of Algorithms in the Policy Evaluation Phase

We now analyse the security of SR, Search Permission, Con-
textual Condition Evaluation and Search Role Hierarchy. These
algorithms require the SP to take some client input (i.e., trap-
doors computed using Algorithm 13), process it (i.e., re-encrypt
it using Algorithm 14), and test whether it matches some infor-
mation stored on the server. Though a single operation has been
proved secure, we are interested in what these algorithms leak
to the SP. We follow the concept of non-adaptive indistinguisha-
bility security introduced for encrypted databases by [9] and
adapted by [13] in a multi-user setting. We show that given two
non-adaptively generated histories with the same length and

14

outcome, no PPT adversary can distinguish the histories based
on what it can observe from the interaction. A history contains
all the interactions between clients and the SP. Non-adaptive
history means that the adversary cannot choose sequences of
client inputs based on previous inputs and matching outcomes.

In the following, we show the details for the SR scheme. In
this scheme, a history is defined as follows:

Definition 4 (SR History). An SR historyHi is an interaction
between a SP and all clients that connect to it, over i role ac-
tivation requests.Hi = (Lu1

s , . . . , L
ui
s , r

u1
1 , . . . , r

ui
i), where ui rep-

resents an identifier of the client making the requests, Lui
s repre-

sents the lists of roles for client ui , and rui
i represents the request

made by the client.

We formalise the information leaked to a SP as atrace. We
define two kinds of traces: the trace of a single request and
the trace of a history. The trace of a request leaks to the SP
which role inLi

s matches the request and can be formally de-
fined as:tr(r) = {td ∗i (role), Li

s, idx}, whereidx is the index of
the matched role, if any, inLi

s.

We define the role matching patternP over a historyHi to
be a set of binary matrices (one for each client) with columns
corresponding to encrypted roles in the list of the client, and
rows corresponding to requests.P[j, k] = 1 if requestj matched
thek’s role andP[j, k] = 0 otherwise.

The trace of a history includes the encrypted role assignment
lists of all clientsLui

s stored by the SP and which can change
as new roles are added and clients leave of join the system, the
trace of each request, and the role matching patternPi for each
client.

During an interaction, the adversary cannot see directly the
plaintext of the request, instead it sees the ciphertext. The view
of a request is defined as:

Definition 5 (View of a Request). We define the view of a re-
quest qu1

1 under a key set Kui as: VKui (q
ui) = tr(qui)

Definition 6 (View of a History). We define the view
of a history with i interactions Hi as VKu(Hi) =

(Lu1
s , . . . , L

ui
s ,VKui (q

ui

1), . . . ,VKui (q
ui
i).

The security definition is based on the idea that the scheme
is secure if nothing is leaked to the adversary beyond what the
adversary can learn from traces.

We define the following game in which an adversaryA gen-
erates two historiesHi0 andHi1 with the same trace overi
requests. Then the adversary is challenged to distinguish the
views of the two histories. If the adversary succeeds with neg-
ligible probability, the scheme is secure.

Definition 7 (Non-adaptive indistinguishability against a curi-
ous SP). The SR scheme is secure in the sense of non-adaptive
indistinguishability against a curious SP if for all i∈ N and for
all PPT adversariesA there exists a negligible function negl

such that:

Pr

b′ = b

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(params,msk)← Init(1k)
(Ku,Ks)← KeyGen(msk,U)
Hio,Hi1← A(Ks)

b
R
←− {0,1}

b′ ← A(Ks,VKu(Hib))

<
1
2
+ negl(k)

(5)
where U is a set of user IDs, Ku is the user side key sets, Ks

are the server side key sets,Hi1 andHi0 are two histories over
i requests such that Tr(Hi0) = Tr(Hi1).

Theorem 3. If the DDH problem in hard relative toG, then the
SR scheme is a non-adaptive indistinguishable secure scheme.
The success probability of a PPT adversaryA in breaking the
SR scheme is defined as:

S uccA(k) = 1
2Pr[A(RA(~L0),T D(~r0)) = 0]+
1
2Pr[A(RA(~L1),T D(~r1)) = 1]

< 1
2 + negl(k)

(6)

where RA(~Li) is the role encryption of the vector of lists of Hi ,
and T D(~r i) is theClientTD of the roles in the requests of Hi .

Proof. We consider an adversaryA′ that challenges the RE
IND-CPA game usingA as a sub-routine.A′ does the follow-
ing:

• A′ receives public parametersparamsand the server side
(i, xi2) keys.

• To generate a view of a historyHi =

(Lu1
1 , . . . , L

ui
i ,q

u1
1 , . . . ,q

ui
i). A′ performs the following

steps:

– For each role assignment listL
u j

j , run Algorithm 5 to

encrypt it asRA(L
u j

j).

– For each Search Role requestq
u j

j , run ClientT D to
generate the trapdoorT D(r) for the role.

• A outputsHi0,Hi1. A′ encryptsHi1 by itself and chal-
lenges the RE IND-CPA game with~L0 and ~L1, the vec-
tors of all roles lists in the two histories. It gets the result

RA(~Lb) whereb
R
←− {0,1} and forms a view of a history

(RA(~Lb),T D(~r1)). It sends the view toA.

• A tries to determine which vector was encrypted and out-
putsb′ ∈ {0,1}.

• A′ outputsb′.

Because theRAscheme is IND-CPA, it follows that:

1
2 + negl(k) > S uccA

′

RA(k)
= 1

2Pr[A((RA(~L0),T D(~r1))) = 0]+
1
2Pr[A((RA(~L1),T D(~r1))) = 1]

(7)

Now let us consider another adversaryA′′ who wants to dis-
tinguish the pseudorandom functionf usingA as a sub-routine.
The adversary does the following:

15

• It generates (G,q,g,h,H) as public parameters, and sends
them toA along with f . For each useri, it chooses ran-
domly xi1, xi2 such thatxi1 + xi2 = x. It sends all (i, xi2) to
A and keeps all (i, xi1, xi2).

• A outputsHi0,Hi1. A′′ encrypts all the roles lists inHi0

asRA(~L0). It choosesb
R
←− {0,1} and asks the oracle to

encrypt all roles inHib. It combines the results to form a
view (RA(~L0),T D(~rb)) and returns it toA.

• A outputsb′. A′′ outputs 1 ifb′ = b and 0 otherwise.

There are two cases to consider: Case 1: the oracle inA′′s
game is the pseudorandom functionf , then:

Pr[A′′ fs(.)(1k) = 1] =
1
2Pr[A(RA(~L0),T D(~r0)) = 0]+
1
2Pr[A(RA(~L0),T D(~r1)) = 1]

(8)

Case 2: the oracle inA′′s game is a random functionF, then
for each distinct roler, σr is completely random toA. More-
over, we know the traces are identical, soRA(~Lb) andT D(~rb)
are completely random toA. In this case:

Pr[A′′ fs(.)(1k) = 1] =
1
2

(9)

Becausef is a pseudorandom function, by definition it holds
that:

|Pr[A′′ fs(.)(1k) = 1] − Pr[A′ fs(.)(1k) = 1]| < negl(k)
Pr[A′′ fs(.)(1k) = 1] < 1

2 + negl(k)
(10)

Sum upS uccA
′

RE(k) andPr[A′′ fs(.)(1k) = 1]:

1+ negl(k) > 1
2Pr[A(RA(~L0),T D(~r0)) = 0]+
1
2Pr[A(RA(~L0),T D(~r1)) = 1]+
1
2Pr[A(RA(~L0),T D(~r1)) = 0]+
1
2Pr[A(RA(~L1),T D(~r1)) = 1]

= 1
2Pr[A(RA(~L0),T D(~r0)) = 0]+
1
2+
1
2Pr[A(RA(~L1),T D(~r1)) = 1]+

= 1
2 + S uccA(k)

(11)

ThereforeS uccA(k) < 1
2 + negl(k).

7.4. Revealing Policy Structure

The policy structure reveals information about the operators,
such as AND and OR, and the number of operands used in
the contextual condition. To overcome this problem, dummy
attributes could be inserted in the tree representing contextual
conditions. Similarly, the PIP can send dummy attributes tothe
PDP at the time of policy evaluation to obfuscate the number of
attributes required for evaluating any contextual condition.

8. Performance Analysis

In this section, we discuss a quantitative analysis of the per-
formance ofESPOONERBAC. It should be noticed that here we
are concerned about quantifying the overhead introduced bythe
encryption operations performed both at the trusted environ-
ment and the outsourced environment. In the following dis-
cussion, we do not take into account the latency introduced by
the network communication.

8.1. Implementation Details

We have implementedESPOONERBAC in Java 1.6. We
have developed all the components of the architecture required
for performing the policy deployment and policy evaluation
phases. For the cryptographic operations, we have implemented
all the functions presented in Section 6. We have tested the im-
plementation ofESPOONERBAC on a single node based on an
Intel Core2 Duo 2.2 GHz processor with 2 GB of RAM, run-
ning Microsoft Windows XP Professional version 2002 Service
Pack 3.

8.2. Performance Analysis of the Policy Deployment Phase

In this section, we analyse the performance of the policy de-
ployment phase. In this phase, an Admin User encrypts poli-
cies and sends those encrypted policies to the Administration
Point running in the outsourced environment. The Adminis-
tration Point re-encrypts policies and stores them in the Policy
Store in the outsourced environment. In the following, we anal-
yse the performance of deploying (part of) policies including
role assignment, permission assignment, contextual conditions
and role hierarchy graph.

Role Assignment: In order to deploy a role assignment pol-
icy, an Admin User performs a first round of encryption on the
client side (see Algorithm 5) and sends the client encryptedrole
assignment policy to the Administration Point. The Adminis-
tration Point performs another round of encryption on the server
side (see Algorithm 6) before storing role assignment policy in
the Policy Store. Figure 10(a) shows performance overhead on
the client side, as well as on the server side in order to deploy
a role assignment policy. In this graph, we observe the per-
formance by increasing number of roles in a role assignment
policy. As we can expect, the performance overhead increases
linearly with the linear increase in the number of roles in a role
assignment policy. As we can notice, the graph grows linearly
with the linear increase in the number of roles in the role as-
signment policy.

During the policy deployment phase, the encryption algo-
rithm on the client side (Algorithm 3) takes more time that of
the server side (Algorithm 4) as shown in Figure 10. The en-
cryption algorithm on the client side takes more time because it
performs more complex cryptographic operations such as ran-
dom number generation and hash calculation as illustrated in
Algorithm 3. However, any policy is deployed very rarely;
whereas, it may be evaluated quite frequently. Therefore, the
performance overhead of the policy evaluation phase (discussed
in Section 8.3) is of great importance.

16

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2 4 6 8 10

T
im

e
(in

 m
ill

is
ec

on
ds

)

Number of roles assigned to a user

Client side
Server side

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20

T
im

e
(in

 m
ill

is
ec

on
ds

)

Number of permissions assigned to a role

Client side
Server side

(b)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 5 10 15 20 25

T
im

e
(in

 m
ill

is
ec

on
ds

)

Number of roles in a role hierarchy graph

Client side
Server side

(c)

Figure 10: Performance overhead of deploying RBAC policies:(a) roles assigned to a user, (b) permissions to a role and (c) arole hierarchy graph

Permission Assignment: For deploying permissions to a
role, an Admin User performs a first round of encryption on
the client side (see Algorithm 7) and sends both the client en-
crypted role and client encrypted permissions to the Adminis-
tration Point, where each permission contains both an action
and a target. The Administration Point generates the serveren-
crypted role and server encrypted permissions after performing
a second round of encryption on the server side (see Algorithm
8). Figure 10(b) shows the performance overhead of deploy-
ing a permission assignment policy. This graph illustratesthe
performance of deploying a permission assignment policy for a
role with a number of permissions ranging from 1 to 20. As we
can expect, the performance overhead increases linearly with
the linear increase in the number of permissions in the permis-
sion assignment policy.

Contextual Conditions: Both role assignment and permis-
sion assignment policies include a contextual condition aswe
can see in Figure 2 and Figure 3, respectively. The contextual
condition is represented as a tree structure as illustratedin Fig-
ure 4. During the policy deployment phase, an Admin User
encrypts each leaf node of the tree (see Algorithm 9) while the
Administration Point re-encrypts each leaf node (see Algorithm
10) and finally stores the tree in the Policy Store either in the
Role Repository or the Permission Repository.

In the tree representing contextual conditions, leaf
nodes represent string comparisons (for instance,
Location= Cardiology-ward) and/or numerical compar-
isons (for instance,AccessTime
> 9). A string comparison is always represented by a single
leaf node while a numerical comparison may require more
than one leaf nodes. In the worst case, a single numerical
comparison, represented ass bits, may requires separate leaf
nodes. Therefore, numerical comparisons have a major impact
on the encryption of a policy at deployment time.

Figure 11(a) illustrates the performance overhead of deploy-
ing numerical and string comparisons. In this graph, we in-
crease the number of string comparisons and numerical com-
parisons present in the contextual condition of a policy. As
the graph, the time taken by deployment functions on the
client side and the server side grow linearly with the num-
ber of comparisons in the contextual condition. The numer-
ical comparisons have a stepper line because one numerical

comparison of sizes may be equivalent tos string compar-
isons in the worst case. For string comparisons, we have used
“attributeNamei=attributeValuei”, wherei varies from 1 to 10.
For numerical comparisons, we have used “attributeNamei <
15#4”.2

To check how the size of the bit representation impacts on
the encryption functions during the deployment phase, we have
performed the following experiment. We fixed the number of
numerical comparisons in the contextaul condition to only one
and increased the sizesof the bit representation from 2 to 20 for
the comparison “attributeName< 2s − 1. Figure 11(b) shows
the performance overhead of the encryption during the policy
deployment phase on the client side, as well as on the server
side. We can see that the policy deployment time incurred
grows linearly with the increase in the sizes of a numerical
attribute. In general, the time complexity of the encryption of
the contextual conditions during the policy deployment phase
is O(m+ ns) wherem is the number of string comparisons,n
is the number of numerical comparisons, ands represents the
number of bits in each numerical comparison.

Role Hierarchy Graph: The PDP may search for a base role
of the one in the access requestREQsince a derived role in-
herits all permissions from its base role. For supporting this
search, we deploy a role hierarchy graph. For deploying a role
hierarchy graph, an Admin User performs the first round in or-
der to generate the client encrypted trapdoor, as well as to cal-
culate the client generated trapdoor of each role in the graph
(see Algorithm 11). The Admin User sends the client generated
role hierarchy graph to the Administration Point. The Admin-
istration Point performs the second round to generate the server
encrypted trapdoor, as well as to calculate the server generated
trapdoor of each role in the graph (see Algorithm 12). The PDP
matches the trapdoor of role inREQwith the server encrypted
role and if this match is successful, it finds trapdoors of the
base roles. The trapdoors of base roles are required in orderto
perform search in the list of server encrypted roles in the Per-
mission Repository.

In our experiment, we consider a role hierarchy graph in
which each roleRi extends roleRi+1 for all values ofi from 0

2It should be noted that using the comparison less than 15 in a 4-bit repre-
sentation represents the worst case scenario requiring 4 leaf nodes.

17

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10

T
im

e
(in

 s
ec

on
ds

)

Number of comparisons in a contextual condition

Numeric: Client side
Numeric: Server side

String: Client side
String: Server side

(a)

 0

 100

 200

 300

 400

 500

 600

 5 10 15 20

T
im

e
(in

 s
ec

on
ds

)

Number of bits per numerical attribute

Client side
Server side

(b)

Figure 11: Performance overhead of deploying contextual conditions: (a) numerical and string comparisons and (b) size of anumerical attribute

to n− 1 wheren indicates the total number of nodes and varies
from 5 to 25. Figure 10(c) shows the performance overhead of
encrypting a role hierarchy graph both on the client side andthe
server side. The graph grows linearly with the number of roles
in a role hierarchy graph.

Table 1: Performance overhead of encrypting requests duringthe policy evalu-
ation phase

Request Type Time (in milliseconds)
ACT 16.353
REQ 47.069

8.3. Performance Analysis of the Policy Evaluation Phase

In this section, we analyse the performance of the policy
evaluation phase. In this phase, a Requester sends the encrypted
request to the PEP running in the outsourced environment. The
PEP forwards the encrypted request to the PDP. The PDP has to
select the set of policies that are applicable to the request. The
PDP may require contextual information in order to evaluate
the selected policies. In the following, we calculate the per-
formance overhead of generating requests, search a role (inthe
Role Repository, in the Active Roles repository or in the Per-
mission Repository), searching a permission, evaluating con-
textual conditions and searching a role in a role hierarchy graph.

Generating Requests: A Requester may send the role ac-
tivation requestACT. In order to generateACT, a Requester
calculates the client generated role (see Algorithm 13). This
trapdoor generation of role takes 16.353 milliseconds as illus-
trated in Table 1. After a Requester is active in a role, she may
make an access requestREQ . A Requester has to calculate
trapdoor for each element (including role, action and target) in
REQ. TheREQgeneration takes 47.069 milliseconds as illus-
trated in Table 1. We can see thatREQgeneration takes 3 times
of ACT generation becauseREQhas to calculate 3 trapdoors
while ACT has to generate only a single trapdoor. The request

generation does not depend on any parameters and can be con-
sidered constant.

Searching a Role in Role Repository/Session: In order to
grantACT, the PDP needs to search roles in the Role Repos-
itory. For searching a role, the PDP first calculates the server
generated trapdoor of role inACT and then matches this server
encrypted trapdoor with server encrypted roles in the role as-
signment list as illustrated in Algorithm 16. Figure 12(a) shows
the performance overhead (in the worst case) of performing this
search. In this graph, we can observe that it grows linearly with
increase in number of roles. As the graph indicates, the search
function takes initial approximately 4 milliseconds to generate
the server encrypted trapdoor of role inACT while it takes ap-
proximately 0.6 milliseconds to perform encrypted match.

The PDP grantsACT by adding the server encrypted role of
the Requester in the Active Roles repository of the Session.
This implies that the Session maintains a list of active roles.
Once a Requester makes an access requestREQ, the PDP has to
search in the Session if she is already active in role indicated in
REQ. The performance overhead of searching a role in session
is same as it incurs for searching a role in the Role Repository
(shown in Figure 12(a)).

Searching a Role in Permission Repository: After finding
the role ofREQin the list of active roles, the PDP has to search
if the same role has the requested permission. For this purpose,
the PDP has first to search the role ofREQ in the Permission
Repository and if any match is found, it has to search the re-
quested permission in the list of permissions assigned to the
found role. Figure 12(b) shows the performance overhead (in
the worst case) of searching a role in the Permission Reposi-
tory. The graph grows linearly with the increase in the number
of roles in the Permission Repository. The PDP runs Algorithm
16 but with a slight modification of ignoring the server trapdoor
generation (in Line 2) as it is already generated when the role of
REQis searched in the session. This is why, searching a role in
the Permission Repository (as illustrated in Figure 12(b))takes
less time than searching a role in the Role Repository or Session

18

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

T
im

e
(in

 m
ill

is
ec

on
ds

)

Number of roles in Role Repository/Session

Server side

(a)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20

T
im

e
(in

 m
ill

is
ec

on
ds

)

Number of roles in Permission Repository

Server side

(b)

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20

T
im

e
(in

 m
ill

is
ec

on
ds

)

Number of permissions assigned to role

Server side

(c)

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25

T
im

e
(in

 m
ill

is
ec

on
ds

)

Number of roles in role hierarchy graph

Server side

(d)

Figure 12: Performance overhead of evaluating RBAC policies

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

T
im

e
(in

 s
ec

on
ds

)

Number of attributes

Numeric: Client side
Numeric: Server side

String: Client side
String: Server side

(a)

 0

 0.5

 1

 1.5

 2

 5 10 15 20

T
im

e
(in

 s
ec

on
ds

)

Number of bits per numerical attribute

Client side
Server side

(b)

Figure 13: Performance overhead of evaluating contextual conditions

19

(as illustrated in Figure 12(a)).
Searching a Permission: After a role is found in the Permis-

sion Repository, the PDP searches the requested permissionin
the list of permissions assigned to the found role (see Algorithm
17). Before searching the list of permissions, the PDP has to
calculate server generated trapdoors of both the action andthe
target present inREQ. As we explained earlier, a single trap-
door generation on the server side takes approximately 4 mil-
liseconds. The trapdoor generation of the requested permission,
containing an action and a target, takes 8 milliseconds. Next,
the PDP match (server generated trapdoors of) this requested
permission with the list of (sever encrypted) permissions as-
signed to the found role. Figure 12(c) shows the performance
overhead (in the worst case) of searching server generated trap-
door of permission with a list of server encrypted permissions.
The graph grows linearly with the increase in the number of
permissions in the list. For each permission match, the PDP
performs (at most) two encrypted matches each incurring ap-
proximately 0.6 milliseconds.

Evaluating Contextual Conditions: For evaluating role as-
signment (illustrated in Figure 2) or permission assignment
(illustrated in Figure 3) policies, the PDP may need to eval-
uate contextual conditions. For evaluating contextual condi-
tions, the PDP needs to fetch contextual information from the
PIP. The The PIP is responsible to collect and send the re-
quired contextual information that include information about
the Requester (for instance, Requester’s location or Requester’s
age) or the environment in which the request is made (for in-
stance, time or temperature). The PIP transforms these at-
tributes into trapdoors before sending to the PDP (as illustrated
in Algorithm 18). For each single string attribute (for instance,
Location:= Cardiology-ward), the PIP generates a single trap-
door. For each numerical attribute of size s-bit (for instance,
AccessTime=: 10#5), the PIP generates s trapdoors. Figure
13(a) shows the performance overhead of generating trapdoors
by the PIP on the client side for both numerical and string at-
tributes. In our experiment, we vary number of attributes (both
string and numeric) from 1 to 10. As we can see, the graph
grows linearly with the increase in number of attributes. For nu-
merical attributes, the curve of trapdoor generation on theclient
side is steeper than that of the string attributes because numeri-
cal attribute is of size s bits where s is set to 4. This means that
each numerical attribute requires 4 trapdoors; on the otherhand,
a string attribute requires only a single attribute. We observe
also the behaviour of generating client trapdoors for a numeri-
cal attribute of varying size. Figure 13(b) shows behaviourof
generating on the client side trapdoors of a numerical attribute
of varying size ranging from 2 to 20 bits. This graph grows lin-
early with the increase in number of bits, representing sizeof a
numerical attribute.

After receiving trapdoors of contextual information, the PDP
may evaluate a contextual condition. To evaluate the tree rep-
resenting a contextual condition, the PDP matches contextual
information against the leaf nodes in the tree, as illustrated in
Algorithm 20. To quantify the performance overhead of this en-
crypted matching, we have performed the following test. First,
we have considered two cases: the first case is the one in which

the PIP provides only string attributes and the contextual con-
dition contains only string comparisons; in the second, thePIP
provides only numerical attributes and the contextual condition
consists only of numerical comparisons. For both cases, the
number of attributes varies together with the number of com-
parisons in the tree. In particular, if the PIP providesn different
attributes then the contextual condition will containn different
comparisons.

Figure 13(a) shows also the performance overhead of evalu-
ating string and numerical comparisons on the server side. As
we can see, the condition evaluation for numerical attributes has
a steeper curve. This can be explained as follows. For the first
case, for each string attribute only a single trapdoor is gener-
ated. A string comparison is represented as a single leaf node
in the tree representing a contextual condition. This meansthat
n trapdoors in a request are matched againstm leaf nodes in the
tree resulting in aO(nm) complexity (however, in our experi-
ments the number of attributes and the number of comparisons
are always the same). For the case of the numerical attributes,
we have also to take in to consideration the bit representation.
In particular, for a give numerical attribute represented as sbits,
we need to generatesdifferent trapdoors. This means thatn nu-
merical attributes in a request will be converted in tonsdiffer-
ent trapdoors. These trapdoors then need to be matched against
the leaf nodes representing the numerical comparisons. Figure
13(b) shows the performance overhead of evaluating a numer-
ical comparison where the size of a numerical attribute varies
from 2 to 20. As we have discussed for the policy deployment
phase, in the worst case scenario, a numerical comparison for a
s-bit numerical attribute requiressdifferent leaf nodes. In a tree
with m different numerical comparisons, this means that thens
trapdoors need to be matched againstmsresulting inO(nms2)
complexity.

Searching a Role Hierarchy Graph: The PDP may search a
role in the role hierarchy graph. For performing this search, we
consider a role hierarchy graph in which each roleRi extends
role Ri+1 for all values ofi from 0 to n − 1 wheren indicates
the total number of nodes and varies from 5 to 25. Figure 12(d)
shows the performance overhead of searching a role in the role
hierarchy graph deployed on the server side. As we can ex-
pect, the graph grows linearly with the number of roles in a role
hierarchy graph.

Comparing ESPOONERBAC with ESPOON: We com-
pare the performance overheads of the policy evaluation of
ESPOONERBAC with that of ESPOON[1]. Before we show
the comparison, we see how policies are expressed in both
ESPOONERBACandESPOON. TheESPOONERBACpolicies are
explained in Section 4.2. TheESPOONpolicy is expressed as
a 〈S,A,T〉 tuple with aCONDITION, meaning ifCONDITION
holds then subjectS can take actionA over targetT. For com-
paring the performance overheads, we considerESPOONpoli-
cies with 50 unique subjects and each subject has 10 unique
actions and targets where each〈S,A,T〉 tuple’s condition is
the conjunction (AND) of the contextual condition illustrated
in Figure 4 andRequesterName=<NAME>. That is, a subject
can execute action over the target provided subject’s name is
equal to one specified in the condition, subject’s location is

20

 0

 100

 200

 300

 400

 500

ESPOON

ESPOON
ERBAC

ESPOON
ERBAC with

 role hierarchy

T
im

e
(in

 m
ill

is
ec

on
ds

)

Role Activation Processing
Access Request Processing

Role Hierarchy Graph Traversal
Access Request with Base Role Processing

Figure 14: Performance comparison ofESPOONandESPOONERBAC

cardiology-ward and time is between 9 AM and 5 PM. Simi-
larly, we considerESPOONERBACpolicies with 50 unique roles
and each role has 10 unique permissions, where each user can
get active in 5 roles. The introduction of RBAC simplifies
the roles and permission management because we can enforce
possible conditions at role activation time instead of enforcing
them at the permission grant time. For instance, we can en-
force location and time checks (i.e., the condition illustrated
in Figure 4) at the role activation time while the condition
RequesterName=<NAME> can be enforced at the permission
grant time.

Figure 14 shows the performance overheads of evaluating
ESPOONand ESPOONERBAC policies. In ESPOON, a re-
quester’s subject is matched with one in the repository of 500
entries (i.e., 50 subjects each with 10 actions and targets). If
there is any match, requester’s action and target are matched
and then condition is evaluated. In the worst case, inESPOON,
the access request processing can take approximately up to 500
milliseconds. On the other hand, inESPOONERBAC, a requester
first gets active in a role provided condition holds. The role
activation can take approximately up to 60 milliseconds fora
user that can get active in 5 roles. After the role activation, a
requester can be granted permissions assigned to its role. How-
ever, first the active role is searched in the session and then
the permission can be granted if the condition associated with
that permission holds. As we can see in Figure 14, grating
the permission takes up to 42 milliseconds. The reason why
ESPOONERBACperformance is better than that ofESPOONbe-
cause (i) all possible conditions are enforced at the role activa-
tion time and (ii) introduction of roles simplified the rolesand
permissions management.

We also consider the effect of role hierarchies on the
ESPOONERBAC performance. In a role hierarchy, we assume
that a role can inherit all permissions from its base role. This
simplifies the role management and permission assignment to
roles. In our experimentation, we consider 50 roles where each
role has 5 permissions. Furthermore, there is a role hierarchy
graph containing 25 roles, which is necessary for finding in-

heritance relationship between roles. Figure 14 shows a very
slight performance gain to evaluate the access request in case
of role hierarchy inESPOONERBAC. Since the permission can
be associated with base role, we need to traverse in the role
hierarchy graph to find base roles. The performance of travers-
ing in the role hierarchy graph is shown in Figure 14. Finally,
the requested permission is granted if associated even withany
base roles. The role hierarchy may improve performance but in
the worst case it incurs higher overhead. However, the perfor-
mance ofESPOONERBACwith role hierarchy is still better than
that ofESPOON.

9. Conclusions and Future Work

In this paper, we have presented theESPOONERBAC archi-
tecture to support RBAC policies for outsourced environments.
Our approach separates the security policies from the actual en-
forcing mechanism while guaranteeing the confidentiality of
RBAC policies assuming the SP is honest-but-curious. The
main advantage of our approach is that RBAC policies are en-
crypted but it still allows the PDP to perform the policy eval-
uation without revealing contents of requests or policies.Sec-
ond,ESPOONERBAC is capable of handling complex contextual
conditions involving non-monotonic boolean expressions and
range queries. Finally, the authorised users do not share any
encryption keys making the process of key management very
scalable. Even if a user key is deleted or revoked, the other en-
tities are still able to perform their operations without requiring
re-encryption of RBAC policies.

As future directions of our research, we are working on inte-
grating a secure audit mechanism inESPOONERBAC. The mech-
anism should allow the SP to generate genuine audit logs with-
out allowing the SP to get information about both the data and
the policies. However, an auditing authority must be able tore-
trieve information about who accessed the data and what policy
was enforced for any access request made. Another directionof
our work is towards the extension of the encrypted search and
match capabilities to handle the case of negative authorisation
policies and policies for long-lived sessions where the condi-
tions need to be continuously monitored and the attributes of
the request can be dynamically updated.

Acknowledgment

The work of the first and third authors was supported by the
EU FP7 research grant 257063 (project ENDORSE) while the
work of the fourth author was supported by the Italian MIUR
PRIN (project Autonomous Security).

REFERENCES

[1] Muhammad Rizwan Asghar, Mihaela Ion, Giovanni Russello, and Bruno
Crispo. ESPOON: Enforcing Encrypted Security Policies in Outsourced
Environments. InThe Sixth International Conference on Availability, Re-
liability and Security, ARES’11, pages 99–108, August 2011.

21

[2] Muhammad Rizwan Asghar, Giovanni Russello, and Bruno Crispo.
Poster: ES POONERBAC: Enforcing security policies in outsourced en-
vironments with encrypted rbac. InProceedings of the 18th ACM con-
ference on Computer and communications security, CCS ’11, pages 841–
844, New York, NY, USA, 2011. ACM.

[3] Mikhail J. Atallah, Marina Blanton, Nelly Fazio, and Keith B. Frikken.
Dynamic and efficient key management for access hierarchies.ACM
Trans. Inf. Syst. Secur., 12:18:1–18:43, January 2009.

[4] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Public key
encryption with keyword search revisited. In Osvaldo Gervasi, Beniamino
Murgante, Antonio Lagan, David Taniar, Youngsong Mun, and Marina
Gavrilova, editors,Computational Science and Its Applications ICCSA
2008, volume 5072 ofLecture Notes in Computer Science, pages 1249–
1259. Springer Berlin/ Heidelberg, 2008.

[5] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-based
encryption. InSecurity and Privacy, 2007. SP ’07. IEEE Symposium on,
pages 321 –334, may 2007.

[6] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, andGiuseppe Per-
siano. Public key encryption with keyword search. In Christian Cachin
and Jan Camenisch, editors,Advances in Cryptology - EUROCRYPT
2004, volume 3027 ofLecture Notes in Computer Science, pages 506–
522. Springer Berlin/ Heidelberg, 2004.

[7] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on
encrypted data. In Salil Vadhan, editor,Theory of Cryptography, volume
4392 of Lecture Notes in Computer Science, pages 535–554. Springer
Berlin / Heidelberg, 2007.

[8] Robert W. Bradshaw, Jason E. Holt, and Kent E. Seamons. Concealing
complex policies with hidden credentials. InProceedings of the 11th ACM
conference on Computer and communications security, CCS ’04, pages
146–157, New York, NY, USA, 2004. ACM.

[9] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Search-
able symmetric encryption: improved definitions and efficient construc-
tions. InProceedings of the 13th ACM conference on Computer and com-
munications security, CCS ’06, pages 79–88, New York, NY, USA, 2006.
ACM.

[10] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano
Paraboschi, Gerardo Pelosi, and Pierangela Samarati. Preserving confi-
dentiality of security policies in data outsourcing. InProceedings of the
7th ACM workshop on Privacy in the electronic society, WPES ’08, pages
75–84, New York, NY, USA, 2008. ACM.

[11] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano
Paraboschi, and Pierangela Samarati. A data outsourcing architecture
combining cryptography and access control. InProceedings of the 2007
ACM workshop on Computer security architecture, CSAW ’07, pages 63–
69, New York, NY, USA, 2007. ACM.

[12] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano
Paraboschi, and Pierangela Samarati. Over-encryption: management of
access control evolution on outsourced data. InProceedings of the 33rd
international conference on Very large data bases, VLDB ’07, pages 123–
134. VLDB Endowment, 2007.

[13] Changyu Dong, Giovanni Russello, and Naranker Dulay. Shared and
searchable encrypted data for untrusted servers.Journal of Computer
Security, 19(3):367–397, 2011.

[14] Philippe Golle, Jessica Staddon, and Brent Waters. Secure conjunctive
keyword search over encrypted data. In Markus Jakobsson, Moti Yung,
and Jianying Zhou, editors,Applied Cryptography and Network Secu-
rity, volume 3089 ofLecture Notes in Computer Science, pages 31–45.
Springer Berlin/ Heidelberg, 2004.

[15] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters.Attribute-
based encryption for fine-grained access control of encrypted data. In
Proceedings of the 13th ACM conference on Computer and communica-
tions security, CCS ’06, pages 89–98, New York, NY, USA, 2006. ACM.

[16] Jason E. Holt, Robert W. Bradshaw, Kent E. Seamons, and Hilarie Or-
man. Hidden credentials. InProceedings of the 2003 ACM workshop on
Privacy in the electronic society, WPES ’03, pages 1–8, New York, NY,
USA, 2003. ACM.

[17] Yong Hwang and Pil Lee. Public key encryption with conjunctive key-
word search and its extension to a multi-user system. In Tsuyoshi Takagi,
Tatsuaki Okamoto, Eiji Okamoto, and Takeshi Okamoto, editors,Pairing-
Based Cryptography Pairing 2007, volume 4575 ofLecture Notes in
Computer Science, pages 2–22. Springer Berlin/ Heidelberg, 2007.

[18] James B.D. Joshi, Elisa Bertino, Usman Latif, and Arif Ghafoor. A gen-
eralized temporal role-based access control model.IEEE Transactions on
Knowledge and Data Engineering, 17:4–23, 2005.

[19] Seny Kamara and Kristin Lauter. Cryptographic cloud storage. In
Radu Sion, Reza Curtmola, Sven Dietrich, Aggelos Kiayias, Josep Miret,
Kazue Sako, and Francesc Seb, editors,Financial Cryptography and Data
Security, volume 6054 ofLecture Notes in Computer Science, pages 136–
149. Springer Berlin/ Heidelberg, 2010.

[20] Young-Gab Kim and Jongin Lim. Dynamic activation of role on rbac
for ubiquitous applications. InProceedings of the 2007 International
Conference on Convergence Information Technology, ICCIT ’07, pages
1148–1153, Washington, DC, USA, 2007. IEEE Computer Society.

[21] Emil Lupu and Morris Sloman. Reconciling role based management and
role based access control. InProceedings of the second ACM workshop
on Role-based access control, RBAC ’97, pages 135–141, New York, NY,
USA, 1997. ACM.

[22] Shivaramakrishnan Narayan, Martin Gagné, and Reihaneh Safavi-Naini.
Privacy preserving ehr system using attribute-based infrastructure. InPro-
ceedings of the 2010 ACM workshop on Cloud computing security work-
shop, CCSW ’10, pages 47–52, New York, NY, USA, 2010. ACM.

[23] Gustaf Neumann and Mark Strembeck. An approach to engineer and
enforce context constraints in an rbac environment. InProceedings of
the eighth ACM symposium on Access control models and technologies,
SACMAT ’03, pages 65–79, New York, NY, USA, 2003. ACM.

[24] Alan C. O’Connor and Ross J. Loomis. Economic analy-
sis of role-based access control. Technical report, National In-
stitute of Standards and Technology, December 2010. Avail-
able at: http://csrc.nist.gov/groups/SNS/rbac/documents/

20101219_RBAC2_Final_Report.pdf.
[25] K. Ondo and M. Smith. Outside it: the case for full it outsourcing.Health-

care financial management : journal of the Healthcare Financial Man-
agement Association, 60(2):92–98, 2006.

[26] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryp-
tion with non-monotonic access structures. InProceedings of the 14th
ACM conference on Computer and communications security, CCS ’07,
pages 195–203, New York, NY, USA, 2007. ACM.

[27] Hyun Sook Rhee, Jong Hwan Park, Willy Susilo, and Dong Hoon Lee.
Trapdoor security in a searchable public-key encryption scheme with a
designated tester.Journal of Systems and Software, 83(5):763 – 771,
2010.

[28] Giovanni Russello, Changyu Dong, and Naranker Dulay. Authorisa-
tion and conflict resolution for hierarchical domains.Policies for Dis-
tributed Systems and Networks, IEEE International Workshop on, 0:201–
210, 2007.

[29] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald
Cramer, editor,Advances in Cryptology EUROCRYPT 2005, volume
3494 of Lecture Notes in Computer Science, pages 557–557. Springer
Berlin / Heidelberg, 2005.

[30] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E.
Youman. Role-based access control models.Computer, 29:38–47, Febru-
ary 1996.

[31] Jun Shao, Zhenfu Cao, Xiaohui Liang, and Huang Lin. Proxy re-
encryption with keyword search.Information Sciences, 180(13):2576 –
2587, 2010.

[32] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical tech-
niques for searches on encrypted data. InProceedings of the 2000 IEEE
Symposium on Security and Privacy, SP ’00, pages 44–55, Washington,
DC, USA, 2000. IEEE Computer Society.

[33] Mark Strembeck and Gustaf Neumann. An integrated approach to engi-
neer and enforce context constraints in rbac environments.ACM Trans.
Inf. Syst. Secur., 7:392–427, August 2004.

[34] Peishun Wang, Huaxiong Wang, and Josef Pieprzyk. Threshold privacy
preserving keyword searches. In Viliam Geffert, Juhani Karhumki, Al-
berto Bertoni, Bart Preneel, Pavol Nvrat, and Mria Bielikov, editors,SOF-
SEM 2008: Theory and Practice of Computer Science, volume 4910 of
Lecture Notes in Computer Science, pages 646–658. Springer Berlin/
Heidelberg, 2008.

[35] R. Yavatkar, D. Pendarakis, and R. Guerin. Ietf rfc 2753: A framework
for policy based admission control, January 2000. Availableat: http://
docstore.mik.ua/rfc/rfc2753.html.

22

http://csrc.nist.gov/groups/SNS/rbac/documents/20101219_RBAC2_Final_Report.pdf
http://csrc.nist.gov/groups/SNS/rbac/documents/20101219_RBAC2_Final_Report.pdf
http://docstore.mik.ua/rfc/rfc2753.html
http://docstore.mik.ua/rfc/rfc2753.html

Vitae

Muhammad Rizwan Asghar received
his B.Sc. (Hons.) degree in Com-
puter Science from University of the
Punjab, Lahore, Pakistan, in 2006. In
2009, he obtained his M.Sc. degree in
Information Security Technology from
Eindhoven University of Technology, the
Netherlands. He joined Create-Net (an
international research center based in
Trento, Italy) in 2010. Currently, he is

a Ph.D. candidate at University of Trento, Italy. His research
interests include access controls, applied cryptography,cloud
computing, security and privacy.

Mihaela Ion received her B.Sc. in Infor-
mation Technology and M.Sc. in Com-
puter Science from International Univer-
sity in Germany. During her studies, she
conducted various research projects with
University of Marseille in France, SAP
Waldorf and IBM Research Boeblingen
in Germany. She joined CREATE-NET
in 2007 where she’s been working on
various EU and Italian projects. Her re-

search topics include data confidentiality in publish/subscribe
systems, privacy for e-health applications, distributed identity
and trust management. She is currently a Ph.D. candidate at the
University of Trento working on security of publish/subscribe
systems.

Giovanni Russello is a lecturer at the
University of Auckland, New Zealand,
and leads the Security technical group
within the iNSPIRE area at CREATE-
NET in Trento, Italy. Giovanni received
his M.Sc. (summa cum laude) in Com-
puter Science from University of Cata-
nia, Italy in 2000. In 2006, he obtained
his Ph.D. from the Eindhoven Univer-
sity of Technology. After obtaining his

Ph.D., Giovanni moved to the Policy Group in the Depart-
ment of Computing at Imperial College London. Giovanni’s re-
search interests include policy-based security systems, privacy
and confidentiality in cloud computing, smartphone security,
and applied cryptography.

Bruno Crispo received his Ph.D. in
Computer Science from University of
Cambridge, UK in 1999, having awarded
a M.Sc. in Computer Science from Uni-
versity of Turin, Italy in 1993. He is
an associate professor at University of
Trento since September 2005. Prior to
that he was Associate Professor at Vrije
Universiteit in Amsterdam, He is Co-
Editor of the Security Protocol Interna-

tional Workshop proceedings since 1997. He is member of

ACM and senior member of IEEE. His main research inter-
ests spans across the field of security and privacy. In particular
his recent work focus on the topic of security protocols, ac-
cess control in very large distributed systems, distributed pol-
icy enforcement, embedded devices and smartphone security
and privacy and privacy-breaching malware detection. He has
published more than 100 papers in international journals and
conferences on security related topics.

23

	Introduction
	Motivation
	Research Contributions
	Organisation

	Related Work
	Overview of RBAC Models
	The ESPOONERBAC Approach
	System Model
	Representation of RBAC Policies/Requests

	Solution Details
	Initialisation Phase
	Policy Deployment Phase
	Policy Evaluation Phase
	User Revocation Phase

	Algorithmic Details
	Initialisation Phase
	Policy Deployment Phase
	Policy Evaluation Phase
	Revocation Phase

	Security Analysis
	Preliminaries
	Security of Encryption Algorithms in the Policy Deployment Phase
	Security of Algorithms in the Policy Evaluation Phase
	Revealing Policy Structure

	Performance Analysis
	Implementation Details
	Performance Analysis of the Policy Deployment Phase
	Performance Analysis of the Policy Evaluation Phase

	Conclusions and Future Work

