
Supporting Complex Queries and Access Policies for
Multi-user Encrypted Databases

Muhammad Rizwan Asghar
CREATE-NET

International Research Center
Trento, Italy

asghar@create-net.org

Giovanni Russello
Department of

Computer Science
The University of Auckland

New Zealand
g.russello@auckland.ac.nz

Bruno Crispo
Department of

Information Engineering
and Computer Science

University of Trento, Italy
crispo@disi.unitn.it

Mihaela Ion
Department of

Information Engineering
and Computer Science

University of Trento, Italy
mihaela.ion@disi.unitn.it

ABSTRACT
Cloud computing is an emerging paradigm offering compa-
nies (virtually) unlimited data storage and computation at
attractive costs. It is a cost-effective model because it does
not require deployment and maintenance of any dedicated
IT infrastructure. Despite its benefits, it introduces new
challenges for protecting the confidentiality of the data. Sen-
sitive data like medical records, business or governmental
data cannot be stored unencrypted on the cloud. Companies
need new mechanisms to control access to the outsourced
data and allow users to query the encrypted data with-
out revealing sensitive information to the cloud provider.
State-of-the-art schemes do not allow complex encrypted
queries over encrypted data in a multi-user setting. In-
stead, those are limited to keyword searches or conjunctions
of keywords. This paper extends work on multi-user en-
crypted search schemes by supporting SQL-like encrypted
queries on encrypted databases. Furthermore, we introduce
access control on the data stored in the cloud, where any
administrative actions (such as updating access rights or
adding/deleting users) do not require re-distributing keys or
re-encryption of data. Finally, we implemented our scheme
and presented its performance, thus showing feasibility of
our approach.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls; E.3
[Data]: Data Encryption; H.2 [Database Management]:
Security, integrity, and protection; K.6 [Management of
Computing and Information Systems]: Security and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to poston servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Protection

General Terms
Security

Keywords
Encrypted Databases, Complex Encrypted Queries, Access
Control, Data Outsourcing

1. INTRODUCTION
The cloud computing paradigm offers customers the op-

portunity to have (virtually) unlimited storage and com-
putation capacities with attractive billing scheme. Storage
and computation are offered as services to customers that
are billed on the actual amount of consumed resources and
can be dynamically adapted to the current situation. Such
a revolutionary computational model offers customers very
reliable and high-performance storage and computation fa-
cilities without the burden of expensive hardware, software
and maintenance personnel.

With its cost-effective model, cloud storage is being
adopted by a large number of users. However, one of the
main limitations of this model is that it offers a very lim-
ited end-to-end data confidentiality. Business data, private
emails, medical records and government data are few exam-
ples of data that could be exposed to unsolicited accesses if
simply stored in the cloud. Traditional access control mech-
anisms are not sufficient for protecting the data confiden-
tiality in the cloud as they rely on a trusted infrastructure
that correctly enforces authorisation policies. A malicious
cloud provider could easily bypass an access control mecha-
nism on the cloud servers to gain access to the stored data.
To circumvent such a limitation, cryptography techniques
could be employed. A naive approach is to encrypt the data
before storing it on the cloud. The user could download
all the data in its local (trusted) environment and perform
the decryption and search operations. If the dataset is very
large, this trivial solution does not scale well. The mat-
ter becomes more complicated when multiple users need to

access the data concurrently.
To partially solve the data protection issue, single-user

searchable encryption schemes have been proposed [1–8]. In
such schemes, the cryptographic components are divided be-
tween the user and the server. The user performs encryption
and decryption operations while the server performs compu-
tations on the encrypted data. In this way, the server is able
to perform keyword-based search on the encrypted dataset.
The server can retrieve the matching data without learning
the key, plaintext and queries. In the single-user searchable
encryption schemes, only one user has the key for encrypt-
ing, querying and decrypting the data. The secret key could
also be shared among a group of authorised users. However,
such a decision complicates the key management process as
the removal of one user from the authorised group requires
the distribution of a new key and the re-encryption of all
the stored data.
Semi-fledged multi-user schemes (where a single writes

while multiple users read) [9–17] allow users to perform
search operations without sharing any key. However, writ-
ing operations can be performed by a single user while the
other users are only authorised to read. Both single-user and
semi-fledged multi-user schemes require key sharing among
users. Unfortunately, key sharing increases the risk of key
exposure. To partially resolve this issue, keys can be up-
dated regularly. The key updating mechanism may require
decrypting all the data with the old keys and re-encrypting it
using the new keys. However, this approach is not practical,
particularly when data sets are large.
More recently, full-fledged multi-user schemes (where each

user can write and read) have been introduced, where mul-
tiple users can perform read and write operations without
sharing keys [18–21]. These schemes are very attractive for
large organisations because they support multi-user access
to encrypted data with a scalable key management. How-
ever, current full-fledged multi-user schemes have two im-
portant limitations that hamper their up-taking: (i) these
schemes support only keyword-based searches without sup-
porting more complex queries, such as numeric inequalities
and range queries; (ii) these schemes offer a coarse-grained
access control model. There are solutions that aim at pro-
viding the fine-grained access control on data stored in the
outsourced environment [22, 23]. However, those solutions
are not feasible where administrative actions are updated
dynamically; this is because any administrative actions in-
cluding updating access rights, adding users (or resources)
and removing users (or resources) require re-distribution of
new keys, as well as re-encryption of existing data with those
keys.
In this paper, we tackle these data protection issues and

introduce a novel full-fledged multi-user scheme for running
encrypted queries over encrypted data outsourced to a cloud
environment. The main contributions of this paper are listed
as follows.

• First of all, we provide a very extensive overview and
categorisation of existing research carried out in the
area of outsourced databases. We have categorised ex-
isting work according to (i) query expressiveness and
(ii) the type of supported key management.

• To the best of our knowledge, this is the first work
to present a full-fledged multi-user scheme supporting
complex SQL-like queries with WHERE-clause that

can express conjunctions and disjunctions of equalities
and inequalities.

• Another feature of our scheme is the enforcement of ac-
cess policies. In our scheme, the database administra-
tor can assign to each user read and write access rights
for specific tables (or columns), where any administra-
tive changes (such as updating access rights and re-
moving users or tables) neither require re-distribution
of keys nor re-encryption of data.

• Finally, we have implemented our scheme and evalu-
ated its performance.

The rest of this paper is organised as follows. In Section 2,
we review state-of-the art. Section 3 explains the system and
threat models. The proposed approach is described in Sec-
tion 4. In Section 5, we elaborate the proposed solution.
Section 6 provides some definitions and construction details
of functions executed during different phases of the overall
system. Section 7 analyses the proposed solution from a
security point of view. In Section 8, we evaluates perfor-
mance of the proposed scheme. Section 9 is dedicated for
discussion. Finally, we conclude in Section 10 and provide
directions for future work.

2. STATE OF THE ART
In this section, we survey the existing approaches based on

expressiveness of the queries, and the key and user manage-
ment. We have categorised state-of-the-art. Table 1 sum-
marises our categorisation.

2.1 Single-user Schemes
Song et al. [1] are the first to address practical keyword

search on encrypted data using symmetric encryption, where
document is encrypted word by word. To perform search,
the user sends keyword encrypted with the same key to
the server, which tests each word in every document. This
scheme reveals statistical information, such as the frequency
of each word. To overcome this weakness, Goh [3] proposes
an efficient secure index construction built using pseudo-
random functions and Bloom filters. To prevent statistical
analysis attacks, each Bloom filter is randomised using a
unique document identifier. Bosch et al. [7] extend [3] with
wildcard searches. However, bloom filters introduce false
positives. Chang and Mitzenmacher [5] propose a similar
solution for building an index for each document. Their so-
lution provides more security than [3] because number of
words in a document are not disclosed. However, it is less
efficient and does not support arbitrary updates with new
words. Golle et al. [4] propose a scheme allowing multi-
keyword search with one encrypted query. However, like [5]
this scheme is not practical for large databases.

Curtmola et al. [10] introduce the first Symmetric Search-
able Encryption (SSE) scheme. Kamara et al. [28] extend
this scheme and introduce a Dynamic Symmetric Search En-
cryption (DSSE) scheme that supports addition and deletion
of documents from the index. Both schemes are limited to
keyword searches, without supporting range queries. Buck-
etisation [24] has been proposed for reducing range queries
to equality searches. The main issue is that this scheme
has some false positives on query execution. Hacigumus et
al. [2] propose a solution that enables SQL queries by using

Table 1: Comparison of schemes providing search on encrypted data schemes
Category Keyword Conjunction of keywords Complex queries

Single-user

Song et al. (2000) [1]
Goh (2003) [3]
Chang & Mitzenmacher (2005) [5]
Hacigumus et al. (2005) [2]

Golle et al. (2004) [4]
Bosch et al. (2011) [7]

Hore et al. (2004) [24]
Wang & Lakshmanan (2006) [6]
Popa et al. (2011) [8]
Hore et al. (2012) [25]

Semi-fledged multi-user

Boneh et al. (2004) [9]
Curtmola et al. (2006) [10]
Zhu et al. (2011) [15]

Baek et al. (2008) [12]
Rhee et al. (2010) [14]
Cao et al. (2011) [26]

Boneh & Waters (2007) [11]
Katz et al. (2008) [13]
Yang et al. (2011) [16]
Li et al. (2011) [17]
Lu & Tsudik (2011) [27]

Full-fledged multi-user

Bao et al. (2008) [20]
Dong et al. (2008) [19]
Shao et al. (2010) [21]

Hwang et al. (2007) [18] No solution yet

Bucketisation and support range queries after several inter-
actions between the user and the server. Hore et al. [25] ex-
tend Bucketisation to multi-dimensional data that enables
range queries. However, the Bucketisation technique is not
scalable.
Another popular method for supporting range queries is

Order Preserving Encryption (OPE) [29–31]. The OPE does
not introduce false positives and is efficient. However, it re-
veals the order relation between ciphertext values. Popa
et al. [8] propose CryptDB for protecting databases. The
system relies on a trusted proxy server that intercepts user
queries to the protected database. The proxy holds a secret
master key and encrypts and decrypts data and queries. For
matching keywords, CryptDB uses an implementation of [1]
and range queries are supported using the OPE [30]. Simple
computations on numeric data are performed using homo-
morphic encryption based on the Paillier cryptosystem [32].
However, maintaining and securing the proxy server may not
be feasible for many companies that choose cloud comput-
ing as a way of simplifying operations and reducing costs.
Second, the methods used for providing keyword search and
range queries have been shown not to provide sufficient se-
curity. Last but not least, CryptDB is a single-user scheme
while we propose the full-fledged multi-user scheme.

2.2 Semi-fledged Multi-user Schemes
All the above schemes are based on symmetric encryp-

tion. The first Public-key Encryption scheme with Keyword
Search (PEKS) was proposed by Boneh et al. [9]. How-
ever, their trapdoor encryption scheme is vulnerable to in-
ference attacks. Subsequently, [12, 14, 15] improved the se-
curity of the scheme and [12] also introduced conjunctions
of keywords. Public-key encryption is computationally ex-
pensive, which makes these schemes too inefficient for large
databases. Yang et al. [16] propose a solution in which the
database owner encrypts the data and assigns to each user
a unique key for searching and reading the data. The main
idea is that the data owner splits the master secret uniquely
between each user and the server. A major drawback of this
method is that the search operation is inefficient because it
requires expensive pairing operations.
Boneh and Waters [11] propose a public key-based pred-

icate encryption scheme that supports conjunctions, range
queries and subset queries on encrypted data. Katz et al. [13]
extend [11] and propose a predicate encryption for inner
products scheme that supports conjunctions and disjunc-
tions. Shen et al. [33] propose a symmetric key based pred-
icated encryption scheme that achieves predicate privacy.
Li et al. [17] propose a solution based on Hidden Vector

Encryption (HVE) that uses multiple trusted authorities to
distribute search capabilities to users. All these solutions
are inefficient because these require expensive evaluations
involving pairing operations.

Cao et al. [26] propose multi-keyword ranked search over
encrypted data, where the database owner creates an initial
index. Building the index is very expensive and it cannot be
changed dynamically. Lu and Tsudik [27] propose a solution
based on Attribute-Based Encryption (ABE) [34] and blind
Boneh-Boyen weak signature scheme [35]. However, in their
solution, only the data owner is able to encrypt the data and
it needs to be online to help authorised users extract search
tokens and decryption keys.

2.3 Full-fledged Multi-user Schemes
Hwang et al. [18] extend Public key Encryption with Con-

junctive Keyword search (PECK) to multi-user settings. To
encrypt a message that can be read by a set of users, the
sender needs the public keys of all the users. Besides in-
efficient pairing operations, ciphertext grows linearly with
the number of users. Moreover, adding new users to the
system requires re-encrypting all the data. Bao et al. [20]
propose a multi-user solution for keyword searches on en-
crypted databases, where each user has its own key for writ-
ing and reading. The use of bilinear maps and the interactive
encryption algorithm make this scheme inefficient. Dong
et al. [19] propose Searchable Data Encryption (SDE), a
multi-user scheme that supports keyword search. The SDE
is based on proxy encryption and does not require interactive
protocols or pairing. As a result, the SDE is efficient scheme
for performing search on encrypted data. Shao et al. [21] in-
troduce Proxy Re-Encryption with keyword Search (PRES),
a combination of proxy re-encryption and PEKS. Like most
of the schemes, this scheme is also based on pairing for test-
ing keywords that makes it inefficient.

As illustrated in Table 1, most solutions provide keyword
search or conjunctions of keywords. None of the surveyed
schemes is able to support both full-fledged multi-user sup-
port and complex queries.

3. SYSTEM MODEL
In our scenario, we consider an outsourced database hosted

by a cloud service provider. In the system model, we assume
the following entities:

• Database User (DBU): It represents an authorised
entity that is part of the system. As such, a DBU can
encrypt data and insert it in the database. Each DBU
is also able to retrieve data from the database perform-
ing complex queries. Once the matching data has been

�������

����	�

�
�
��
�
�
��
�
	

�
��
�
�
��
�
�
		

�
�
��
�
�
�
�
�
�	 ��������	
�	�

����

��� �����

����

����	�����

�����
����

�����

�
�
�
�
��
�
		
	
�
�
��
�
�
�
�
�
�	

	
�

	�����
��
	
�
 �����

������

������

���
���
������

�������

�
������

�����

�����
���
��

����
���

�������
������

��������

�
������

������

����� !
������

����
���

���

������

���

������

���

����� !

����

����� !

��"�

����� !#

$�%&� %�

�"�

$�%&� %�

�'�

�����

���

�����

�(�

)�*�

�+�

$�%�,*

�"��

$�%&� %�

�-�

$�%�,*

�����������	�����������������������

Figure 1: The proposed architecture for encrypted databases, consisting of the CS in the outsourced envi-
ronment and both the DBA and the DBU (clients) and the KMA in the trusted environment

retrieved, the DBU can decrypt it. Moreover, a DBU
can modify or delete data stored in the database.

• Database Administrator (DBA): It is responsible
for managing tables and users in the database. The
DBA can create new tables or drop existing ones. Fur-
thermore, it administrates access policies for DBUs.
That is, it decides who is authorised to access tables
in the database.

• Cloud Server (CS): A CS is part of the infrastruc-
ture provided by the cloud service provider. It stores
the encrypted data and access policies. After making
authorisation checks, it performs encrypted searches
according to the DBUs’ requests.

• Key Management Authority (KMA): This au-
thority is responsible for generating and revoking keys.
For each DBU that is authorised by the DBA to join
the system, the KMA generates a set of keys. The
set of keys is securely distributed. When a DBU (or
a DBA) has no longer permissions to be part of the
system, the KMA revokes the corresponding keys with
the support of the CS.

Threat Model: We assume that the KMA is fully trusted.
Typically, the KMA is directly under the control of the or-
ganisation that is outsourcing data to the cloud. Since the
KMA has to manage a limited amount of data, it is easy for
the organisation to properly secure the KMA. Once DBUs
are authorised to join the system by the DBA, they are
trusted to securely store their keys and the data.
The CS is modelled as honest-but-curious (as considered

in state-of-the-art on data outsourcing [22,36]). That is, the

CS is trusted to “honestly” perform operations requested by
the DBUs according to the protocol specification. However,
the CS is not trusted to guarantee data confidentiality and it
could analyse the message flow in order to learn information
about the stored data. We assume that the CS will not
mount active attacks, such as modifying the message flow
or denying access to the database.

It is assumed that there are mechanisms in place for data
integrity and availability. We consider that DBUs with dif-
ferent access rights may collude in order to retrieve informa-
tion they are not allowed to access.

4. THE PROPOSED APPROACH
In this section, we explain architecture for supporting

complex queries and access policies for multi-user encrypted
databases stored in outsourced environments, where the
DBUs/DBAs can query without disclosing to the CS any
information about the query or the records stored in the
database. The main idea behind our approach is to employ
the proxy encryption scheme (described in Section 5), where
the DBU (or the DBA) performs one round of encryption
while the CS performs another round of encryption before
storing or querying data in the outsourced environment. In
our proposed scheme, it is the DBA who creates or drops
tables in the database. Furthermore, the DBA is responsi-
ble for regulating access on encrypted tables stored in the
database. The CS performs authorisation checks before pro-
viding DBAs access to the requested data.

Figure 1 illustrates the proposed architecture for protect-
ing data in the outsourced environment. For adding a new
table in the database, the DBA issues a create Command
(i) using the DBA Client. The Command Re-writer module

Table 2: A sample table schema indicating column
name, its type and size all stored in the Data Dictio-
nary, where String size represents number of char-
acters while size of Boolean and Integer represents
number of bits

Table Column Type Size

Personnel

Name String 25
Gender Boolean 1
Position String 15
Level Integer 2

Table 3: An example of a table Personnel with four
columns

Personnel

Name Gender Position Level

Andy Male Manager 2

of the DBA Client performs the first round of proxy encryp-
tion and sends the Command to the CS (ii). The Com-
mand Processor module on the CS receives (ii) Command
and performs the server side round of encryption before
storing/retrieving scheme of new/existing table in/from the
Data Dictionary (iii). Table 2 illustrates a sample scheme
of a table (i.e., Personnel shown in Table 3) stored in the
Data Dictionary. In the schema of Personnel table, we can
notice four columns including Name, Gender, Position and
Level. The data type of Name and Position is String, Gen-
der is Boolean and Level is of type Integer. For a String,
size represents number of characters while size of Boolean
and Integer represents number of bits.

Table 4: Access right matrix showing DBUs (in
rows) access on tables (in columns)

❳
❳
❳

❳
❳
❳❳

DBU

Table
Personnel Customer

Alice Grant Deny
Bob Deny Grant

In the proposed architecture, it is the DBA who defines
(updates or deletes) access policies for tables in the database.
The Command Processor on the CS processes commands
concerning access policies and stores/retrieves those policies
in/from the Access Policy Repository (iv) after performing
the server side round of proxy encryption. For managing
access policies, we consider access right matrix, where each
row represents capability of a DBU and each column repre-
sents the access control list of a table. For each new table,
the DBA adds a column, specifying who can get access. Sim-
ilarly, the DBA specifies access for a new user by adding a
new row in the access control matrix. Table 4 shows the ac-
cess control matrix indicating DBUs Alice and Bob have ac-
cess to Personnel and Customer tables, respectively. There
are three such matrices; one for read (SELECT), one for
write (INSERT) and one for delete. The update operation
is equivalent to both read and write. That is, a DBU has up-
date access if she has both read and write access. All three
matrices are stored in the Access Policy repository managed
by the CS.
A Command Processor may send a (v) Response after

running the requested command, which could be read/write
access policies or schema stored in the Data Dictionary. The
Response Processor on the DBA Client performs the client
side round of proxy re-encryption, processes the response

based on original (ii-b) Command, and finally displays a
(vi) Response back to the DBA.

A DBU can issue a (i) Query using the DBU Client. The
query can be SELECT, INSERT, UPDATE or DELETE
for processing data files. However, a DBU has SELECT
(read-only) access to the Data Dictionary. Before leaving
the trust environment, the issued query is first encrypted
by the DBU Client (2). The Query Processor on the CS
receives (2) Query and performs the server side round of
proxy encryption. Before executing the query, the Query
Processor checks the access rights corresponding to the DBU
who issued the query. For this reason, the Query Processor
sends the (3) Access Request to the Access Manager that
is responsible to evaluate the access policies. For this eval-
uation, the Access Manager retrieves the (4) Access Policy
from the Access Policy Repository and sends the (5) Access
Response back to the Query Processor. The Query Proces-
sor executes the query if the Access Response is grant and
sends (6) Metadata or (7) Data in (8) Result to the DBU
Client after performing server side round of proxy encryp-
tion. The Result Processor of the DBU Client processes the
results while taking into account the original issues (2-b)
Query and finally displays the (9) Result to the DBU.

The data including data files, data dictionary and access
policy may leak sensitive information if stored in the cleart-
ext. In the following, we elaborate how we protect confiden-
tiality of the data in outsourced environments.

��������	
�	

./0 1234/

����

������	��
�

��
���
�

5626 789/:;

5626 58<283=640;

><</:: ?398<0

��������		����

���������

@AB C

�����		���	

��������

�����

��������

�����

@AAB

)D(

)D(
*

*

i

i

PE

KE

@AAAB

)D(

)D(

PE

KE

@DB

)D(

)D(

PE

KE

@EB

)Q(*
jTD

@FB

)Q(TD

@GB

)D(*
jPE

))(,)D((Match (If trueQTDKE =

@HB

)D(PE

jUK
iUK

iSK
jSK

jSK
��������		����

���������

iSK

@IB J @KB C

L=<40M2/N

Figure 2: The overview of detailed architecture illus-
trating key distribution and both writer and reader
processes using two variants of encryption (includ-
ing KE and PE) that are employed

5. SOLUTION DETAILS
This section describes our full-fledged multi-user search-

able scheme supporting complex encrypted queries over the
encrypted database stored in the cloud. Among the full-
fledged multi-user schemes we surveyed, SDE [19] is the most
efficient for encrypted search. However, SDE supports only
equality. Furthermore, we support the access control. In

this section, we describe how we extend SDE with a com-
plex access structure inspired from the ABE [34, 37]. The
ABE uses an access structure able to support conjunctions
and disjunctions of equalities and inequalities. Nevertheless,
it does not guarantee confidentiality of the access structure
or of the attributes that are tested on the structure, being
unsuitable for encrypted search. In the following, we pro-
pose a practical solution that provides confidentiality to the
access structure by using SDE.
The proposed solution is based on two variants of encryp-

tion scheme including Keyword Encryption (KE) and Proxy
Encryption (PE), initially proposed in SDE [19]. The KE
scheme is employed for supporting encrypted match (equal-
ity only) while the PE scheme is used for protecting data
in outsourced environments. That is, the PE scheme is em-
ployed for retrieving the data. Figure 2 shows the detailed
architecture illustrating both KE and PE schemes for writer
and reader processes. For performing match using the KE
scheme, the query is transformed into trapdoors, where a
trapdoor is implemented using the one-way function. In
both KE (including trapdoor) and PE schemes, the client
side performs one round of encryption while the server side
performs second round of encryption as shown in Figure 2.
The KE and PE schemes, and trapdoor representation does
not leak information about database or query, respectively.

Table 5: Description of frequently used symbols and
functions

Symbol Description

KUi
User key corresponding to DBU/DBA i

KSi
Server key corresponding to DBU/DBA i

KE(.) Keyword Encryption
PE(.) Proxy Encryption
TD(.) Trapdoor

In the following, we discuss various aspects of the pro-
posed system. The frequently used symbols and functions
are described in Table 5.

Key Distribution: The KMA generates keys and dis-
tributes them to DBUs/DBAs and the CS. For each DBU
or DBA, the KMA generates a pair of key including a user
key and a server key and sends to the DBU/DBA and the
CS respectively (as illustrated with dotted lines in Figure 2).
The CS stores the keys in Key Store.

Table 6: An example of table Personnel encrypted
using proxy encryption and stored on the CS

{Personnel}KE

{Name}KE {Gender}KE {Position}KE {Level}KE

{Name}PE {Gender}PE {Position}PE {Level}PE

{Andy}KE {Male}KE {Manager}KE
{1*}KE

{*0}KE

{Andy}PE {Male}PE {Manager}PE {2}PE

Data Writing Process: A DBU or a DBA can serve as a
writer to write data, which will be stored in the outsourced
environment as shown in Figure 2 (I). More precisely, it
could be an INSERT (or UPDATE) query issued by a DBA
or a command to define (or update) Access Policy or Data
Dictionary. For simplicity, let us consider that a DBA has
issued INSERT (Andy, Male, Manager, 2) query to write a
record in table Personnel, shown in Table 3. Since each col-
umn can be searched or retrieved, it will be encrypted with

both KE and PE, respectively. Please note that Figure 2
is illustrating only a single element. The DBA Client will
perform the first round of encryption using the user key and
will send the user encrypted data to the CS (II). The CS will
perform the second round of encryption using the server side
key corresponding to the writer before storing the data (III).
Table 6 shows how (encrypted) data will be stored on the
CS. There is clearly data expansion that we can realise from
one to two tables, two rows, two columns or two cells. To
apply the KE scheme, each string value is represented with
a single element and each numerical value is represented as
a bag of bits, where each numerical value of size s bits is
represented with s elements as shown in Table 6. That is,
one numerical value of size s bits is equal to s string values.

In case if the data is a command to write schema in the
Data Dictionary then only table name (first column in Ta-
ble 2) needs to be encrypted with both KE and PE while
rest of columns do not require KE as those are not searched.
Similarly, only table names are protected in access matrix
shown in Table 4.

Data Reading Process: As a reader, a DBU or a DBA can
query and read data stored in the outsourced environment
as shown in Figure 2 (a). The DBU/DBA Client can trans-
form plaintext query into trapdoor before sending to the CS
(b). The trapdoor representation does not leak information
on the plaintext query. The Query/Command Processor re-
ceives client encrypted trapdoor and generates server side
trapdoor (c). The CS performs match between (KE) en-
crypted data and trapdoor. If the match is successful, the
CS selects the (PE) encrypted data (e), pre-decrypts it and
sends to the DBU/DBA Client (f). Finally, the DBU/DBA
Client can user her key to decrypt the data (g).

����������	

�����	���

��������

�����

��������

�����

˄

˅

������ �������
��

�������������		��
�������

Figure 3: An example of query encryption where
original query is SELECT name from Personnel

WHERE Position = Manager and Level < 3

Query Representation: For supporting complex queries,
we use access structure used in the ABE [34,37], which can
represent conjunctions and disjunctions of equalities and in-
equalities. In our proposed scheme, we transform each query
into trapdoors. For each string field in query, the client gen-
erates a single trapdoor while for each numerical field in
query, one or more trapdoors are generated. We use bag of
bits to represent numerical fields. For a numerical field of
size s bits, s trapdoors are generated in the worst case. The
WHERE-clause of the query is represented as a tree, where
each leaf node represents field name and value and non-leaf
node represent conjunctions and disjunctions. Figure 3 illus-
trates an example of an encrypted query, where the original
query is for retrieving names of managers whose level is less
than 3, from the Personnel table.

Query Evaluation: To evaluate encrypted queries, the CS

checks if WHERE-clause of the query satisfies any encrypted
record stored on the CS. For each encrypted leaf node in the
WHERE-clause, the CS first find column and then com-
pares its value. The leaf node will be considered as satisfied
if there is a match between value in the query and value in
the database record. The non-leaf node will be considered as
satisfied based on satisfaction of its children as discussed in
Section 6.2. A record will be selected if and only if the root
node of the WHERE-clause tree is considered as satisfied.
Finally, only matching records are sent back to the client.

Policy Enforcement: The Access Manager on the CS per-
forms authorisation check before granting requested opera-
tions. For the sake of simplicity, we did not show the Access
Manager in Figure 2; however, it can be seen in the abstract
architecture shown in Figure 1. Let us consider the en-
crypted query illustrated in Figure 3. Before executing this
query, the CS will first check whether the DBU who has is-
sued the query has access on requested table. This is accom-
plished by matching trapdoor of table (i.e., TD(Personnel))
against encrypted table names (i.e., KE(Personnel)) in the
access control matrix for which the DBU has ’grant’. The
query is executed if and only if the match is successful.

Supporting Joins: In the proposed scheme, we can sup-
port joins using trapdoors of columns that could be joined.
To support joins, a DBU has to generate trapdoor of the
column value in addition to use KE and PE schemes. Given
two columns to be joined, the trapdoor value of one column
will be matched against the KE value of the other column.

User Revocation: For certain reasons (such as in case
of compromise), a DBA/DBU can be removed from the sys-
tem. For any revocation, the KMA interacts with the Access
Manager to remove the server side key of the compromised
DBAs/DBUs from the Key Store on the CS. Therefore, the
Access Manager ensures that the server side key is not re-
moved before granting access to the DBA/DBU.

6. DEFINITIONS AND CONSTRUCTION
DETAILS

This section provides some definitions and the construc-
tion details of algorithms used in different phases.

6.1 Definitions
Our propsoed scheme consists of the following algorithms:

• Init(1k). The KMA runs the initialisation algorithm
in order to generate the public parameters Params

and the master secret key set MSK after taking the
security parameter k as input.

• KeyGen(MSK, i). The KMA runs the key generation
algorithm to generate a keying material for DBUs and
DBAs. For each user (i.e., a DBU/DBA) i, this algo-
rithm generates two key sets KUi and KSi . KUi is the
key set for user i while KSi is the corresponding server
side key for user i.

• User-KW -Enc(D,KUi). A user i runs the keyword
encryption algorithm to make encrypted data search-
able. It takes data D and user key KUi and results in
KE∗

i (D).

• Server-KW -Re-Enc(KE∗

i (D), KSi). The server
re-encrypts the user encrypted searchable dataKE∗

i (D).
The server retrieves the key KSi corresponding to user
i and computes the re-encrypted keyword KE(D).

• User-P -Enc(D,KUi). A user i runs the data encryp-
tion algorithm to encrypt data D using user key KUi .
This results in ciphertext PE∗

i (D).

• Server-P -Re-Enc(PE∗

i (D),KSi). The server
re-encrypts the user encrypted data PE∗

i (D). The
server retrieves the key KSi corresponding to user i

and computes the re-encrypted ciphertext PE(D).

• Query-Enc(Q,KUj). A user j runs this algorithm to
encrypt the query. It takes as input query Q and user
key KUj and outputs the encrypted query TD∗

j (Q).

• Query-Re-Enc(TD∗

j (Q),KSj). The server runs this al-
gorithm to re-encrypt the query. It takes as input the
user encrypted query TD∗

j (Q). The server retrieves
the key KSj corresponding to user j and computes the
re-encrypted query TD(Q).

• Match(KE(D), TD(Q)). The server runs this algo-
rithm to perform search on encrypted data. It takes
as input the encrypted data KE(D) and the encrypted
query TD(Q). It returns true if there is a match and
false otherwise.

• Search(R,CQT). The server performs match between
record R (a set of encrypted keywords {KD(D1),
KD(D2), . . . ,KD(Dn)}) and the complex query tree
CQT . If record satisfies the complex query tree, it
returns true and false otherwise.

• Server-Pre-Dec(PE(D), KSj). The server runs this
algorithm to partially decrypt the encrypted data for
the user j. It takes as input PE(D). The server re-
trieves the key KSj corresponding to user j and com-
putes the pre-decrypted data PE∗

j (D).

• User-Dec(PE∗

j (D),KUj). The user runs this algorithm
to decrypt the data. It takes as input the pre-decrypted
data PE∗

j (D) and user key KUj and decrypts data D.

• Revoke(i). The Access Manager on the CS runs this
algorithm to revoke user i access to the data. Given i,
the Access Manager removes KSi from the Key Store.

6.2 Construction Details
In this following, we provide the concrete construction of

each algorithm.

• Init(1k). The KMA takes as input the security pa-
rameter k. It outputs two prime numbers p, q such
that q divides p − 1, a cyclic group G with a gen-
erator g such that G is the unique order q subgroup
of Z∗

p . It chooses a random x from Z∗

q and outputs
h = gx. Also, it chooses a collision-resistant hash
function H, a pseudorandom function f and a random
key s for f . Finally, it publishes the public parame-
ters Params = (G, g, q, h,H, f) and keeps securely the
master secret key MSK = (x, s).

• KeyGen(MSK, i). For each user i, the KMA chooses
a random xi1 from Z∗

q and computes xi2 = x − xi1.
Next, it transmits KUi = (xi1, s) securely to user i

and KSi = (i, xi2) to the server.

• User-KW -Enc(D,KUi). It is run by user i before in-
serting a new record in the database. It makes en-
crypted data searchable and encrypts each element in
the record. For each data element D, the user chooses
a random rD from Z

∗

q and computes σD ← fs(D).
Next, it computes KE∗

i (D) = (ĉ1, ĉ2, ĉ3), where ĉ1 =
grD+σD , ĉ2 = ĉ

xi1
1 and ĉ3 = H(hrD). Finally, the

KE∗

i (D) is sent to the server.

• Server-KW -Re-Enc(KE∗

i (D),KSi). It is run by the
server to re-encrypt the user encrypted searchable data.
For each encrypted element KE∗

i (D), the server com-
putes KE(D) = (c1, c2), where c1 ← (ĉ1)

xi2 · ĉ2 =
ĉ
xi1+xi2
1 = (grD+σD)x = hrD+σD and c2 = ĉ3 = H(hrD).

• User-P -Enc(D,KUi). A user i encrypts data using
proxy encryption. For each data element D, it chooses
random r′D from Z

∗

q . Next, it computes PE∗

i (D) =

(ê1, ê2), where ê1 = gr
′
D and ê2 = gr

′
Dxi1D. Finally,

PE∗

i (D) is sent to the server.

• Server-P -Re-Enc(PE∗

i (D), KSi). It is run by the server
to re-encrypt the user encrypted data. First, the server

computes (ê1)
xi2 · ê2 = (gr

′
D)xi2 · gr

′
Dxi1D

= gr
′
Dxi1+r′Dxi2D = gr

′
DxD in order to get PE(D) =

(e1, e2), where e1 = gr
′
D and e2 = gr

′
DxD.

• Query-Enc(Q,KUj). A user j runs this algorithm to
encrypt the query. First, the user computes σQ ←
fs(Q). Next, it chooses a random rQ from Z

∗

q . Finally,
it calculates TD∗

j (Q) = (t1, t2), where t1 ← g−rQgσQ

and t2 ← hrQg−xj1rQgxj1σQ = gxj2rQgxj1σQ .

• Query-Re-Enc(TD∗

j (Q),KSj). The server runs this al-
gorithm to re-encrypt the query. The server computes
T ← t

xj2

1 · t2 = gxσQ and returns TD(Q) = T .

• Match(KE(D), TD(Q)). The server runs this algo-
rithm to perform search on encrypted data. The server

checks whether c2
?
= H(c1.T

−1). On successful match,
it returns true and false otherwise.

• Search(R,CQT). The server performs match between
record R (a set of encrypted keywords {KD(D1),
KD(D2), . . . ,KD(Dn)}) and the complex query tree
CQT , which is basically WHERE-clause. First, the
server matches (using Match algorithm) each leaf node
in tree with the encrypted keyword in record. If a
match is found, the leaf node is considered as satis-
fied. For internal nodes, the algorithm checks if the
number of children that are satisfied is at least the
threshold value of the node, which is equal to number
of children in case of AND and one in case of OR gates.
On success, the internal node is considered as satisfied.
If root node of the tree is satisfied it returns true and
false otherwise.

• Server-Pre-Dec(PE(D), KSj).When a match is found,
the server retrieves matching records requested by the

user and partially decrypts using KSj . The cipher-

text PE(D) is decrypted as e2 · (e1)
−xj2 = gr

′
DxD ·

(gr
′
D)−xj2 = gr

′
D(x−xj2D = gr

′
Dxj1D. The server sends

to the user PE∗

j (D) = (ê1, ê2), where ê1 = gr
′
D and

ê2 = gr
′
Dxj1D.

• User-Dec(PE∗

j (D),KUj). The user decrypts cipher-

text as ê2 · (ê1)
−xj1 = gr

′
Dxj1D · (gr

′
D)−xj1 = D.

• Revoke(i). The Access Manager on the CS runs this
algorithm to revoke user i access to the data. Given i,
the Access Manager removes KSi from the Key Store
as follows: KS ← KS\KSi , where KS represents the
Key Store and is initialised as KS ← φ.

7. SECURITY ANALYSIS
In this section, we provide an evaluation of the security

of our proposed scheme. To support complex queries, we
extended the multi-user SDE scheme from [19], which only
supports keyword search. We represent the search query
as an access tree [34, 37, 38] that can provide support for
complex queries, such as disjunctions and conjunctions of
equalities, inequalities and negations. The SDE construction
is INDistinguishable under Chosen Plaintext Attack (IND-
CPA) under the assumption the Decisional Diffie-Hellmann
(DDH) problem is hard relative to the group G (defined in
Section 6.2). We encrypt the access tree and the data stored
in the database using SDE, hence our scheme is also IND-
CPA secure. In the following, we provide a sketch of the
proof that both variants of SDE including KE and PE are
secure.

Theorem 1. If the DDH problem is hard relative to G,
then the keyword encryption scheme KE is IND-CPA secure
against the server S, i.e., for all Probabilistic Polynomial
Time (PPT) adversaries A there exists a negligible function
negl such that:

SuccAKE,S(k) = Pr

b′ = b

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(Params,MSK)← Init(1k)

(KUi
, KSi

)← KeyGen(MSK, i)

kw0, kw1 ← A
User-KW -Enc(·,KUi (KSi

)

b
R
←− {0, 1}

c∗i (kwb) = User-KW -Enc(kwb, xi1)

b′ ← A
User-KW -Enc(·,KUi

)
(KSi

, c∗i (kwb))

< 1
2 + negl(k)

(1)

Proof. See Theorem 2 in [19].

Theorem 2. If the DDH problem is hard relative to G,
then the proxy encryption scheme PE is IND-CPA secure
against the server S, i.e., for all PPT adversaries A there

 0

 40

 80

 120

 160

 200

 240

 280

 320

 2 4 6 8 10 12 14 16 18 20

K
ey

w
or

d
E

nc
ry

pt
io

n
tim

e
(in

 m
s)

Number of elements in a record

KE: Client Side
KE: Server Side

(a)

 0

 40

 80

 120

 160

 200

 240

 280

 320

 2 4 6 8 10 12 14 16 18 20

P
ro

xy
 E

nc
ry

pt
io

n
tim

e
(in

 m
s)

Number of elements in a record

PE: Client Side
PE: Server Side

(b)

Figure 4: INSERT Query: Effect of number of elements in a record on (a) KE and (b) PE running time

exists a negligible function negl such that:

SuccAPE,S(k) = Pr

b′ = b

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(Params,MSK)← Init(1k)

(KUi
, KSi

)← KeyGen(MSK, i)

d0, d1 ← A
User-P -Enc(·,KUi (KSi

)

b
R
←− {0, 1}

c∗i (db) = User-P -Enc(db, xi1)

b′ ← A
User-P -Enc(·,KUi

)
(KSi

, c∗i (db))

< 1
2 + negl(k)

(2)

Proof. See Theorem 1 in [19].

8. PERFORMANCE EVALUATION
In this section, we provide an evaluation of the overhead

introduced by our encryption scheme. We implemented our
scheme in Java. We tested the implementation of our scheme
on a single node based on an Intel Core i7 2.67 GHz pro-
cessor with 4 GB of RAM, running Microsoft Windows 7
Professional version Service Pack 1. In the following, all the
results are averaged over 100 runs.

8.1 INSERT Query
In our proposed scheme, an INSERT query is encrypted

in two steps, each step involving two encryption schemes in-
cluding KE and PE. Figure 4 illustrates performance over-
head of INSERT query. In our experiment, we observed
effect of number of elements on KE and PE schemes on
both client and server sides. As we can notice in Figure 4,
the encryption time grows linearly with increase in number
of elements in the record. In both KE and PE schemes, the
client side incurs more overhead than that of the server side.
The main reason is complex operations that are performed
on the client side including random number generation. We
increased number of encrypted elements from 2 to 20 and
measured running time of encryption in milliseconds (ms).
To encrypt 20 elements, the KE scheme takes approximately
330 ms (i.e., an average of 16.5 ms per element) and 82 ms
(i.e., an average of 4.1 ms per element) on the client and
server sides as shown in Figure 4(a), respectively. Similarly,
we analysed the behaviour of the PE scheme. To encrypt
20 elements, the PE scheme takes approximately 123 ms
(i.e., an average of 6.15 ms per element) and 81 ms (i.e.,

an average of 4 ms per element) on the client and server
sides as shown in Figure 4(b), respectively. Each string field
is represented as a single encrypted element while each nu-
merical field of size s bits are represented with s encrypted
elements. That is, one numerical field of size s bits is equiva-
lent to s string fields. Asymptotically, INSERT query takes
Θ(n +ms) on both client and server sides, where n and m

represent number of string and numerical fields, respectively
while s indicates size of each numerical field.

 0

 40

 80

 120

 160

 200

 240

 280

 320

 2 4 6 8 10 12 14 16 18 20

T
ra

pd
oo

r
ge

ne
ra

tio
n

tim
e

(in
 m

s)

Number of elements in query

TD: Client Side
TD: Server Side

Figure 5: SELECT Query: Effect of number of ele-
ments in query on the trapdoor generation time

8.2 SELECT Query: Trapdoor Generation
A client’s query is transformed into trapdoors. The

WHERE-clause of the query is represented as a complex
query tree, illustrated in Figure 3. Besides the table name
and fields appearing with WHERE-clause, the query is de-
pendent on number is elements in the leaf node of theWHERE-
clause tree. Figure 5 illustrates the case when number of
elements in query are increased from 2 to 20. For gener-
ating 20 trapdoors, the client and server sides take 305 ms
(i.e., an average of 15.25 ms per element) and 83 ms (i.e., an
average of 4.15 ms per element), respectively. Like the PE
and KE schemes, trapdoor generation takes more time on
client side than that of the server. The algorithmic complex-
ity of trapdoor generation on both client and server sides is:
Θ(n+ms).

8.3 Policy Enforcement
The server makes authorisation check before executing the

requested query. For a requested client, the server lookups
the corresponding (SELECT/INSERT) access control ma-

 0

 0.5

 1

 1.5

 2

 200 400 600 800 1000

S
ea

rc
h

tim
e

(in
 s

)

Number of records

Server searching time

(a)

 0

 0.5

 1

 1.5

 2

 100 200 300 400 500

P
ro

xy
 D

ec
ry

pt
io

n
tim

e
(in

 s
)

Number of records

PE: Server Pre-Decryption
PE: Client Decryption

(b)

Figure 7: SELECT Query: Effect of number of records on (a) search and (b) proxy decryption time

 0

 1

 2

 3

 4

 2 4 6 8 10A
ut

ho
ris

at
io

n
ch

ec
ki

ng
 ti

m
e

(in
 m

s)

Number of granted tables

Time to check authorisation

Figure 6: Effect of granted tables (in the access con-
trol matrix) on authorisation checking time

trix. The server matches encrypted trapdoor of table name
in query with any encrypted table name for which the client
has been granted access. If there is a match, the access is
granted. Figure 6 shows overhead of encrypted matching be-
tween table name in query and table name in the access con-
trol matrix. In our experiment, we assumed 10 table names
in the access control matrix and it took approximately 3.7
ms, an average of 0.37 ms per comparison. Overall, the time
for checking the access rights is very small compared to other
operations.

8.4 SELECT Query: Server Matching
The query matching is the most critical operation per-

formed by the server. The server tests the encrypted query
against an encrypted record stored in the database and then
decrypts the matching records. Figure 7 demonstrates per-
formance of query search and decryption. For this experi-
ment, we consider query illustrated in Figure 3 (i.e., 5 com-
parisons per row in the worst case and 1 comparison in the
best case, which is due to short-circuit evaluation of the
query) and consider 1000 random records in the database.
To assess the performance of our search operation, we matched
query with records in the database. As we expected and can
see in Figure 7(a), the searching time grows linearly with in-
crease in number of records. For 1000 records, it took almost
2 seconds (s). For each string field in query, the server takes
Ω(r), where r is number of records in the table. However,
a numeric field in query is computationally extensive. For a
numeric field of size s bits, the server takes O(r · s2). The
number of equality checks depends on the complexity of the

query and the distribution of the data in the database. If
there are n string and m numeric fields in query, the server
will take O(r · (n + ms2)) in the worst case. In the best
case, the server has to traverse r records, thus incurring
Ω(r) overhead.

8.5 SELECT Query: Result Decryption
After finding out all matched records with query, the server

pre-decrypts results and sends to the client, which finally
retrieves them after performing decryption. The decryp-
tion time depends mainly on number of fields in a record
and number of records. Figure 7(b) shows performance of
result decryption. Assuming one field (i.e., name) in SE-
LECT query as shown in Figure 3), the decryption time on
the server and client sides is 2200 ms and 1290 ms for 500
records, respectively. In the worst case, the result decryp-
tion incurs: O(r · (n+m)).

Table 7: Summary of complexity of executing
queries on both client and server sides, where n rep-
resents number of string elements; m indicates num-
ber of numerical elements each of size s bits; and r

represents number of records in the database
Query

Type
Description Best Case Worst Case

INSERT
Record
encryption

Θ(n + ms)

SELECT
Trapdoor
generation

Θ(n + ms)

SELECT
Server
matching

Ω(r) O(r · (n + ms2))

SELECT
Result
decryption

Ω(1) O(r · (n + m))

Table 7 summarises algorithmic complexities of both IN-
SERT and SELECT queries. We can notice that the server
side search operation is computationally extensive. In real-
ity, we have implemented short-circuit evaluation of query
that can speed up the performance in practical scenarios.

9. DISCUSSION

9.1 Fine-grained Access Control
In our proposed scheme, we have defined access control at

the table level. Without loss of generality, we can extend
access control at column level. However, the access control
matrix will grow depending on the number of columns. As

a result, the CS will take more time to perform the autho-
risation check, which is the trade-off for supporting more
fine-grained access policies.

9.2 Collusion Attacks
We assume that DBUs can collude; however, they cannot

gain more than what each DBU can access individually be-
cause each one has her own private key and combination of
those keys do not reveal any further information. On the
other hand, a DBU (or a DBA) and the CS can collude
together to gain unauthorised access to the data by com-
bining their keys, where they can recover the master secret.
For withstanding against this kind of collusion, one possibil-
ity is to assume multiple instances of the CS and split the
server side key such that each instance gets one share. The
main drawback of this approach is that it cannot work if
all instances of the CS are compromised. Another approach
is to provide protection with an extra layer of encryption
say by employing Key-Policy ABE (KP-ABE) [34], which
is collusion-resistant. We are planning to investigate this
approach in future.

10. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented the first multi-user scheme

that supports complex SQL-like queries for encrypted
databases stored in the cloud. State-of-the-art multi-user
schemes are limited to keyword searches, making them not
practical for real deployments. By representing queries as
a tree, our scheme is able to support conjunctions and dis-
junctions of equalities and inequalities. Moreover, we sup-
port enforcement of access policies by the cloud server with-
out leaking information about the data being protected. We
have implemented and evaluated the overhead of our scheme.
As future work, we plan to improve the performance of com-
plex queries, where numerical fields are used. Another di-
rection to improve the performance is by building indexes.
After performance optimisations, we plan to apply the tech-
nique on very large databases.

11. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their feedback.

This work has been partially supported by the TENACE
PRIN Project 20103P34XC funded by the Italian MIUR.

12. REFERENCES
[1] D. X. Song, D. Wagner, and A. Perrig, “Practical

techniques for searches on encrypted data,” in Security
and Privacy, 2000. S P 2000. Proceedings. 2000 IEEE
Symposium on, pp. 44–55, 2000.

[2] H. Hacigümüs, B. R. Iyer, C. Li, and S. Mehrotra,
“Executing sql over encrypted data in the
database-service-provider model,” in Proceedings of the
2002 ACM SIGMOD international conference on
Management of data, SIGMOD ’02, (New York, NY,
USA), pp. 216–227, ACM, 2002.

[3] E.-J. Goh, “Secure indexes.” Cryptology ePrint
Archive, Report 2003/216, 2003. http://eprint.
iacr.org/.

[4] P. Golle, J. Staddon, and B. Waters, “Secure
conjunctive keyword search over encrypted data,” in
Applied Cryptography and Network Security
(M. Jakobsson, M. Yung, and J. Zhou, eds.), vol. 3089

of Lecture Notes in Computer Science, pp. 31–45,
Springer Berlin Heidelberg, 2004.

[5] Y.-C. Chang and M. Mitzenmacher, “Privacy
preserving keyword searches on remote encrypted
data,” in Applied Cryptography and Network Security
(J. Ioannidis, A. Keromytis, and M. Yung, eds.),
vol. 3531 of Lecture Notes in Computer Science,
pp. 442–455, Springer Berlin Heidelberg, 2005.

[6] H. Wang and L. V. S. Lakshmanan, “Efficient secure
query evaluation over encrypted xml databases,” in
Proceedings of the 32nd international conference on
Very large data bases, VLDB ’06, pp. 127–138, VLDB
Endowment, 2006.

[7] C. Bösch, R. Brinkman, P. Hartel, and W. Jonker,
“Conjunctive wildcard search over encrypted data,” in
Secure Data Management (W. Jonker and
M. Petkovic, eds.), vol. 6933 of Lecture Notes in
Computer Science, pp. 114–127, Springer Berlin
Heidelberg, 2011.

[8] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan, “Cryptdb: protecting confidentiality
with encrypted query processing,” in Proceedings of
the Twenty-Third ACM Symposium on Operating
Systems Principles, SOSP ’11, (New York, NY, USA),
pp. 85–100, ACM, 2011.

[9] D. Boneh, G. Crescenzo, R. Ostrovsky, and
G. Persiano, “Public key encryption with keyword
search,” in Advances in Cryptology - EUROCRYPT
2004 (C. Cachin and J. Camenisch, eds.), vol. 3027 of
Lecture Notes in Computer Science, pp. 506–522,
Springer Berlin Heidelberg, 2004.

[10] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky,
“Searchable symmetric encryption: improved
definitions and efficient constructions,” in Proceedings
of the 13th ACM conference on Computer and
communications security, CCS ’06, (New York, NY,
USA), pp. 79–88, ACM, 2006.

[11] D. Boneh and B. Waters, “Conjunctive, subset, and
range queries on encrypted data,” in Theory of
Cryptography (S. Vadhan, ed.), vol. 4392 of Lecture
Notes in Computer Science, pp. 535–554, Springer
Berlin Heidelberg, 2007.

[12] J. Baek, R. Safavi-Naini, and W. Susilo, “Public key
encryption with keyword search revisited,” in
Computational Science and Its Applications - ICCSA
2008 (O. Gervasi, B. Murgante, A. Laganà, D. Taniar,
Y. Mun, and M. L. Gavrilova, eds.), vol. 5072 of
Lecture Notes in Computer Science, pp. 1249–1259,
Springer Berlin Heidelberg, 2008.

[13] J. Katz, A. Sahai, and B. Waters, “Predicate
encryption supporting disjunctions, polynomial
equations, and inner products,” in Advances in
Cryptology - EUROCRYPT 2008 (N. Smart, ed.),
vol. 4965 of Lecture Notes in Computer Science,
pp. 146–162, Springer Berlin Heidelberg, 2008.

[14] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee,
“Trapdoor security in a searchable public-key
encryption scheme with a designated tester,” Journal
of Systems and Software, vol. 83, no. 5, pp. 763 – 771,
2010.

[15] B. Zhu, B. Zhu, and K. Ren, “Peksrand: Providing
predicate privacy in public-key encryption with

http://eprint.iacr.org/
http://eprint.iacr.org/

keyword search,” in Communications (ICC), 2011
IEEE International Conference on, pp. 1–6, 2011.

[16] Y. Yang, H. Lu, and J. Weng, “Multi-user private
keyword search for cloud computing,” in Cloud
Computing Technology and Science (CloudCom), 2011
IEEE Third International Conference on, pp. 264–271,
2011.

[17] M. Li, S. Yu, N. Cao, and W. Lou, “Authorized
private keyword search over encrypted data in cloud
computing,” in Distributed Computing Systems
(ICDCS), 2011 31st International Conference on,
pp. 383–392, 2011.

[18] Y. Hwang and P. Lee, “Public key encryption with
conjunctive keyword search and its extension to a
multi-user system,” in Pairing-Based Cryptography -
Pairing 2007 (T. Takagi, T. Okamoto, E. Okamoto,
and T. Okamoto, eds.), vol. 4575 of Lecture Notes in
Computer Science, pp. 2–22, Springer Berlin
Heidelberg, 2007.

[19] C. Dong, G. Russello, and N. Dulay, “Shared and
searchable encrypted data for untrusted servers,” in
Data and Applications Security XXII (V. Atluri, ed.),
vol. 5094 of Lecture Notes in Computer Science,
pp. 127–143, Springer Berlin Heidelberg, 2008.

[20] F. Bao, R. Deng, X. Ding, and Y. Yang, “Private
query on encrypted data in multi-user settings,” in
Information Security Practice and Experience
(L. Chen, Y. Mu, and W. Susilo, eds.), vol. 4991 of
Lecture Notes in Computer Science, pp. 71–85,
Springer Berlin Heidelberg, 2008.

[21] J. Shao, Z. Cao, X. Liang, and H. Lin, “Proxy
re-encryption with keyword search,” Information
Sciences, vol. 180, no. 13, pp. 2576 – 2587, 2010.

[22] S. D. C. di Vimercati, S. Foresti, S. Jajodia,
S. Paraboschi, and P. Samarati, “Over-encryption:
management of access control evolution on outsourced
data,” in Proceedings of the 33rd international
conference on Very large data bases, VLDB ’07,
pp. 123–134, VLDB Endowment, 2007.

[23] M. Raykova, H. Zhao, and S. Bellovin, “Privacy
enhanced access control for outsourced data sharing,”
in Financial Cryptography and Data Security
(A. Keromytis, ed.), vol. 7397 of Lecture Notes in
Computer Science, pp. 223–238, Springer Berlin
Heidelberg, 2012.

[24] B. Hore, S. Mehrotra, and G. Tsudik, “A
privacy-preserving index for range queries,” in
Proceedings of the Thirtieth international conference
on Very large data bases - Volume 30, VLDB ’04,
pp. 720–731, VLDB Endowment, 2004.

[25] B. Hore, S. Mehrotra, M. Canim, and
M. Kantarcioglu, “Secure multidimensional range
queries over outsourced data,”The VLDB Journal,
vol. 21, no. 3, pp. 333–358, 2012.

[26] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou,
“Privacy-preserving multi-keyword ranked search over
encrypted cloud data,” in INFOCOM, 2011
Proceedings IEEE, pp. 829–837, 2011.

[27] Y. Lu and G. Tsudik, “Enhancing data privacy in the
cloud,” in Trust Management V (I. Wakeman,
E. Gudes, C. Jensen, and J. Crampton, eds.), vol. 358
of IFIP Advances in Information and Communication

Technology, pp. 117–132, Springer Berlin Heidelberg,
2011.

[28] S. Kamara, C. Papamanthou, and T. Roeder,
“Dynamic searchable symmetric encryption,” in
Proceedings of the 2012 ACM conference on Computer
and communications security, CCS ’12, (New York,
NY, USA), pp. 965–976, ACM, 2012.

[29] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order
preserving encryption for numeric data,” in
Proceedings of the 2004 ACM SIGMOD international
conference on Management of data, SIGMOD ’04,
(New York, NY, USA), pp. 563–574, ACM, 2004.

[30] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill,
“Order-preserving symmetric encryption,” in Advances
in Cryptology - EUROCRYPT 2009 (A. Joux, ed.),
vol. 5479 of Lecture Notes in Computer Science,
pp. 224–241, Springer Berlin Heidelberg, 2009.

[31] A. Boldyreva, N. Chenette, and A. O’Neill,
“Order-preserving encryption revisited: Improved
security analysis and alternative solutions,” in
Advances in Cryptology - CRYPTO 2011 (P. Rogaway,
ed.), vol. 6841 of Lecture Notes in Computer Science,
pp. 578–595, Springer Berlin Heidelberg, 2011.

[32] P. Paillier, “Public-key cryptosystems based on
composite degree residuosity classes,” in Advances in
Cryptology - EUROCRYPT 1999 (J. Stern, ed.),
vol. 1592 of Lecture Notes in Computer Science,
pp. 223–238, Springer Berlin Heidelberg, 1999.

[33] E. Shen, E. Shi, and B. Waters, “Predicate privacy in
encryption systems,” in Theory of Cryptography
(O. Reingold, ed.), vol. 5444 of Lecture Notes in
Computer Science, pp. 457–473, Springer Berlin
Heidelberg, 2009.

[34] V. Goyal, O. Pandey, A. Sahai, and B. Waters,
“Attribute-based encryption for fine-grained access
control of encrypted data,” in Proceedings of the 13th
ACM conference on Computer and communications
security, CCS ’06, (New York, NY, USA), pp. 89–98,
ACM, 2006.

[35] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss,
A. Lysyanskaya, and H. Shacham, “Randomizable
proofs and delegatable anonymous credentials,” in
Advances in Cryptology - CRYPTO 2009 (S. Halevi,
ed.), vol. 5677 of Lecture Notes in Computer Science,
pp. 108–125, Springer Berlin Heidelberg, 2009.

[36] S. D. C. di Vimercati, S. Foresti, S. Jajodia,
G. Livraga, S. Paraboschi, and P. Samarati, “Enforcing
dynamic write privileges in data outsourcing,”Elsevier
Computers & Security (COSE), 2013.

[37] J. Bethencourt, A. Sahai, and B. Waters,
“Ciphertext-policy attribute-based encryption,” in
Security and Privacy, 2007. SP ’07. IEEE Symposium
on, pp. 321–334, 2007.

[38] R. Ostrovsky, A. Sahai, and B. Waters,
“Attribute-based encryption with non-monotonic
access structures,” in Proceedings of the 14th ACM
conference on Computer and communications security,
CCS ’07, (New York, NY, USA), pp. 195–203, ACM,
2007.

	Introduction
	State of the Art
	Single-user Schemes
	Semi-fledged Multi-user Schemes
	Full-fledged Multi-user Schemes

	System Model
	The Proposed Approach
	Solution Details
	Definitions and Construction Details
	Definitions
	Construction Details

	Security Analysis
	Performance Evaluation
	INSERT Query
	SELECT Query: Trapdoor Generation
	Policy Enforcement
	SELECT Query: Server Matching
	SELECT Query: Result Decryption

	Discussion
	Fine-grained Access Control
	Collusion Attacks

	Conclusions and Future Work
	Acknowledgements
	References

