
ACTORS: A Goal-driven Approach for Capturing
and Managing Consent in e-Health Systems

Muhammad Rizwan Asghar†‡, Giovanni Russello§
† CREATE-NET, International Research Center, Trento Italy

asghar@create-net.org
‡ Department of Information Engineering and Computer Science, University of Trento, Trento Italy

asghar@disi.unitn.it
§ Department of Computer Science, The University of Auckland, Auckland New Zealand

g.russello@auckland.ac.nz

Abstract—The notion of patient’s consent plays a major role
in granting access to medical data. In typical healthcare systems,
consent is captured by a form that the patient has to fill in
and sign. In e-Health systems, the paper-form consent is being
replaced by the integration of the notion of consent in the
mechanisms that regulate the access to the medical data. This
helps in empowering the patient with the capability of granting
and revoking consent in a more effective manner. However, the
process of granting and revoking consent greatly varies according
to the situation in which the patient is. Our main argument is
that such a level of detail is very difficult and error-prone to
capture as a set of authorisation policies. In this paper, we present
ACTORS, a goal-driven approach to manage consent. The main
idea behind ACTORS is to leverage the goal-driven approach
of Teleo-Reactive (TR) programming for managing consent that
takes into account changes regarding the domains and contexts
in which the patient is providing her consent.

Index Terms—Consent Management; e-Health Systems; Teleo-
Reactive Policies; Policy Templates; Authorisation Policies;

I. INTRODUCTION

Healthcare information refers to any data containing infor-
mation about an individual’s health conditions. As it contains
sensitive personal information, its improper disclosure may
influence several aspects of an individual’s life. Today, medical
data is massively being converted into electronic format.
Individuals’ medical data can be now easily accessible to a
very large number of health-care professionals. Although this
is done with the best of intentions to improve the processing
and streamline healthcare delivery, it also poses very concrete
threats to the individual’s privacy.

Since the medical information of an individual is confi-
dential, the only basis for accessing it is through that in-
dividual’s consent [1]. In traditional healthcare systems, an
individual provided her consent by signing a paper form.
In these settings, withdrawing consent was very difficult for
an individual because she had to go through complicated
bureaucratic processes. Moreover, the granularity of consent
was very coarse-grained. The individual agreed in providing
consent in advance for all her medical data, thus violating the
principle of least privilege.

Policy-based authorisation mechanisms have successfully
been used in managing access rights given the flexibility and
re-usability that they offer. In literature, several approaches

have been realised where the notion of consent is integrated
with the policy decision mechanism. For instance, Russello et
al. [2] propose to capture the notion of consent through the
use of medical workflows and to integrate it with Ponder2
authorisation policies1. Wuyts et al. [3] have extended the
XACML [4] authorisation model with the notion of consent.

To specify a set of authorisation policies that capture all the
details required to enforce correctly an individual’s decisions
about consent is very complex. First of all, each authorisation
policy has conditions to express when it should be enforced
that might be in conflict with other policies. Although work
has been done to address the problem of automatically resolv-
ing conflicts [5], it is not possible to completely automate the
decision since in the specific case of the healthcare scenario
humans are also involved. To complicate matters further,
contextual information needs to be captured to identify the
purpose of the access being requested. If these details are not
captured correctly in the policy specification by the security
administrator then there may be serious consequences.

For instance, the way in which an individual wants to pro-
vide and revoke her consent differs according to the caregivers
that she is interacting with. With her General Practitioner (GP),
a patient typically establishes a lasting relationship; therefore,
consent can be given for a long time. On the other hand,
when she is visiting a specialist in a hospital, she wants to
give consent only for the time the treatment will last and only
for the data that is required for the specific treatment. Still,
another different situation is in the case of an emergency where
the paramedics have to provide first care before reaching the
emergency room. In this case, consent can be given to the
medical data however for the short period of time required to
reach the hospital.

From the above scenario, it emerges that specifying in one
single policy set all the requirements for managing consent
is a very error-prone task. In the light of this, in this pa-
per we propose ACTORS (Automatic Creation and lifecycle
managemenT Of authoRisation policieS) where a goal-driven
approach is used to glue together and manage authorisation
policies that have a common aim, that is the handling of

1http://ponder2.net/

http://ponder2.net/


consent in a specific context (i.e., consent for the GP, for the
specialist, and paramedics). In particular, our observation is
that we can simplify the specification of authorisation policies
when these are treated as a program sequence towards a
specific goal. The main contribution and novelty of this paper
is to propose the idea of using Teleo-Reactive (TR) programs
to glue together authorisation policies aiming at a specific goal.
The idea of TR programs was initially introduced by Nilsson
[6]. The main advantage of TR programs is that the way in
which they are specified is very natural for humans. Therefore,
a security administrator can capture more naturally the security
requirements in a TR sequence.

The rest of this paper is organised as follows. In Section II,
we review the related work. Section III provides an overview
of a case study that we use to demonstrate the feasibility of
our approach. Next, we provide a brief overview of Teleo-
Reactive Policies in Section IV. In Section V, we present our
proposed approach. In Section VI, we present how the case
study scenarios can be modelled using the proposed approach.
Finally, we conclude in Section VII and indicate the direction
of our future work.

II. RELATED WORK

Marinovic et al. [7] employ TR policies for continuously
monitoring the nursing home, where caregivers (including
nurses, head-nurses, patients and students) are equipped with
mobile devices for running their corresponding TR policies.
They use TR policies to manage all activities of a caregiver us-
ing one workflow specification while we use TR policies with
the goal of capturing consent that may involve instantiation of
authorisation policies regarding consent and management of
their lifecycle, consisting withdrawal and activation of consent.

Illner et al. [8], [9] suggest an automated approach for
managing services related to distributed and embedded sys-
tems in dynamic environments. In their approach, various
configurations for the services are generated and mapped to
specific environmental conditions only once at the design time
when system is setup while appropriate configurations for the
services are activated at runtime when certain environmental
conditions hold. The shortcoming of this approach is that
the configurations are defined statically while our goal-based
approach is dynamic in a sense that authorisation policies do
not need to be specified in advance and are instantiated auto-
matically while taking into account environmental conditions.

Johnson et al. [10] suggest a general approach for creating
policy templates. A policy template provides users with a
structured format for authoring policies. In our proposed
solution, a healthcare provider may consider this work for
generating policy templates. Chan and Kwok [11] describe
a method to create policies automatically based on observed
events. They use the Singular Value Decomposition (SVD)
technique for modelling correlation between events and poli-
cies and then create new policies or select recommended
policies based on the correlation. Unfortunately, the SVD
technique may not always choose the fine-grained policies

while our proposed approach always generates the fine-grained
authorisation policies based on environmental conditions.

Fu et al. [12], [13] propose how to automatically generate
required IPSec policies without manual configuration. The
idea is to define high-level security requirements and then
automatically generate a set of IPSec policies that can satisfy
all security requirements. The main problem is that this
approach incurs high performance overhead for finding the
required set of policies as the proposed algorithm needs to go
through a large number of possibilities before halting. Instead
of generating a set of authorisation policies, our proposed
approach generates only a single authorisation policy while
taking into account contextual information and user intent.

Russello et al. [2] propose a consent-based framework that
enables patients to control disclosure of their medical data,
where the mechanism of capturing consent is integrated with
workflows. The idea is to automatically generate Ponder2
style of authorisation policies [14] that depend on workflows.
However, there is no automatic mechanism for managing the
lifecycle of consent, such as consent withdrawal, activation
or deletion. Asghar and Russello [15] suggest a mechanism
for managing the consent lifecycle. They introduce a notion
of very expressive consent represented as a consent policy.
However, they assume that a data subject defines his/her
consent policies; unfortunately, such a solution may not be
acceptable because data subjects may not be able to understand
low-level policy details.

Wuyts et al. [3] incorporate patient consent with healthcare
systems. They use the XACML policy language [16] (proposed
by OASIS [4]) for defining access control on medical data and
retrieve consent from the Policy Information Point (PIP). They
express consent as a set of pre-defined attributes and store it in
the database. The similar approach is used by Jin et al. in [17],
which is an authorisation framework for sharing Electronic
Health Record (EHR). The main issue with both approaches
is that the set of pre-defined attributes may not be sufficient
to capture consent as it may involve certain conditions. In
order to overcome this issue, there are approaches [15], [18] in
which consent is treated as an authorisation policy; however, it
raises some other problems. First, this approach requires users
to specify low-level details, which a normal user may not be
aware of, at the time of policy creation. Second, there is no
automatic mechanism for managing the consent lifecycle.

EnCoRe [19], a currently ongoing project, aims at managing
consent of users in order to regulate access to their personal
data. In EnCoRe, a user is expected to define her preferences
regarding consent, which are stored by enterprises. Once
any piece of personal data is requested, these preferences
are checked by the enterprises before granting access to the
requested data. However, it may be cumbersome for users to
define such complicated preferences. In our proposed solution,
users’ consent can be captured and managed dynamically by
taking into account contextual information. Furthermore, our
proposed approach offers more control and access to users as
consent is stored and managed on their smartphone.

2



III. A CASE STUDY

In this section, we introduce the case study that we will
use throughout the paper to demonstrate the feasibility of our
approach. The case study is partially inspired from the Euro-
pean funded project ENDORSE2. ENDORSE focuses on de-
veloping IT solutions for privacy preserving data management.
An important aspect in ENDORSE is that of consent. In the
following, first we are going to provide the legal background
in EU legislation about consent followed by more details about
the capturing and managing of consent in healthcare scenarios.

A. EU Legal Framework for Consent
In this section, we present the EU directives to control

access to personal data. In the following, we use the term data
subject to describe an individual whose data is handled, and
data controller to indicate any party that handles personal data.
According to article 2(h) of the EU Data Protection Direction
(DPD) [1], consent is defined as: ”the data subject’s consent
shall mean any freely given specific and informed indication of
his wishes by which a data subject signifies his agreement to
personal data relating to him being processed”. The concept
of consent enables a data subject to control access to her
personal data. Furthermore, according to article 7 (a) of the EU
DPD [1], a data subject’s personal data may only be processed
if she has given her consent. Last but not least, data subjects
may withdraw their consent at any time [20].

In traditional healthcare systems, a data subject provides her
paper-based consent typically once she is enrolled within the
system. Generally, the paper-based consent is considered valid
once signed by the data subject. Unfortunately, there are two
main problems with the paper-based consent. First, it becomes
very cumbersome for the data subject to withdraw her paper-
based consent. That is, she has to go through complicated
bureaucratic processes where she has to call on the responsible
authority to withdraw her consent (most probably, as it is the
case in Italy) with some considerable effort, waste of time, and
a huge sense of frustration. Second, a data subject provides
her consent in advance for all her medical data at the time
of registration with the healthcare system even when it may
not be necessarily used, thus violating the principle of least
privilege.

In current IT healthcare systems, the notion of consent is
captured as authorisation policies that control the access to
the data, such as in [2]. Technically, the creation or editing
of these authorisation policies is delegated to an IT security
administrator. The security administrator operates on behalf of
the data subject to deploy policies in the IT infrastructure of
the data controller. In some countries, specific legislation may
require the digital consent to be digitally signed by the data
subject to be considered equivalent to the manually signed
paper-based consent [21].

B. Healthcare Scenarios
In this section, we describe several scenarios based on the

IT healthcare system currently deployed in one of the major

2https://ict-endorse.eu/

hospitals in Italy. A patient is provided with a smartphone
where she can receive requests for giving her consent when
she is interacting with the medical personnel. A patient can
review through her smartphone who is requesting the access,
the purpose of the request, and which data is requested.

At the time of providing consent, a patient may decide to
save her preferences for subsequent consent requests made
in the same context and/or by the same entity. Afterwards, a
patient may withdraw her saved preferences regarding consent.
Furthermore, a patient may activate withdrawn preferences
regarding her consent. Last but not least, a patient may intend
to delete, forever, her saved preferences for providing consent
automatically.

Patient visiting her GP. Let us consider the healthcare
scenario where Alice moves to Milan and visits her GP for
the first time. The GP requires access to Alice’s medical
history consisting of several medical tests and reports. For
this purpose, the GP requires Alice’s consent. Alice receives
the consent request on her smartphone and decides to provide
her consent also in the future.

Patient visiting a cardiologist. Later, the GP of Alice
discovers that she has a heart disorder. In this case, the
GP refers Alice to a cardiologist for further testing. For
visiting the cardiologist, Alice needs to contact the hospital
booking service for getting an appointment. The hospital has
several cardiologists thus it is not known in advance which
one is assigned prior to the actual appointment. On the day
of appointment, Alice will know the assigned cardiologist
and can consent the cardiologist to access her medical data.
However, Alice’s consent should be valid for the duration of
the treatment and the data accessed should be within the scope
of the treatment (i.e., the cardiologist should not have access
to Alice’s gynecological reports). Moreover, if Alice is not
happy with the assigned cardiologist then she may withdraw
her consent and request a new cardiologist.

Patient in an emergency situation. While Alice is driving
in her car, she has a car accident and gets injured. The
emergency response team reaches the accident location and
starts treating Alice. For the treatment, the paramedic requires
Alice’s consent to access her medical history to get infor-
mation about her allergies and any serious conditions that
she already may have. Alice provides consent to access her
medical records so that the paramedic is aware of her heart
problem and provides the appropriate treatment that does not
interfere with the treatment prescribed by the cardiologist.
Although the paramedic has access to Alice’s full medical
record, consent should be revoked when the emergency is over.

IV. OVERVIEW OF TELEO-REACTIVE POLICIES

From the above scenarios, it is clear that to capture all
the details required to express the data subject’s consent in
different settings is very complex. If these details are not
captured correctly by the security administrator in the policy
specification then serious consequences might happen. In our
experience, capturing all the security requirements through the
specification of several independent authorisation policies is a

3

https://ict-endorse.eu/


very hard task. In the specific case of capturing a data subject’s
consent, it becomes even more complicated since there is the
involvement of a human (which is the data subject that can
grant, hold, and withdraw consent) and contextual information
expressed in the policies (such as the location and time of the
access).

In this paper, we propose to employ a goal-driven approach
to glue together and manage authorisation policies that have
a common aim, that is the handling of consent. In particular,
our observation is that we can simplify the specification of
authorisation policies when these are treated as a program
sequence towards a specific goal. In this paper, we propose to
leverage the idea of TR programs to glue together authorisation
policies aiming at a specific goal. The idea of TR programs
was initially introduced by Nilsson [6]. A TR program is a
control sequence directing towards a goal while taking into
account changes in environmental circumstances. TR programs
were used for automating behavioural robotics where a robot
was continuously observing its environmental changes.

In the following, we provide a brief overview of TR policies
that is similar to that introduced by Marinovic et al. in [7].

1 tr-policy name(P1, P2, . . . , Pm)
2 cond1(V )→ action1(V )
3 cond2a ∧ (cond2b

∨ ¬cond2c )→ action2y ⊗ action2z

4 cond3(P1)→ action3a ‖ action3b
5 . . .
6 condn1

∧ condn2
. . . ∨ condnx → actionn1

‖ actionn2
. . .⊗ actionny

Fig. 1. A TR Policy

A. TR Policy Representation

A TR policy is an ordered list of rules as shown in
Figure 1, where each rule contains (Line 2) a condition part
and an action part. The condition part contains a predicate
that is bound with a variable, which is denoted with V .
These variables may describe facts or states of the system
or environment in which a TR policy is evaluated. A variable
starts with a capital letter while a condition or an action starts
with a small letter. The action part contains a function that is
called by the TR policy. The action part may contain variables.
The condition and action parts are separated by →. Each TR-
policy has a name starting with a small letter and can be
instantiated with some parameters (Line 1). The condition part
may include parameters, each denoted by Pi (Line 4). The
condition part can contain either a single condition or form
(Line 2 or Line 6) a conditional expression where multiple
conditions can be combined using logical operators ∧ and ∨.
Similarly, the action part can contain either a single function
or multiple functions that may be executed sequentially and/or
concurrently. The sequential and concurrent execution of func-
tions can be represented with ⊗ operator (Line 3 and Line
6) and ‖ operator (Line 4 and Line 6), respectively. In a TR
policy, rules are specified in the descending order with respect
to their priorities. That is, a high priority rule comes first.

B. TR Policy Evaluation

The runtime of the TR policy monitors changes in facts or
states about the system or environment in which evaluation
is performed. These changes can result in the condition part
of a rule becoming either true or false. The functions in the
action part of a rule will be executed if its condition part is
evaluated to true by the runtime. In a TR policy, the condition
part corresponding to the highest priority rule is evaluated first.
If it evaluates to false, the condition part of the next high
priority rule will be evaluated. In other words, if the action
part of any rule is being executed, it means the condition parts
of all higher priority rules (as compared to the current rule)
are evaluated to false. The action part of any rule is executed
as long as its condition part evaluates to true while condition
parts of all higher priority rules (as compared to the current
rule) remain false.

V. THE ACTORS APPROACH

ACTORS aims at automating creation and management
of authorisation policies using a goal-driven approach. Au-
thorisation policies are created and managed based on the
users’ intent while taking into account contextual information.
The contextual information may be information about facts
or states of the environment or the system. For collecting
contextual information in an automated manner, we assume
that users have smartphones equipped with some sensors for
capturing environmental conditions. For instance, a smart-
phone can detect a fire alarm or an emergency situation such
as a road accident.

ACTORS is based on three main parts including authori-
sation policies, policy templates and TR policies. The main
idea is that each TR policy captures a specific goal, such
as managing consent for the GP. TR policies are used for
instantiating authorisation policies from policy templates. TR
policies also manage the lifecycle of instantiated authorisation
policies. All three parts of ACTORS are managed by the user’s
smartphone.

Since all the details required in an authorisation policy
may not be known in advance (such as, ID of the specific
cardiologist assigned on the day of the visit, location where the
visit will take place), we use policy templates to define abstract
authorisation policies. When all the required information is
available, TR policies can instantiate the required authorisation
policies from the given templates. This instantiated authorisa-
tion policy is stored and enforced by the smartphone owned
by the user, thus providing greater control to users to manage
their consent.

A. Authorisation Policies

An authorisation policy specifies who is permitted (or
denied) access to a resource under specific conditions. In AC-
TORS, an authorisation policy contains the following fields:
• Data Requester Role: It is role of the entity who makes

the access request. It can contain either a single role or
a set of roles.

4



• Data Requester ID: It is ID of the one who makes the
access request. Like the above field, this field can contain
either a single ID or a list of IDs. This field is optional as
permissions can be assigned to roles instead of specific
IDs.

• Data Subject ID: It refers to the data subject who owns
the resources.

• Data Subject Resource: It contains data subject re-
source(s) protected through the authorisation policy.

• Access Rights: Access rights define the permission on
the data subject resource.

• provided: It contains a conditional expression that may
contain a set of conditions combined with and and or
logical operators. Each condition is a predicate that is
bound to a variable. These variables can come from con-
textual information that may be facts or states about the
system or the environment. The contextual information
may include access purpose, access time, access date,
data requester location and data subject location.

1 DataRequester.Role = {’Doctor’ }
2 DataRequester.ID = {’Bob’}
3 DataSubject.ID = ’Alice’
4 DataSubject.Resource = {’Blood Test’}
5 AccessRights = {READ}
6 provided
7 (AccessPurpose = ’Diagnosis’ or
8 AccessPurpose = ’Treatment’) and
9 AccessTime ≥ 9:00

Fig. 2. An example of an authorisation policy

Figure 2 illustrates an example of an authorisation policy
where Bob in a role doctor is permitted to have read access on
Alice’s Blood Test report provided he makes the access request
after 9:00 hrs for the purpose of diagnosis or treatment. The
use of the Data Requester ID might seem redundant given
the fact that the policy already has a Data Requester Role.
However, it might be the case that the data subject might not
want a specific requester to access her data. For instance, Alice
does not want Eve (another doctor and Bob’s colleague) to
read her Blood Test report. This requirement can be captured
by specifying in the Data Requester ID the condition ¬ ’Eve’.

B. Policy Templates

A policy template provides a structured format for instan-
tiating authorisation policies on-the-fly. It is the authorisation
policy specification with placeholders for variables which are
assigned a value based on contextual information and a user’s
intent. A user’s intent is about what a user can expect and can
be captured based on actions taken by her. A policy template
contains almost the same fields as an authorisation policy does.
The fields of a very generic policy template are left blank
so that they can be assigned a value based on contextual
information. However, a list of options can be provided for
each field. It means that a template field can only be filled, at
the time of policy instantiation, with a value out of the list of
options.

1 DataRequester.Role = {’Dentist’}
2 DataRequester.ID
3 DataSubject.ID
4 DataSubject.Resource = {’Dental Report’}
5 AccessRights = {READ, WRITE}
6 provided
7 AccessPurpose is ’Diagnosis’ or ’Treatment’

Fig. 3. An example of a policy template

Figure 3 illustrates an example of a policy template. This
policy template can be applied when a data requester is in
role Dentist and the requested resource is Dental Report
with access rights either READ or WRITE access and access
purpose is either Diagnosis or Treatment. For rest of the fields,
any value can be assigned based on contextual information and
the user’s intent.

Policy templates are associated with TR policies and goals
that the TR policy is trying to achieve. For instance, the policy
template in Figure 3 can be applied when the goal of the
patient is to visit a dentist. Therefore, such a template is
associated with the TR policy managing that specific goal.
Each TR policy can be associated with several templates.
Based on contextual information and a user’s intent, the TR
policy can identify which policy template fulfils the criteria
and then instantiates the required authorisation policy.

C. TR Policies

As already explained in Section IV, TR programs were
introduced for continuously monitoring the behaviour of a
robot while taking into account environmental changes. In
ACTORS, we use TR policies for controlling the lifecycle
of authorisation policies towards a specific goal, which is the
management of users’ consent in a given situation. Each TR
policy might be associated with several policy templates from
which authorisation policies can be instantiated. Several TR
policies might be present on the smartphone of the user. The
selection of the appropriate TR policy is based on contextual
information. The main advantage in using TR policies is that
they provide a built-in prioritisation of actions needed for
controlling the granting and revocation of users’ consent that
reacts to the changes in the context in which the users are
interacting.

In the following section, we are going to provide details
of how ACTORS can be used for the case study presented in
Section III.

VI. MANAGING CONSENT IN HEALTHCARE SCENARIOS

ACTORS can be applied to any domain; however, we focus
on healthcare scenarios as already described in Section III,
where consent needs to be captured and saved based on
contextual information and the patient’s intent. For automati-
cally instantiating authorisation policies regarding consent and
managing lifecycle of those policies, we assume that each
patient is provided a set of TR policies and policy templates at
the time of registration with her healthcare provider. In fact,
TR policies and policy templates are deployed on patients’

5



smartphones together with an application. Each TR policy can
be associated with multiple policy templates. The smartphone
application automatically selects the most appropriate TR
policy and the policy template based on the consent request
and contextual information. After instantiation of authorisation
policies regarding consent, they are stored and enforced by the
patient’s smartphone. It should be noted here that only policies
and patient’s decisions are stored in the smartphone while the
medical data is stored in the caregiver IT infrastructure. In
this section, we explain in detail how we exploit the proposed
approach, described in Section V, for providing solutions for
each scenario described in Section III.

Patient visiting her GP. In the scenario when a GP needs
the patient consent, a consent request is sent to the patient for
providing access to a GP to requested resources. This consent
request may be directly sent by the healthcare system to the
patient when a GP makes an access request to the patient
resources. This consent request may include information about
the GP and the patient, the patient resources, an access purpose
and access duration details. Based on the consent request
together with contextual information, the most appropriate
applicable TR policy and policy template are selected.

1 tr-policy consentAtGPClinic(Patient)
2

3 consentAvailable(Patient,GP) ∧ saveCurrentPreferences →
instantiatePolicy(Patient) ⊗ activate(Patient.Policy) ‖
sendConsent(Patient,GP)

4

5 consentAvailable(Patient,GP) → sendConsent(Patient,GP)
6

7 needsConsent(Patient,GP) ∧ instantiatedPolicy(Patient) ∧
¬withdrawn(Patient.Policy) → evaluatePolicy(Patient)

8

9 needsConsent(Patient,GP) → waitPatientDecision(Patient,GP)
10

11 deleteSavedPreferences(Patient) → remove(Patient.Policy)
12

13 activatePolicyRequest(Patient) → activate(Patient.Policy)
14

15 withdrawPolicyRequest(Patient) → withdraw(Patient.Policy)

Fig. 4. A TR policy for managing authorisation policy for providing consent
to a GP

Figure 4 describes a TR policy that is applied when a GP
needs a patient’s consent for accessing her data from his clinic.
The name of this TR policy is consentAtGPClinic whereas
Patient is the parameter. When the first consent request is
made, consent is not available and the condition parts of rules
at Line 3 and Line 5 evaluate to false. The condition part of
rule at Line 7 also evaluates to false as no authorisation policy
is instantiated yet i.e., instantiatedPolicy(Patient) is false.
However, the condition part of rule at Line 9 evaluates to true,
so the action part of this rule is executed and the system waits
for the patient decision for providing consent to her GP i.e.,
waitPatientDecision(Patient ,GP) is executed.

Once the patient provides consent for granting access to her
GP on her resources, then consentAvailable(Patient ,GP)
becomes true. At the time of providing consent, a patient can
be given an option to save her current preferences for provid-
ing her consent for similar consent requests when made in the

same environment. If a patient does so, the condition part of
rule at Line 3 becomes true; therefore, the authorisation policy
regarding consent is instantiated from the policy template and
then it is activated while at the same time, consent is sent.

1 DataRequester.Role = {’GP’}
2 DataRequester.Name
3 DataSubject.Name
4 DataSubject.Resource
5 AccessRights
6 provided
7 AccessPurpose is ’Diagnosis’ or ’Treatment’
8 AccessTime is within DutyHours
9 DataRequester.CurrentLocation = DataSubject.

CurrentLocation
10 DataRequester.CurrentLocation = DataRequester.Clinic.

Location

Fig. 5. A policy template for generating an authorisation policy for providing
consent to a GP

Figure 5 illustrates a policy template that is applied when
a patient visits her GP, as is evident from the data requester
role that is GP only. The empty fields including data requester
name, data subject name, data subject resource and access
rights can be filled with values based on the consent request.
However, there are certain conditions in the provided part
of the policy template that are formulated at the time of
instantiating an authorisation policy. These conditions include:
the access purpose must be either diagnosis or treatment;
access time must be in office hours; and both the patient
and the GP must be present in the GP’s clinic. These con-
ditions are formulated based on contextual information that
is collected from either patient’s smartphone or the external
information point, such as made available by the healthcare
provider. The contextual information from a patient’s smart-
phone may include information like patient’s current location,
while contextual information from the external information
point may include information about location of GP’s clinic
and GP’s duty hours. Once all the required information for
the applicable policy template is retrieved, the authorisation
policy is instantiated and activated.

1 DataRequester.Role = {’GP’}
2 DataRequester.ID = {’Bob’}
3 DataSubject.ID = ’Alice’
4 DataSubject.Resource = {’Blood Test’}
5 AccessRights = {READ}
6 provided
7 AccessPurpose = ’Diagnosis’ and
8 (AccessTime ≥ 9:00 and AccessTime ≤ 17:00) and
9 DataSubject.CurrentLocation = ’Milan’ and

10 DataRequester.CurrentLocation = ’Milan’

Fig. 6. An authorisation policy for providing consent to a GP

Figure 6 shows the instantiated authorisation policy re-
garding consent, expressing that a GP Bob can get patient
Alice’s consent for READ access on Alice’s Blood Test when
accessed for the Diagnosis purpose during the duty hours (that
is, between 9:00 and 17:00 hrs) from Bob’s clinic located in
Milan.

6



A patient may decide to withdraw her consent. In
this case, the condition part of rule at Line 15, i.e.
condition withdrawPolicyRequest(Patient), becomes true
and the authorisation policy is withdrawn by invoking
withdraw(Patient .Policy) function. Furthermore, a patient
can decide to activate her withdrawn consent. In this
case, condition activatePolicyRequest(Patient) becomes
true and activate(Patient .Policy) function is invoked for
activating the authorisation policy. Last but not least,
a patient may also choose to delete forever her saved
preferences for automatically providing consent. In this
case, deleteSavedPreferences(Patient) becomes true and
remove(Patient .Policy) function is invoked for deleting the
instantiated authorisation policy.

In case if a GP needs the patient consent when the patient
has already saved preferences for providing consent automati-
cally to her GP and consent is not withdrawn yet then consent
will be provided after evaluating the consent request and
contextual information against the instantiated authorisation
policy, see rule in Figure 4 at Line 7. We assume that the
consent request is same as already described above. However,
we have to collect contextual information in order to evaluate
the authorisation policy for providing consent. The patient’s
smartphone may provide information about her location and
the current time while the information about the GP’s location
can be collected from the external information point. This may
be the healthcare system or the GP’s smartphone which may
provide GP’s location information to the patient’s smartphone.
Based on the consent request and contextual information, the
authorisation policy is evaluated (see rule in Figure 4 at Line
7). After the evaluation of the authorisation policy, consent
becomes available and the consent response is automatically
sent by the patient’s smartphone (see rule in Figure 4 at
Line 5). The consent response contains patient consent if the
authorisation policy evaluates to true, otherwise it may contain
an error message.

A patient may decide not to save her current preferences for
providing consent automatically to her GP. In such a case, the
patient will be explicitly asked each time (see rule in Figure 4
at Line 9) and consent will be provided once the patient takes
her decision (see rule in Figure 4 at Line 5).

Patient visiting a cardiologist. A cardiologist may also
need the patient consent while accessing the patient resources.
Like the above scenario, a patient receives the consent re-
quest. This consent request may include information about the
cardiologist and the patient, the patient resources, an access
purpose and access duration details. The additional point in
this scenario as compared to the previous scenario is that
a cardiologist is provided consent for getting access on the
patient resources as long as the treatment may last. In other
words, the saved preferences for providing consent are deleted
automatically right after the treatment.

Figure 7 shows the TR policy for managing authorisation
policy in order to provide consent to a specialist. The name of
this TR policy is consentAtSpecialistClinic. The TR policy
is similar to one already described in Figure 4. In case of a

1 tr-policy consentAtSpecialistClinic(Patient)
2

3 consentAvailable(Patient,Specialist) ∧ saveCurrentPreferences →
instantiatePolicy(Patient) ⊗ activate(Patient.Policy) ‖
sendConsent(Patient,Specialist)

4

5 consentAvailable(Patient,Specialist) →
sendConsent(Patient,Specialist)

6

7 needsConsent(Patient,Specialist) ∧ instantiatedPolicy(Patient) ∧
¬withdrawn(Patient.Policy) → evaluatePolicy(Patient)

8

9 needsConsent(Patient,Specialist) →
waitPatientDecision(Patient,Specialist)

10

11 timeout(Patient.Policy) ∨ deleteSavedPreferences(Patient) →
remove(Patient.Policy)

12

13 activatePolicyRequest(Patient) → activate(Patient.Policy)
14

15 withdrawPolicyRequest(Patient) → withdraw(Patient.Policy)

Fig. 7. A TR policy for providing consent to a specialist

1 DataRequester.Role = {’Cardiologist’}
2 DataRequester.ID
3 DataSubject.ID
4 DataSubject.Resource = {’ECG Report’, ’Cardiography’, ’

Engyography’}
5 AccessRights = {READ, WRITE}
6 provided
7 AccessPurpose is ’Diagnosis’ or ’Treatment’
8 AccessTime is within DutyHours
9 DataRequester.CurrentLocation = DataSubject.

CurrentLocation
10 DataRequester.CurrentLocation = DataRequester.Clinic.

Location

Fig. 8. A policy template for generating an authorisation policy for providing
consent to a cardiologist

cardiologist, the TR policy of specialist is selected. As we
can observe that the TR policy of a specialist is very generic,
it can be applied to other specialists such as a dentist and a
gynaecologist. However, there is a specific policy template for
each specialist. The policy template for cardiologist is shown
in Figure 8. The policy template is restricted to only resources
that could be accessed by a cardiologist. These resources
include ECG Report, Cardiography and Engyography. This
is different from the policy template of above scenario as
resource field in Figure 5 is left empty, indicating that a GP
can obtain consent to access any resource.

1 DataRequester.Role = {’Cardiologist’}
2 DataRequester.ID = {’David’}
3 DataSubject.ID = ’Alice’
4 DataSubject.Resource = {’ECG Report’}
5 AccessRights = {READ, WRITE}
6 provided
7 AccessPurpose = ’Diagnosis’ and
8 (AccessTime ≥ 9:00 and AccessTime ≤ 17:00) and
9 DataSubject.CurrentLocation = ’Como’ and

10 DataRequester.CurrentLocation = ’Como’

Fig. 9. An authorisation policy for providing consent to a cardiologist

Figure 9 shows the authorisation policy regarding consent
for a cardiologist when a patient intends to save her prefer-
ences until she is treated. The authorisation policy expresses

7



that a cardiologist David can get patient Alice’s consent
for READ and WRITE access on Alice’s ECG Report when
accessed for Diagnosis purpose during the duty hours (that is,
between 9:00 and 17:00 hrs) from David’s clinic located in
Como.

The authorisation policy regarding consent for a cardiologist
may automatically be deleted once the treatment completes.
This information about treatment duration can be collected
by the patient at the time of saving her preferences. For
instance, it may be included in the consent request or can be
collected as contextual information from the information point
made available by the service provider. Once the treatment
duration expires (starting from when the first consent request is
made), condition timeout(Patient .Policy) becomes automat-
ically true and remove(Patient .Policy) function is invoked
for deleting the instantiated authorisation policy according to
the rule at Line 11 in Figure 7. Alternatively, a patient may
decide to delete her saved preferences during the treatment
duration as already considered in above scenario.

Patient in an emergency situation. In an emergency
situation, the emergency response team may need a patient’s
consent in order to get an access to her medical data for
the treatment purpose. Similar to above scenarios, the patient
receives the consent request, which may include information
about the emergency response team, the patient resources, an
access purpose and access duration details. Similar to the
cardiologist scenario, we consider that the patient intends
to provide her consent as long as the treatment may last.
Technically, the saved preferences for providing consent are
deleted automatically right after the treatment. The TR policy
for specialist, shown in Figure 7, can also be applied for this
scenario.

1 DataRequester.Role = {’EmergencyResponseTeam’}
2 DataRequester.Name
3 DataSubject.Name
4 DataSubject.Resource = {’Allergy Report’, ’Blood Test’}
5 AccessRights = {READ}
6 provided
7 There is an Emergency situation
8 AccessPurpose is ’Diagnosis’ or ’Treatment’
9 DataRequester.CurrentLocation = DataSubject.

CurrentLocation

Fig. 10. A policy template for generating an authorisation policy for
providing consent to the emergency response team

The policy template applied in emergency situation is shown
in Figure 10. In the provided part of the policy template for
emergency situations, we include the condition for capturing
the notion of emergency situation, i.e., There is an Emergency
situation. Furthermore, we omit also the condition AccessTime
is within DutyHours, in contrast to the policy template for a
GP shown in Figure 5, considering the fact that the emergency
can happen at any time. For restraining access in emergency
situations, the resource field of the policy template is set to
Allergy Report and Blood Test. Moreover, we consider READ
only access in emergency situations.

Figure 11 shows the authorisation policy for providing con-

1 DataRequester.Role = {’EmergencyResponseTeam’}
2 DataRequester.ID = {’Fayne’}
3 DataSubject.ID = ’Alice’
4 DataSubject.Resource = {’Allergy Report’}
5 AccessRights = {READ}
6 provided
7 Emergency = TRUE and
8 AccessPurpose = ’Diagnosis’ and
9 DataSubject.CurrentLocation = ’Aachen’ and

10 DataRequester.CurrentLocation = ’Aachen’

Fig. 11. An authorisation policy for providing consent to the emergency
response team

sent to the emergency response team. This authorisation policy
is instantiated when an emergency happens in Aachen and
Fayne, a member of emergency response team, requests READ
access on (a patient) Alice’s Allergy Report for diagnosis while
Alice provides her consent and also saves her preferences for
subsequents requests in the same environment. The occurrence
of emergency situation may be detected using a patient’s
smartphone.

There are few important points to be considered. First,
we are instantiating one authorisation policy per instance of
the emergency response team. Alternatively, it may also be
possible to instantiate the authorisation policy at the role level
(i.e., EmergencyResponseTeam) instead of at the instance level
(i.e., Fayne). Second, the patient may be in the unconscious
state and may not be able to provider her consent. In such sit-
uations, authorisation policies can be instantiated from break-
the-glass policy templates without asking patients. In other
words, the emergency response team may provide consent on
patient’s behalf when patients are in the unconscious state.
Here, the unconsciousness state can be incorporated at the
time of sending consent request by members of the emergency
response team to the patient’s smartphone. Finally, as ultimate
break-the-glass in case the smartphone is not reachable or
not functioning, the emergency team can specify the current
circumstances together with the request for accessing the
patient’s medical data. This information then can be checked
in a post-incident analysis to make sure that such access mode
is not abused. Again, it should be noted here that the medical
data are not stored in the smartphone.

VII. CONCLUSIONS AND FUTURE WORK

With the increasing attention towards the notion of data
subjects consent to be integrated in access control mechanisms,
the task of properly capturing security requirements in policy
specification is becoming very daunting. This increases the
risk of introducing errors in the policy specification that might
compromise the privacy of the medical data. In the light of
this, in this paper we have proposed ACTORS a goal-driven
approach, where authorisation policies are managed by TR
policies that have goal of capturing the consent preferences
of a data subject. As we have shown in our scenario, data
subjects might want to handle consent in accordance with the
actual situation and context. TR policies are structured in such
a way that rules at the top are closer to the goal of the policy

8



while rules at the bottom are more relevant when the goal
is not close to be achieved. This is very natural for humans
to grasp; therefore, a security administrator can capture more
naturally the security requirements.

As future work, we are planning to perform a thorough eval-
uation in the ENDORSE project. Our current experience so far
with the capturing of security requirements with TR policies
is very promising. We have so far captured the requirements
of one of the testbeds in the project, which is the medical
scenario. In the coming months, we are going to evaluate
in a second testbed mainly focused on capturing consent for
handling personal data of customers of a commercial entity.

Another area that we want to investigate is that of enforcing
cross-domain policies. In this setting, it is difficult for the
security administrator to have all the details of the different
domains in which the data of the user might end up. Our idea
is to have mapping of the policy templates from one domain to
the other. Currently, we are planning to perform the mapping
of the policy templates by means of ontologies.

ACKNOWLEDGMENT

This work is supported by the EU FP7 programme, Research
Grant 257063 (project ENDORSE).

REFERENCES

[1] E. Communities, “Directive 95/46/EC of the European Parliament and
of the Council of 24 October 1995 on the protection of individuals with
regard to the processing of personal data and on the free movement of
such data,” November 1995, http://old.cdt.org/privacy/eudirective/EU
Directive .html.

[2] G. Russello, C. Dong, and N. Dulay, “Consent-based workflows for
healthcare management,” in Policies for Distributed Systems and Net-
works, 2008. POLICY 2008. IEEE Workshop on, june 2008, pp. 153
–161.

[3] K. Wuyts, R. Scandariato, G. Verhenneman, and W. Joosen, “Integrating
patient consent in e-health access control,” IJSSE, vol. 2, no. 2, pp. 1–24,
2011.

[4] OASIS, “eXtensible Access Control Markup Language (XACML) Ver-
sion 2.0,” February 2005, http://docs.oasis-open.org/xacml/2.0/access
control-xacml-2.0-core-spec-os.pdf.

[5] G. Russello, C. Dong, and N. Dulay, “Authorisation and conflict resolu-
tion for hierarchical domains,” in Policies for Distributed Systems and
Networks, 2007. POLICY ’07. Eighth IEEE International Workshop on,
june 2007, pp. 201 –210.

[6] N. J. Nilsson, “Teleo-reactive programs for agent control,” J. Artif.
Int. Res., vol. 1, pp. 139–158, January 1994. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1618595.1618602

[7] S. Marinovic, K. Twidle, N. Dulay, and M. Sloman, “Teleo-reactive
policies for managing human-centric pervasive services,” in Network
and Service Management (CNSM), 2010 International Conference on,
October 2010, pp. 80 –87.

[8] S. Illner, H. Krumm, A. Pohl, I. Lück, D. Manka, and T. Sparenberg,
“Policy controlled automated management of distributed and embedded
service systems,” in Parallel and Distributed Computing and Networks,
T. Fahringer and M. H. Hamza, Eds. IASTED/ACTA Press, 2005, pp.
710–715.

[9] S. Illner, A. Pohl, H. Krumm, I. Luck, D. Manka, and T. Sparenberg,
“Automated runtime management of embedded service systems based
on design-time modeling and model transformation,” in Industrial In-
formatics, 2005. INDIN ’05. 2005 3rd IEEE International Conference
on, aug. 2005, pp. 134 – 139.

[10] M. Johnson, J. Karat, C. Karat, and K. Grueneberg, “Usable policy
template authoring for iterative policy refinement,” in Policies for
Distributed Systems and Networks (POLICY), 2010 IEEE International
Symposium on, July 2010, pp. 18 –21.

[11] H. Chan and T. Kwok, “A policy-based management system with
automatic policy selection and creation capabilities by using a singular
value decomposition technique,” in Proceedings of the Seventh IEEE
International Workshop on Policies for Distributed Systems and
Networks. Washington, DC, USA: IEEE Computer Society, 2006, pp.
96–99. [Online]. Available: http://dl.acm.org/citation.cfm?id=1136645.
1136896

[12] Z. Fu and S. F. Wu, “Automatic generation of IPSec/VPN security
policies in an intra-domain environment,” in DSOM, O. Festor and
A. Pras, Eds. INRIA, Rocquencourt, France, 2001, pp. 279–290.

[13] Z. Fu, “Network management and intrusion detection for quality of
network services,” PhD in Computer Science, North Carolina State
University, 2001, phD Thesis.

[14] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The Ponder policy
specification language,” in Proceedings of the International Workshop
on Policies for Distributed Systems and Networks, ser. POLICY ’01.
London, UK: Springer-Verlag, 2001, pp. 18–38. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646962.712108

[15] M. R. Asghar and G. Russello, “Flexible and dynamic consent-
capturing,” in iNetSeC, ser. Lecture Notes in Computer Science, J. Ca-
menisch and D. Kesdogan, Eds., vol. 7039. Springer, 2011, pp. 119–
131.

[16] T. Moses, “EXtensible Access Control Markup Language (XACML)
version 1,” ACM Standardview, 2003.

[17] J. Jin, G.-J. Ahn, H. Hu, M. J. Covington, and X. Zhang,
“Patient-centric authorization framework for sharing electronic health
records,” in Proceedings of the 14th ACM symposium on Access
control models and technologies, ser. SACMAT ’09. New York,
NY, USA: ACM, 2009, pp. 125–134. [Online]. Available: http:
//doi.acm.org/10.1145/1542207.1542228

[18] C. M. O’Keefe, P. Greenfield, and A. Goodchild, “A decentralised
approach to electronic consent and health information access control,”
Journal of Research and Practice in Information Technology, vol. 37,
no. 2, 2005.

[19] EnCoRe, “Ensuring consent & reovation,” available at: http://www.
encore-project.info.

[20] “Personal data protection act,” November 1999, http://www.dutchdpa.nl/
downloads wetten/wbp.pdf.

[21] E. Communities, “DIRECTIVE 1999/93/EC OF THE EURO-
PEAN PARLIAMENT AND OF THE COUNCIL of 13 December
1999 on a Community framework for electronic signatures,” De-
cember 1999, http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=
CONSLEG:1999L0093:20081211:EN:PDF.

9

http://old.cdt.org/privacy/eudirective/EU_Directive_.html
http://old.cdt.org/privacy/eudirective/EU_Directive_.html
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://dl.acm.org/citation.cfm?id=1618595.1618602
http://dl.acm.org/citation.cfm?id=1136645.1136896
http://dl.acm.org/citation.cfm?id=1136645.1136896
http://dl.acm.org/citation.cfm?id=646962.712108
http://doi.acm.org/10.1145/1542207.1542228
http://doi.acm.org/10.1145/1542207.1542228
http://www.encore-project.info
http://www.encore-project.info
http://www.dutchdpa.nl/downloads_wetten/wbp.pdf
http://www.dutchdpa.nl/downloads_wetten/wbp.pdf
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1999L0093:20081211:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1999L0093:20081211:EN:PDF

