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Abstract—The enforcement of security policies in outsourced
environments is still an open challenge for policy-based systems.
On the one hand, taking the appropriate security decision
requires access to the policies. However, if such access is allowed
in an untrusted environment then confidential information might
be leaked by the policies. Current solutions are based on
cryptographic operations that embed security policies with the
security mechanism. Therefore, the enforcement of such policies
is performed by allowing the authorised parties to access the
appropriate keys. We believe that such solutions are far too rigid
because they strictly intertwine authorisation policies with the
enforcing mechanism.

In this paper, we want to address the issue of enforcing security
policies in an untrusted environment while protecting the policy
confidentiality. Our solution ESPOON is aiming at providing a
clear separation between security policies and the enforcement
mechanism. However, the enforcement mechanism should learn
as less as possible about both the policies and the requester
attributes.

Index Terms—Encrypted Policies; Policy Protection; Sensitive
Policy Evaluation; Data Outsourcing; Cloud Computing; Pri-
vacy; Security;

I. INTRODUCTION

The cost saving associated with a general improvement
in the quality of services and operations provided makes
outsourcing of the IT infrastructure a business model adopted
by many companies. Even sectors such as healthcare ini-
tially reluctant to this model are now slowly adopting it [1].
Outsourcing typically relies on third parties to provide and
maintain a very reliable IT infrastructure. However, the data
stored on the outsourced servers are within easy reach of the
infrastructure provider that could reuse the data for unintended
and/or malicious purposes.

Several technical approaches have been proposed to guar-
antee the confidentiality of the data in an outsourced environ-
ment. For instance, solutions as those described in [2], [3] al-
low a protected storage of data while maintaining basic search
capabilities to be performed on the server side. However, such
solutions do not support access policies to regulate the access
of a user (or a group of users) to a particular subset of the
stored data.

A. Motivation
Solutions for providing access control mechanisms in out-

sourced environments have mainly focused on encryption

techniques that couple access policies with set of keys, such as
the one described in [4]. Only users possessing a key (or a set
of hierarchy-derivable keys) are authorised to access the data.
The main drawback of these solutions is that security policies
are tightly coupled with the security mechanism incurring in
high processing cost for performing any administrative change
for both the users and the policies representing the access
rights.

A policy-based solution such the one described for the
Ponder language in [5] results more flexible and easy to
manage because it clearly separates the security policies from
the enforcement mechanism. However, policy-based access
control mechanisms were not designed to operate in out-
sourced environments. Such solution can work only when
they are deployed and operated within a trusted domain (i.e.,
the computational environment managed by the organisation
owning the data). If these mechanisms are outsourced in
an untrusted environment, the access policies that are to be
enforced on the server may leak information on the data they
are protecting. As an example, let us consider a scenario where
a hospital has outsourced its healthcare data management
services to a third party service provider. We assume that the
service provider is honest-but-curious, similarly to the existing
literature on data outsourcing. That is, it is honest to perform
the required operations as described in the protocol but curious
to know the data contents. In other words, the service provider
does not preserve the data confidentiality. A patient’s medical
record should be associated with an access policy to prevent
that any hospital employees is allowed to see the patient’s data.
The data is stored with an access policy on the outsourced
environment. As an example of such an access policy, let
us consider the following access policy: only a Cardiologist
may access the data. From this policy, it is possible to infer
important information about the user’s medical data (even if
the actual medical record is encrypted). This policy reveals
that a patient could have heart problems. A curious service
provider may sell this information to banks that could deny
the patient a loan given her health condition.

B. Research Contributions

In this paper, we present a policy-based access control
mechanism for outsourced environments where we support



full confidentiality of the access policies. We named our so-
lution ESPOON (Encrypted Security Policies for OutsOursed
eNvironments). One of the main advantages of ESPOON is
that we maintain the clear separation between the security
policies and the actual enforcing mechanism without loss of
confidentiality. This can be guaranteed under the assumption
that the service provider is honest-but-curious. Our approach
allows to implement the access control mechanism as an
outsourced service with all the benefits associated with this
business model without compromising the confidentiality of
the policies. Summarising, the research contributions of our
approach are threefold. First of all, the service provider does
not learn anything about policies and the requester’s attributes
during the policy evaluation process. Second, ESPOON is
capable of handling complex policies involving non-monotonic
boolean expressions and range queries. Third, the system
entities do not share any encryption keys and even if a user
is deleted or revoked, the system is still able to perform
its operations without requiring re-encryption of the policies.
As a proof-of-concept, we have implemented a prototype
architecture of our access control mechanism and analysed
its performance to quantify the incurred overhead.

C. Organisation

The rest of this paper is organised as follows: Section II
reviews the related work. Section III presents the proposed
architecture of ESPOON. Section IV focuses on implemen-
tation details involved in ESPOON. Section V provides the
discussion about the security and privacy aspects of ESPOON.
Section VI analyses the performance of ESPOON. Finally,
Section VII concludes this paper and gives directions for the
future work.

II. RELATED WORK

Work on outsourcing data storage to a third party has
been focusing on protecting the data confidentiality within
the outsourced environment. Several techniques have been
proposed allowing authorised users to perform efficient queries
on the encrypted data while not revealing information on the
data and the query [2], [6]–[15]. However, these techniques
do not support the case of users having different access rights
over the protected data. Their assumption is that once a
user is authorised to perform search operations, there are no
restrictions on the queries that can be performed and the data
that can be accessed.

The idea of using an access control mechanism in an
outsourced environment was initially explored in [16], [17].
In this approach, the authors provide a selective encryption
strategy as a means for access control enforcement. The idea
is to have a selective encryption technique where each user
has a different key capable of decrypting only the resources a
user is authorised to access. In their scheme, a public token
catalogue expresses key derivation relationships. However, the
public catalogue contains tokens in the clear that express the
key derivation structure. The tokens could leak information on
the security policies and on the protected data. To circumvent

the issue of information leakage, in [4] the authors provide
an encryption layer to protect the public token catalogue. This
requires each user to obtain the key for accessing a resource
by traversing the key derivation structure. The key derivation
structure is a graph built (using access key hierarchies [18])
from a classical access matrix. There are several issues related
to this scheme. First, the algorithm of building key derivation
structure is very time consuming. Any administrative actions
to update access rights require the users to obtain new access
keys derived from the rebuilt key derivation structure and it
consequently requires data re-encryption with new access keys.
Therefore, the scheme is not very scalable and may be suitable
for a static environment where users and resources do not
change very often. Last but not least, the scheme does not
support complex policies where contextual information may be
used for granting access rights. For instance, only specific time
and location information associated with an access request
may be legitimate to grant access to a user.

Another possible approach for implementing an access
control mechanism is protecting the data with an encryption
scheme where the keys can be generated from the user’s
credentials (expressing attributes associated with that user).
Although these approaches were not devised particularly for
outsourced environments, it is still possible to use them
as access control mechanisms in outsourced settings. For
instance, a recent work by Narayan et al. [19] employ the
variant of Attribute Based Encryption (ABE) proposed in [20]
(that is the Ciphertext Policy ABE, or CP-ABE in short) to
construct an outsourced healthcare system where patients can
securely store their Electronic Health Record (EHR). In their
solution, each EHR is associated with a secure search index
to provide search capabilities while guaranteeing no leakage
of information. However, one of the problems associated with
CP-ABE is that the access structure, representing the security
policy associated with the encrypted data, is not protected.
Therefore, a curious storage provider might get information on
the data by accessing the attributes expressed in the CP-ABE
policies. The problem of having the access structure expressed
in cleartext affects in general all the ABE constructions [20]–
[23]. Therefore, this mechanism is not suited for protecting
the confidentiality of the access policies in an outsourced
environment.

Related to the issue of the confidentiality of the access
structure, the hidden credentials scheme presented in [24]
allows to decrypt ciphertexts while the parties involved never
reveal their own policies and credentials to each other. Data
can be encrypted using an access policy containing monotonic
boolean expressions which must be satisfied by the receiver
to get access to the data. A passive adversary may deduce
the policy structure, i.e., the operators (AND, OR, m-of-n
threshold encryption) used in the policy but she does not learn
what credentials are required to fulfil the access policy unless
she possesses them. Bradshaw et al. [25] extend the original
hidden credentials scheme to limit the partial disclosure of
the policy structure and speed up the decryption operations.
However, in this scheme is not easy to support non-monotonic
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boolean expressions and range queries in the access policy.
Last, hidden credentials schemes assume that the involved
parties have to be online all the time to run the protocol.
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Fig. 1. The ESPOON architecture for policy enforcement in outsourced
environments

III. THE ESPOON APPROACH

ESPOON aims at providing a policy-based access control
mechanism that can be deployed in an outsourced environ-
ment. Figure 1 illustrates the proposed architecture that has
similar components as the widely accepted architecture for
policy-based management proposed by IETF [26]. In ES-
POON, the Admin User deploys (i) the access policies to the
Administration Point that stores (ii) the policies in the Policy
Store. Whenever a Requester, say a doctor, needs to access
the data, a request is sent to the Policy Enforcement Point
(PEP) (1). This request includes the Requester’s identifier
(subject), the requested data (target) and the action to be
performed. The PEP (2) forwards the access request to the
Policy Decision Point (PDP). The PDP (3) obtains the policies
matching against the access request from the Policy Store
and (4) retrieves the contextual information from the Policy
Information Point (PIP). The contextual information may
include the environmental and Requester’s attributes under
which an access can be considered valid. For instance, a
doctor should only access the data during the office hours.
For simplicity, we assume that the PIP collects all required
attributes including the Requester’s attributes and sends all of
them together in one go. Moreover, we assume that the PIP
is deployed in the trusted environment. However if attributes
forgery is an issue, then the PIP can request a trusted authority
to sign the attributes before sending them to the PDP. The
PDP evaluates the policies against the attributes provided by
the PIP checking if the contextual information satisfies any
policy conditions and sends to the PEP the access response
(5). In case of permit, the PEP forwards the access action to
the Data Store (6). Otherwise, in case of deny, the requested
action is not forwarded. Optionally, a response can be sent to
the Requester (7) with either success or failure.

The main difference with the standard proposed by IETF
is that the ESPOON architecture for policy-based access

control is outsourced in an untrusted environment (see Figure
1). The trusted environment comprises only a minimal IT
infrastructure that is the applications used by the Admin
Users and Requesters, together with the PIP. This reduces the
cost of maintaining an IT infrastructure. Having the reference
architecture in the cloud increases its availability and provides
a better load balancing compared to a centralised approach.
Additionally, ESPOON guarantees that the confidentiality of
the policies is protected while their evaluation is executed
on the outsourced environment. This allows a more efficient
evaluation of the policies. For instance, a naive solution would
see the encrypted policies stored in the cloud and the PDP
deployed in the trusted environment. At each evaluation, the
encrypted policies would be sent to the PDP that decrypts
the policies for a cleartext evaluation. After that, the policies
need to be encrypted and send back to the cloud. The Service
Provider where the architecture is outsourced is honest-but-
curious. This means that the provider allows the ESPOON
components to follow the specified protocols, but it may
be curious to find out information about the data and the
policies regulating the accesses to the data. As for the data,
we assume that the confidentiality data is protected by one of
the several techniques available for outsourced environments
(see [2], [14], [15]). However, to the best of our knowledge
no solution exists that addresses the problem of guaranteeing
policy confidentiality while allowing an efficient evaluation
mechanism that is clearly separated from the security policies.
Most of the techniques discussed in the related work section
require the security mechanism to be tightly coupled with
the policies. In the following section, we can show that it
is possible to maintain a generic PDP separated from the
security policies and able to take access decisions based on
the evaluation of encrypted policies. In this way, the policy
confidentiality can be guaranteed against a curious provider
and the functionality of the access control mechanism is not
restricted.

A. System Model

Before presenting the details of the scheme used in ES-
POON, it is necessary to discuss the system model. In this
section, we identify the following system entities.
• Admin User: This type of user is responsible for the

administration of the policies stored in the outsourced
environment. An Admin User can deploy new policies on
the outsourced environment or update/delete the policies
already deployed.

• Requester: A Requester is a user that requests an access
(e.g., read, write, search, etc.) over the data residing on
the outsourced environment. Before the access is permit-
ted, the policies deployed on the outsourced environment
are evaluated.

• Service Provider (SP): The SP is responsible for man-
aging the outsourced computation environment, where
the ESPOON components are deployed and to store the
data, and the access policies. It is assumed the SP is
honest-but-curious, i.e, it allows the components to follow
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the protocol to perform the required actions but curious
to deduce information about the exchanged and stored
policies.

• Trusted Key Management Authority (KMA): The
KMA is fully trusted and responsible for generating and
revoking the keys. For each type of authorised users (both
the Admin User and Requester), the KMA generates a key
pair and securely transmits one part of the generated key
pair to the user and the other to the SP. The KMA is de-
ployed on the trusted environment. Although requiring a
Trusted KMA seems at odds with the needs of outsourced
the IT infrastructure, we argue that the KMA requires less
resources and less management effort. Securing the KMA
is much easier since a very limited amount of data needs
to be protected and the KMA can be kept offline most of
time.

It should be clarified that in our settings an Admin User
is not interested in protecting the confidentiality of access
policies from other Admin Users and Requesters. Here, the
main goal is to protect the confidentiality of the access policies
from the SP.
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Fig. 2. Example of access policy condition tree illustrating Location =
HR-WARD and AT > 9#5 and AT < 17#5

B. Policy Representation

In this section, we provide an informal description of the
policy representation used in our approach. For this paper,
we deal with only positive authorisation policies. This means
that, as default no actions are allowed unless at least one
authorisation policy can be applicable to the request.

In our approach, an authorisation policy is represented as
follows:

IF condition THEN CAN 〈S,A, T 〉
The meaning is the following: if the condition is true then

the subject S can execute the action A on the target T . At
the time when a request is made, the information about the
subject, the action that is requested and the target resource is
collected by the Requester. The PIP collects several attributes
representing the context in which the request is being executed
and sends them to the PDP.

To represent the condition in a policy, we use the tree
structure described in [20] for CP-ABE policies. This access
tree structure allows to express conjunctions and disjunctions
of equalities and inequalities. Internal nodes of the tree are
AND, OR or threshold gates (e.g., 2 of 3) and leaf nodes are
the values of the condition predicates. To support comparisons
between numerical values a representation of “bag of bits”
can be used. For instance, let us take a condition stating that
the Requester location should be the HR ward and that the
time of the access should be between 9:00 and 17:00. The
tree representing such condition can be built using AND and
OR gates as shown in Figure 2. When the request is made,
the location of the Requester is the HR ward and the access
time is 10:00. To make things simpler, let us concentrate only
on the numerical value representing the hour. The following
attributes will be sent to the PDP by the PIP:

(“Location=HR-WARD”, “AT : 0****”, “AT: *1***”,“AT: **0**”,
“AT: ***1*”, “AT: ****0”) . The first attribute represents the
location while the other attributes are used for representing the
time of the access, i.e., the value 10 in a 5-bit representation.
Basically, the attributes are matched against the leaf nodes of
the tree according to the AND and OR gates.

In this policy representation, the 〈S,A, T 〉 tuple and the leaf
nodes in the condition tree are in clear text. Therefore, such
information is easily accessible on the outsourced environment
and may leak information about the data that the policies
protect. In the following, we show how such representation can
be protected while allowing the PDP to evaluate the policies
against the request.

IV. SOLUTION DETAILS

The main idea of our approach is to use an encryption
scheme for protecting the confidentiality of the policies while
allowing the PDP to perform the correct evaluation of the
policies. We noticed that the operation performed by the
PDP for evaluating policies is similar to the search operation
executed in a database. In particular, in our case the condition
of a policy is the query; and the data that is matched against
the query is represented by the attributes that the Requester
sends in the request.

For this reason, as a starting point we have taken a multi-
user searchable data (SDE) scheme as the one proposed in
[2] that allows an untrusted server to perform searches over
encrypted data without revealing to the server information
on both the data and the elements used in the request. The
advantage of this method is that it allows multi-user access
without the need for a shared key between users. Each user
in the system has a unique set of keys. The data encrypted
by one user can be decrypted by any other authorised user.
However, the SDE implementation in [2] is only able to
perform keyword comparison based on equalities. One of the
major extensions of our implementation is that we are able
to support the evaluation of conditions with complex boolean
expressions such as non-conjunctive and range queries in the
multi-user settings.
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In general, in a policy-based approach it is possible to
distinguish two main phases in the policy life cycle: the first
phase is the policy deployment in to the Policy Store; and the
second phase is the policy evaluation when a request is made.
In the following, we provide the details of the algorithms based
on the SDE scheme proposed in [2] used in each phase.

A. Initialisation Phase

Before the policy deployment and policy evaluation phases,
the SDE scheme needs to be initialised. This is done for
generating the required keying material. The following two
functions need to be called:
• The initialisation algorithm Init(1k) is run by the Trusted

KMA. It takes as input the security parameter 1k and
outputs the public parameters Params and the master
secret key set MSK.

• The user key sets generation algorithm
KeyGen(MSK, i) is run by the Trusted KMA. It
takes as input the master secret key set MSK and the
user (Admin User or Requester) identity i and generates
two key sets Kui

and Ksi . The Trusted KMA sends
key sets Kui

and Ksi to the user i and the Key Store,
respectively. Only the Administration Point, PDP and
PEP are authorised to access the Key Store.

B. Policy Deployment Phase

The policy deployment phase is executed when a new
set of policies needs to be deployed on the Policy Store
(or an existing version of policies needs to be updated).
This phase is executed by the Admin User who edits the
policies in a trusted environment. Before the policies leave
the trusted environment, they need to be encrypted. Our policy
representation consists of two parts: one for representing the
condition and the other for the 〈S,A, T 〉 tuple. Each part is
encrypted by the following functions:
• The access policy condition encryption algorithm
PD-Condition-Enc(Condition,Kui

) is run by the Ad-
min User i. It takes as input Condition and Kui and
outputs the ciphertext c∗i (Condition).

• The access policy 〈S,A, T 〉 tuple encryption algorithm
PD-SAT -Enc(〈S,A, T 〉,Kui

) is run by the Admin
User i. It takes as input the 〈S,A, T 〉 tuple and Kui

and
outputs the ciphertext c∗i (〈S,A, T 〉).

When the encrypted policy is sent to the outsourced envi-
ronment, then another encryption round is performed. This is
done using the following functions:
• The access policy condition re-encryption algorithm
PD-Condition-Re-Enc(i, c∗i (Condition),Ksi) is run
by the Administration Point. It takes as input
c∗i (Condition) and the key Ksi corresponding to the
Admin User i and outputs the re-encrypted ciphertext
c(Condition).

• The access policy 〈S,A, T 〉 tuple re-encryption algorithm
PD-SAT -Re-Enc(c∗i (〈S,A, T 〉),Kui) is run by the Ad-
min User i. It takes as input the encrypted 〈S,A, T 〉

tuple c∗i (〈S,A, T 〉) and the key Ksi corresponding to
the Admin User i and outputs the re-encrypted ciphertext
c(〈S,A, T 〉) = {c(S), c(A), c(T )}.

The access policy can be now stored in the Policy Store.
The stored policies do not reveal any information about the
data because these are stored as encrypted.

C. Policy Evaluation Phase

The policy evaluation phase is executed when a Requester
makes a request to access the data. Before the access permis-
sion, the PDP evaluates the matching policies in the Policy
Store on the SP. The request contains the 〈S,A, T 〉 tuple. This
information is encrypted by the following function before it
leaves the trusted environment:

• The access policy 〈S,A, T 〉 tuple encryption algorithm
PE-SAT -Enc(〈S,A, T 〉,Kuj

) is run by the Requester
j. It takes as input the 〈S,A, T 〉 tuple and Kuj

and
outputs the encrypted 〈S,A, T 〉 tuple T ∗j (〈S,A, T 〉).

The Requester sends the encrypted 〈S,A, T 〉 tuple to the
SP. The policy evaluation phase at the SP side starts with
searching all the policies in the Policy Store matching against
the Requester 〈S,A, T 〉 tuple. This is accomplished by the
following function:

• The 〈S,A, T 〉 tuple search algorithm
PE-SAT -Search(j, T ∗j (〈S,A, T 〉),Ksj ,
c(〈Si, Ai, Ti〉)1≤i≤n) is run by the PDP. It takes
as input the encrypted 〈S,A, T 〉 tuple T ∗j (〈S,A, T 〉)
from the Requester j, the key Ksj corresponding to the
Requester j, and all n stored policies in the Policy Store
c(〈Si, Ai, Ti〉)1≤i≤n and returns the matching tuples in
the Policy Store.

If any match is found in the Policy Store then the PDP
needs to match the contextual information against the access
policy condition corresponding to the matched tuple. The PDP
fetches the contextual information including Requester and
environmental attributes from the PIP. The PIP encrypts the
contextual information by the following function before it
leaves the trusted environment:

• The attributes encryption algorithm
PE-Attributes-Enc(γ,Kuj

) is run by the PIP j.
It takes as input the Requester and environmental
attributes γ and Kuj and outputs the encrypted attributes
Tj(γ).

After receiving the contextual information from the PIP,
the PDP matches the PIP attributes against the access policy
condition. The PDP calls the following function to evaluate
the access policy condition:

• The access policy condition evaluation algorithm
PE-Condition-Evaluation(j, Tj(γ),Ksj , c(Condition))
is run by the PDP. It takes as input a list of encrypted
attributes Tj(γ) and the key Ksj both corresponding to
the PIP j and encrypted access policy condition tree
c(Policy) and outputs either Permit or Deny.
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D. Revocation

The proposed solution allows revocation of a user (Admin
User or Requester). For this purpose, the Administration Point
calls the following function:
• The user (Admin User or Requester) revocation algorithm
Revoke(i) is run by the Administration Point. Given the
user i, the Administration Point removes the correspond-
ing key Ksi from the Key Store.

E. Concrete Construction

This section provides the cryptographic details of each
function in the phases described above:
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• Init(1k) : The Trusted KMA takes as input the security
parameter 1k and outputs two prime numbers p, q such
that q divides p − 1, a cyclic group G with a generator
g such that G is the unique order q subgroup of Z∗P . It
chooses x R←− Z∗q and compute h = gx. Next, it chooses
a collision-resistant hash function H , a pseudorandom
function f and a random key s for f . Finally it publicises
the public parameters Params = (G, g, q, h,H, f) and
keeps securely the master secret key MSK = (x, s).

• KeyGen(MSK, i) : For each user (Admin User or
Requester) i, the Trusted KMA chooses xi1

R←− Z∗q
and computes xi2 = x − xi1. It securely transmits
Kui

= (xi1, s) to the user i and Ksi = (i, xi2) to
the Administration Point which inserts Ksi in the Key
Store, i.e., KS = KS ∪Ksi

1. Figure 3 illustrates the key
distribution process where an Admin User say A and a
Requester say R are receiving their keys (1) KuA

and (4)
KuR

, respectively. The corresponding SP side keys (2)
KsA and (5) KsR are sent to the Administration Point
that stores both (3) KsA and (6) KsR in the Key Store.

• PD-Condition-Enc(Condition,Kui
) : The Admin

User defines the access policy condition as a tree
Condition denoting a set of string and numerical com-
parisons represented by n leaf nodes. Each non-leaf node
a′ in Condition represents a threshold gate with the
threshold value ka′ denoting the number of its child
subtrees that must be satisfied where a′ has total ca′ child

1The Key Store is initialised as KS = Φ.
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subtrees, i.e., 1 ≤ ka′ ≤ ca′ . If ka′ = 1, the threshold
gate is an OR and if ka′ = ca′ , the threshold gate is an
AND. Each leaf node a represents either a string compar-
ison or subpart of a numerical comparison (because one
numerical comparison of size s bits is represented by s
leaf nodes at the most) with a threshold value ka = 1.
For every leaf node a ∈ Condition, the Admin User
chooses ra

R←− Z∗q and computes c∗i (a) = (ĉ1, ĉ2, ĉ3)
where ĉ1 = gra+σa , σa = fs(a), ĉ2 = ĉxi1

1 , ĉ3 = H(hra).
The Admin User transmits to the Administration Point the
encrypted access policy condition tree c∗i (Condition) =
{c∗i (a1), c∗i (a2), . . . , c∗i (an)} as shown in Figure 4.

• PD-SAT -Enc(〈S,A, T 〉,Kui
) : The Admin User de-

fines and encrypts each item in the 〈S,A, T 〉 tuple.
For each item a ∈ 〈S,A, T 〉, the Admin User chooses
ra

R←− Z∗q and computes c∗i (a) = (ĉ1, ĉ2, ĉ3) where ĉ1 =
gra+σa , σa = fs(a), ĉ2 = ĉxi1

1 , ĉ3 = H(hra). The Admin
User transmits to the Administration Point the encrypted
〈S,A, T 〉 tuple c∗i (〈S,A, T 〉) = {c∗i (S), c∗i (A), c∗i (T )} as
shown in Figure 4.

• PD-Condition-Re-Enc(i, c∗i (Condition),Ksi) : The
Administration Point retrieves the key Ksi corresponding
to the Admin User i. Each encrypted leaf node c∗i (a) in
c∗i (Condition) is re-encrypted to c(a) = (c1, c2), where
c1 = (ĉ1)

xi2 .ĉ2 = ĉxi1+xi2
1 = (gra+σa)x = hra+σa and

c2 = ĉ3 = H(hra). The Administration Point stores
the re-encrypted access policy condition c(Condition) =
{c(a1), c(a2), . . . , c(an)} in the Policy Store as shown in
Figure 4.

• PD-SAT -Re-Enc(c∗i (〈S,A, T 〉),Kui
) : The Admin-

istration Point retrieves the key Ksi corresponding
to the Admin User i. Each encrypted item c∗i (a) in
c∗i (〈S,A, T 〉) is re-encrypted to c(a) = (c1, c2), where
c1 = (ĉ1)

xi2 .ĉ2 = ĉxi1+xi2
1 = (gra+σa)x = hra+σa

and c2 = ĉ3 = H(hra). The Administration Point
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stores the re-encrypted 〈S,A, T 〉 tuple c(〈S,A, T 〉) =
{c(S), c(A), c(T )} in the Policy Store as shown in Figure
4.
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• PE-SAT -Enc(〈S,A, T 〉,Kuj
) : To encrypt each

item a′ in the 〈S,A, T 〉 tuple, the Requester
j chooses ra′

R←− Z∗q and computes trapdoor
Tj(a

′) = (t1, t2) where t1 = g−ra′ gσa′ and
t2 = hra′ g−xj1ra′ gxj1σa′ = gxj2ra′ gxj1σa′ , where
σa′ = fs(a

′). She encrypts the 〈S,A, T 〉 tuple as
Tj(〈S,A, T 〉) = {T ∗j (S), T ∗j (A), T ∗j (T )} as shown in
Figure 5 and sends it to the PDP.

• PE-SAT -Search(j, T ∗j (〈S,A, T 〉),Ksj , c(〈Si, Ai,
Ti〉)1≤i≤n) : The PDP receives the access
request containing encrypted 〈S,A, T 〉 tuple
T ∗j (〈S,A, T 〉). Next, it retrieves the key Ksj

corresponding to the Requester j. For each
c(〈S,A, T 〉) ∈ c(〈Si, Ai, Ti〉)1≤i≤n, it matches
c(〈S,A, T 〉) with T ∗j (〈S,A, T 〉). To perform
this matching, it has to check if each trapdoor
T ∗j (a

′) ∈ T ∗j (〈S,A, T 〉) is matching against the
corresponding item c(a) ∈ c(〈S,A, T 〉). The match
is accomplished as follows. The PDP computes
T = t

xj2

1 .t2 = gxσa′ as shown in Figure 5. Next, it
tests if c2

?
= H(c1.T

−1). If so, then trapdoor T ∗j (a
′)

is considered matched against c(a). If all trapdoors of
T ∗j (〈S,A, T 〉) matching against the corresponding items
of c(〈S,A, T 〉), the tuple will be considered matched
and this function returns all matching 〈S,A, T 〉 tuples
in the Policy Store.

• PE-Attributes-Enc(γ,Kuj
) : To encrypt each attribute

a′ where a′ ∈ γ, the PIP2 j chooses ra′
R←− Z∗q and com-

putes trapdoor Tj(a′) = (t1, t2) where t1 = g−ra′ gσa′

and t2 = hra′ g−xj1ra′ gxj1σa′ = gxj2ra′ gxj1σa′ , where
σa′ = fs(a

′). The PIP encrypts all attributes γ as Tj(γ) =
{Tj(a′1), Tj(a′2), . . . , Tj(a′m)} as shown in Figure 5 and
sends it to the PDP.

• PE-Condition-Evaluation(j, T ∗j (γ),Ksj , c(Condition)) :

2The key generation for the PIP is similar to that of a Requester.

The PDP receives the contextual information containing
trapdoors Tj(γ) from the PIP j. Next, it retrieves the key
Ksj corresponding to the PIP j and the encrypted access
policy condition c(Condition). The PDP performs
recursive algorithm starting from the root node of
the access policy condition tree Condition. For each
non-leaf node, it checks if the number of children that
are satisfied is greater than or equal to the threshold
value of the node. If so, the node is marked as satisfied.
For each encrypted leaf node c(a) in c(Condition),
there may exist a corresponding PIP trapdoor Tj(a

′)
where Tj(a

′) ∈ Tj(γ). For this purpose, it computes
T = txi2

1 .t2 = gxσa′ as shown in Figure 5. For each
leaf node c(a) = (c1, c2), it tests if c2

?
= H(c1.T

−1).
If so, the leaf node is marked as satisfied. Its response
to the PEP is Permit if the root node of the access
policy condition tree Condition is marked as satisfied
and Deny otherwise.

• Revoke(i) : The Administration Point removes the key
Ksi corresponding to the user (Admin User or Requester)
i from the Key Store as KS = KS \ Ksi . Therefore,
both the PEP and the Administration Point check the
revocation of a user before invoking any action.

V. DISCUSSION

This section provides the discussion about the security and
privacy aspects of ESPOON.

A. On the Impossibility of Cryptography Alone for Privacy-
Preserving Cloud Computing

Dijk and Juels argue in [27] that cryptography alone is not
sufficient for preserving the privacy in the cloud environment.
They prove that in multi-client settings it is impossible to
control how information is released to clients with different
access rights. Basically, in their threat model clients do not
mutually trust each other. In our settings, users are mutually
trusted: our main contribution is to protect the confidentiality
of the access policies (and therefore of the data) from the SP.

B. Revealing Policy Structure

The access policy structure reveals information about the
operators, such as AND and OR, and the number of operands
used in the access policy condition. To overcome this problem,
dummy attributes may be inserted in the tree structure of the
access policy. Similarly, the PIP can send dummy attributes
to the PDP at the time of policy evaluation to obfuscate the
number of attributes required in a request.

VI. PERFORMANCE EVALUATION

In this section, we discuss a quantitative analysis of the
performance of ESPOON. It should be noticed that here
we are concerned about quantifying the overhead introduced
by the encryption operations performed both at the trusted
environment and the outsourced environment. In the following
discussion, we will not take into account the latency introduced
by the network communication.
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A. Implementation Details

We have implemented ESPOON in Java 1.6. We have
developed all the components of the architecture required
for performing the policy deployment and policy evaluation
phases. For the cryptographic operations, we have imple-
mented all the functions presented in the previous section.

We have tested the implementation of ESPOON on a single
node based on an Intel Core2 Duo 2.2 GHz processor with
2 GB of RAM, running Microsoft Windows XP Professional
version 2002 Service Pack 3. The number of iterations per-
formed for each of the following results is 1000.

B. Performance Evaluation of the Policy Deployment Phase

In this section, we analyse the performance of the policy
deployment phase. In this phase, the access policies are first
encrypted at the Admin User side (that is a trusted domain)
and then sent over to the Administration Point running on the
outsourced environment. Here, the policies are re-encrypted
and stored in the Policy Store on the outsourced environment.

Our policy representation consists of the tree representing
the policy condition and the 〈S,A, T 〉 tuple describing what
action A a subject S can perform over the target T . In the
condition tree, leaf nodes can represent string comparison (for
instance, “Location=HR-WARD”) and/or range comparison
over numerical attributes (for instance, “Access Time > 9”).
While a string comparison is always represented by a single
leaf node in the condition tree and a single range comparison
over numerical attributes may require more than one leaf
node. In the worst case, a single range comparison on a value
represented as a s-bit bag may require s separate leaf nodes.
Therefore, the range comparisons in a condition tree have a
major impact on the encryption of a policy at deployment time.

This behaviour is shown in Figure 6(a). In the fig-
ure, we increase the number of string comparisons and
numerical comparisons present in a condition tree of an
access policy. As the graphs show, the time taken by
PD-Condition-Enc and PD-Condition-Re-Enc functions
are growing linearly with the number of comparisons in the
policy condition tree. However, the range comparisons over
numerical attributes have a steeper line. For this testing,
we have used the following comparisons. For the string
we used “attributeNamei=attributeV aluei”, where i varies
from 1 to 10. For the numerical comparison, we used
“attributeNamei < 15#4”.3

To check how the size of the bit representation impacts
on the encryption functions during the deployment phase, we
performed the following experiment. We fixed the number
of numerical comparisons in the condition tree to only one
and increased the size s of the bit representation from 2 to
20 for the comparison “attributeName < 2s − 1. Figure
6(b) shows the performance overhead of the encryption during
the policy deployment phase for the PD-Condition-Enc and
PD-Condition-Re-Enc functions. We can see that the policy

3It should be noted that using the comparison less than 15 in a 4 bits
representation represents the worst case scenario requiring 4 leaf nodes.

deployment time incurred grows linearly with the increase
in the size s of a numerical attribute. In general, the time
complexity of the encryption of the tree condition during
the policy deployment phase is O(m + ns) where m is the
number of string comparisons, n is the number of numerical
comparisons, and s represents the number of bits in each
numerical comparison.

TABLE I
PERFORMANCE OVERHEAD OF ENCRYPTING THE 〈S,A, T 〉 TUPLE DURING

THE POLICY DEPLOYMENT

Function Name PD-SAT-Enc PD-SAT-Re-Enc
Time (in milliseconds) 46.44 11.65

As for the 〈S,A, T 〉 tuple, the average encryption time taken
by the PD-SAT -Enc and PD-SAT -Re-Enc are shown in
Table I. The time complexity of the encryption of the 〈S,A, T 〉
tuple during the policy deployment phase does not depend on
any parameters and can be considered constant.

During the policy deployment phase, the encryption op-
erations performed at the Admin User side take more
time to encrypt the access policy than the SP side to re-
encrypt the same policy (either PD-Condition-Re-Enc or
PD-SAT -Re-Enc). This is because the PD-Condition-Enc
or PD-SAT -Enc functions perform more complex crypto-
graphic operations, like generation of random number and hash
calculations, than the respective functions on the SP side.

C. Performance Evaluation of the Policy Evaluation Phase
In this section, we analyse the performance of the policy

evaluation phase, where a Requester sends the encrypted
request to the PEP running on the outsourced environment.
The PEP forwards the encrypted request to the PDP that
has to select the set of policies that are applicable to the
requests. Once the PDP has found the policies then the PDP
will evaluate if the attributes in the contextual information
satisfy any of the conditions of the selected policies.

To make a request, it is necessary to generate the 〈S,A, T 〉
tuple representing the subject S requesting to perform action
A on target T . The 〈S,A, T 〉 tuple needs to be transformed
into trapdoors before they are sent over to the PEP on
the outsourced environments. The trapdoors will be used for
performing the encrypted policy evaluation on the outsourced
environment. The trapdoor representation does not leak infor-
mation on the element of the 〈S,A, T 〉 tuple.

Once the PDP gets the request as a list of trapdoors, the PDP
performs an encrypted search in the Policy Store looking for
any stored policies with matching 〈S,A, T 〉 tuples. Figure 7(a)
shows the performance overhead incurred by the encrypted
search. In our testing, we varied the number of encrypted
policies stored in the Policy Store ranging from 50 to 1000.
As we can observe, it takes 0.5 milliseconds on average
for performing an encrypted match operation between the
〈S,A, T 〉 tuple of the request and the 〈S,A, T 〉 tuple of a
stored policy. This means that on average it takes half a second
for finding a matching policy in the Policy Store with 1000
policies.
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Fig. 7. Performance overhead of access policy condition during the policy evaluation

If any match is found in the Policy Store then the PDP
needs to fetch the contextual information from the PIP. The
PIP is responsible to collect and send the required contex-
tual information that might be containing environmental and
Requester attributes. The PIP transforms these attributes into
trapdoors before they sent over to the PDP. Once again, the
trapdoor representation does not leak information on the actual
value of the attribute. Figure 7(b) shows the performance of
generating trapdoors by the PIP. The performance of function
PE-Attributes in Figure 7(b) is almost similar to the function
PD-Condition-Enc called by the Admin User during the
policy deployment phase as shown in Figure 6(a).

When the policies with matching 〈S,A, T 〉 tuples have
been found, then the PDP will perform the evaluation of
the condition tree of the policies. To evaluate the tree con-
dition, the PDP matches the Requester and environmental
attributes against the leaf nodes in the condition tree using
PE-Condition-Evaluation function. To quantify the perfor-
mance overhead of the encrypted matching of the Requester
and environmental attributes against the condition tree we have
performed the following test. First of all, we have considered
two cases: the first case is the one in which only string
attributes are provided by the PIP and the tree condition
contains only string comparisons; in the second case only
numerical attributes are provided by the PIP and the tree
condition consists only of numerical comparisons. For both
cases, the number of attributes varies together with the number
of comparisons in the tree. In particular, if the request contains

n different attributes then the tree condition will contain n
different comparisons.

Figure 7(c) shows the results for both cases. As we can
see, the condition evaluation for the numerical attributes has
a steeper curve. This can be explained as follows. For the
first case, for each string attribute only a single trapdoor is
generated. A string comparison is represented as a single
leaf node in the condition tree. This means that n trapdoors
in a request are matched against m leaf nodes in the tree
resulting in a O(nm) complexity (however, in our experiments
the number of attributes and the number of comparisons are
always the same). For the case of the numerical attributes, we
have also to take in to consideration the bit representation.
In particular, for a give numerical attribute represented as s
bits, we need to generate s different trapdoors. This means
that n numerical attributes in a request will be converted in
to ns different trapdoors. These trapdoors then need to be
matched against the leaf nodes representing the numerical
comparisons. As we have discussed for the policy deployment
phase, in the worst case scenario, a numerical comparison for
a s-bit numerical attribute requires s different leaf nodes. In a
tree with m different numerical comparisons, this means that
the ns trapdoors need to be matched against ms resulting in
O(nms2) complexity.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the ESPOON architecture
to support policy-based access control mechanism for out-
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sourced and untrusted environments. Our approach separates
the security policies from the actual enforcing mechanism
while guaranteeing the confidentiality of the policies when
given assumptions hold (i.e., the SP is honest-but-curious).
The main advantage of our approach is that policies are
encrypted but it still allows the PDP to perform the policy
evaluation while not learning anything on the policies. Second,
ESPOON is capable of handling complex policies involving
non-monotonic boolean expressions and range queries. Finally,
the authorised users do not share any encryption keys making
the process of key management very scalable. Even if a user
key is deleted or revoked, the other entities are still able to
perform their operations without requiring re-encryption of the
policies.

As future directions of our research, we are working on
integrating a secure audit mechanism in ESPOON. The mech-
anism should allow the SP to generate genuine audit logs
without allowing the SP to get information about both the
data and the policies. However, an auditing authority must
be able to retrieve information about who accessed the data
and what policy was enforced for any access request made.
Another direction of our work is towards the extension of
the encrypted search and match capabilities to handle the
case of negative authorisation policies and policies for long-
lived sessions where the conditions need to be continuously
monitored and the attributes of the request can be dynamically
updated.
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