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Abstract—Content-Centric Networking (CCN) is an emerging
paradigm that can anticipate growing demands of content de-
livery in coming years. The underlying architecture of the CCN
enables users to search for content based on names. On one
hand, this is a privacy-friendly feature that do not require source
and destination addresses. On the other hand, semantically-rich
names reveal sufficient information about users’ preferences.
Unfortunately, a curious CCN node may learn and sell sensitive
information to third-parties, thus posing serious threats to users’
privacy. In this paper, we present PROTECTOR that aims at
protecting content names as well as content and allows a CCN
network to add new users or remove existing ones without requir-
ing any re-encryption of stored content and names. It is scalable
and efficient as it incurs very limited overhead for required
cryptographic operations. Our performance analysis reports that
PROTECTOR can handle 34 and over 10 million requests per
second at boundary and other CCN nodes, respectively.

I. INTRODUCTION

The Internet was initially designed as a communication

network providing host-to-host communication using IP ad-

dresses. However, it has dramatically evolved over time and

become a global platform used by governments, corporations

and individuals for sharing a huge amount of data. According

to Cisco [1], the global mobile data traffic will increase nearly

tenfold in the next five years. Moreover, all forms of content

delivery in the Internet are expected to represent 86% of the

whole traffic [2]. In order to cope up with growing demands

of content delivery, researchers have proposed to replace the

existing host-to-host communication network with a content-

centric one.

Several content-centric architectures have been presented,

such as PURSUIT [3], DONA [4], Content-Centric Network-

ing (CCN) [5]. Among all of them, CCN has received most of

the attention from the community because of three features:

hierarchical naming scheme at networking level, coupling of

name forwarding and data routing and simple easy-to-manage

caching features (for efficiency reasons) at every node of the

network [6], [7].

In content-centric architectures, content is searched using

names. Like DNS in the Internet, CCN uses a hierarchical

naming scheme. These names are semantically tied to user

preferences and are disseminated within the network. Unfor-

tunately, names in plaintext may leak sensitive information

to untrusted CCN nodes because they can easily profile user

interests. Even if names are protected, curious CCN nodes

may deduce private information from the content returned to

the users. Therefore, not only names but also content should

be protected in order to preserve privacy of users in the CCN.

There are some solutions for protecting names [8]–[10],

content [11] and both [12] in CCN. However, there is no

solution for protecting both names and content while in-

network caching benefits are respected. More importantly,

existing solutions suffer from scalability issues when it comes

to user key management and performance. Basically, there is

no scheme that can handle addition of new users or removal

of existing ones from CCN without requiring re-encryption of

names or content stored on CCN nodes.

In this paper, we propose a privacy-preserving mecha-

nism named PROTECTOR (Privacy-preserving infoRmation

loOkup in conTEnt cenTric netwORks) that aims at protecting

names and content in the CCN. PROTECTOR is based on

proxy encryption [13], [14] in which users or CCN nodes do

not share any key. The contribution of this paper is four-fold.

• First, CCN nodes can forward content within the network

without learning interest of users.

• Second, CCN nodes do not gain access to content.

• Third, the system is efficient and scalable as it can handle

a large number of requests in the fraction of a second.

• The system offers a scalable user key management that

enables addition of new users or removal of existing

ones without requiring re-encryption of names or content

stored on CCN nodes.

The rest of the paper is organised as follows. Section II pro-

vides a brief overview of CCN and describes the problem state-

ment and associated research challenges. Section III presents

the threat model. Next, we explain our proposed approach in

Section IV. Section V presents PROTECTOR. Sections VI

and VII report on security analysis and performance analysis,

respectively. Related work is reviewed in Section VIII. Finally,

we draw some conclusions and highlight the direction for

future work in Section IX.

II. OVERVIEW AND PROBLEM

A. CCN Overview

CCN is a clean-slate approach for the future Internet.

Communication is based on two primitives: Interest and Data

messages. The Interest expresses the will of a user for a



content, while a Data message contains the answer for that

content.

Fig. 1: Hierarchical representation of content names in CCN.

The communication paradigm is led by names, known as

(Content Names), which are contained in the Interest and Data

messages. These names are made of hierarchically organised

and human-readable components, as we can see in Figure 1.

For instance, /it/Venice and /org/wikipedia/Maradona are two

valid CCN names, composed of 2 and 3 components, respec-

tively.

To support Content Names, every CCN node holds three

tables:

• Content Store (CS) is a caching structure that stores

content temporarily.

• Pending Interest Table (PIT) keeps track of the currently

non-satisfied interests. Basically, it serves as a trace for

the reverse path once the requested content is found.

• Forwarding Interest Base (FIB) is a routing table used to

determine the interface to transmit content.

When an Interest arrives, the node extracts the Interest name

and looks up into its CS for content stored that matches the

full name. If the content is found, it is automatically sent

back through the interface over which the Interest arrived

and the Interest is discarded. Otherwise, we lookup the PIT

to decide whether the CCN node is already waiting for

the requested content. If an entry is found, the Interest is

discarded. Otherwise, the FIB table is checked to decide the

interface to redirect the Interest to. In the FIB table, a longest

prefix matching operation is performed and the Interest is

forwarded to another CCN node where same procedure is

repeated until the requested content is eventually found.

Both PIT and FIB are illustrated in Figure 2. For brevity

reasons, we do not show CS in Figure 2. In this example,

user Bob is willing to retrieve wikipedia page of Maradona.

Bob creates an Interest message with the name /org/wikipedia/

Maradona. As Bob is directly connected to node A, he sends

it to node A (Step 1). Node A first checks whether the content

is stored in its CS, which is not the case. Then, it verifies its

PIT and there are no pending request for the requested content.

As a consequence, the longest prefix match is searched in the

FIB table and a new entry is added to the PIT specifying

the Content Name and issuer of the request (i.e., Bob). As a

result, the Content Name finds an exact match and forwards

the content to node B as specifies the FIB (Step 2). At node B,

the same procedure is repeated and the Interest is forwarded

to node C (Step 3). At node C, the content is found and the

content itself is encapsulated into a Data message (Step 4),

which is forwarded – through the reverse path – using the

entries of the PIT (Steps 5-8). The intermediary nodes stores

a copy of the content in its CS. Finally, Bob receives wikipedia

page of Maradona.

B. Problem Statement

As illustrated in Figure 2, CCN nodes see Content Names

in cleartext. Unfortunately, this poses serious privacy threats

to users because a curious CCN node can easily infer what a

user or a group of users is interested in. For instance, if we

refer to the example illustrated in Figure 2, nodes A, B or C

can discover that Bob is interested in wikipedia or Maradona.

Protecting only Content Names will not solve the issue

because a semantic correlation exists between the Content

Names and the content itself. More specifically, even if Content

Names are protected, the CCN nodes can deduce private

information from the cleartext content returned to the user.

CCN nodes may sell this information to third-parties, e.g.,

marketing companies. Or, even worst, a malicious CCN node

may censor certain types of content [15].

C. Research Challenges

In order to preserve privacy of users in the CCN that could

be deployable in practice, the following research challenges

must be addressed:

C1 In the presence of curious CCN nodes, how can users

request for content without exposing their interest?

C2 How can a user receive content without providing any

access to CCN nodes?

C3 In a network with a large number of users each one

making multiple requests, how can we provide efficient

lookups, i.e., scalability of the protection scheme?

C4 How can we address aforementioned challenges without

sharing any keys between content providers and users?

C5 How can we design the system where users (or CCN

nodes) could be added or removed without requiring re-

encryption of already stored content?

III. THREAT MODEL

We first identify system entities, assumptions, potential

adversaries and possible attacks.

There are four types of entities in our system. Users

are entities that express their interest for content. Content

Providers are entities that provide content. CCN Nodes are

nodes of the network responsible for storing content and

sending it to interested users. Key Management Server (KMS)

is a fully trusted authority that is responsible for generation

and revocation of the keys. The key material is distributed out

of band.

The main adversary is a CCN node that is considered

honest-but-curious, meaning it is honest to follow the protocol

but curious to learn about interest of users or content. We

assume that CCN nodes can collude, i.e., even if they com-

promise, the information they might infer must be limited. We

only assume passive attacks and do not cover active attacks

by CCN nodes. We do not address integrity of Content Names

or content.

/it/Venice
/org/wikipedia/Maradona
/org/wikipedia/Maradona
/org/wikipedia/Maradona


Fig. 2: A typical CCN architecture (inspired from [6]) in which Bob is interested in Maradona’s wikipage. His interest is

disseminated within the network. Once the content is found, it is sent back through the path as taken by the Interest message.

IV. PROTECTOR: THE NEW SCHEME

The main idea behind PROTECTOR is to employ proxy

encryption [13], [14] for providing privacy-preserving lookups

and protection of content. For protecting user interest, the user

client transforms each component in Content Name into a

corresponding trapdoor and then sends it to the CCN node. A

trapdoor is a function that is easy to calculate in one direction

and complicated in the opposite direction. While serving as a

proxy, the CCN node re-encrypts the user generated trapdoors

before performing any matching. Next, the CCN node matches

the encrypted Content Name against encrypted tables stored on

CCN nodes. The trapdoor generation does not leak information

about components in Content Name. Content providers follow

the same steps to disseminate the encrypted Content Name in

the network. That is, a content provider transforms components

in Content Name into trapdoors that are re-encrypted by the

CCN node.

Like protection of user interest, a content provider encrypts

content and sends it to the CCN node that re-encrypts it

before storing it. As explained above, a CCN node performs

encrypted matching. If the match is successful, the CCN node

(as a proxy) pre-decrypts the content and sends it to requested

users. The user client finally decrypts the content.

In PROTECTOR, a CCN node neither learns interest (i.e.,

components in Content Name) of users nor gets access

to content, thus tackling both C1 and C2. At the same

time, PROTECTOR offers efficient lookups (i.e., C3). In

PROTECTOR, users, content providers or CCN nodes do not

share any keys (i.e., C4) and even if a user or content provider

is added or removed, the system is still able to function without

requiring re-encryption of Content Name or content (i.e., C5).

Using PROTECTOR, the flow of messages mainly remains

same as already explained in Figure 2. The adaptation is

required for completing Steps 1, 5 and 8. Step 1 is decomposed

into two: first, the user generates trapdoors and then the

CCN node re-encrypts them. For completing Step 5, a content

provider encrypts content while the CCN node re-encrypts it.

Likewise, the delivery of content in Step 8 is completed first

by pre-decryption by the CCN node and then finally decrypted

by the user.

All other steps (Steps 2-4 and 6-7) are same as already

illustrated in Figure 2 and explained in Section II.

V. SOLUTION DETAILS

A. Initialisation and Key Generation Phase

Given a security parameter, the system generates a master

secret key and public parameters. The KMS runs Init for this

purpose. After the system has been set up, the KMS generates

keys for every user (or content provider) in the system. The

KMS runs KeyGen, which takes as input an identity of the

user and generates a key pair including a user key and a

(proxy) server key. The user key is securely sent to the user

while the server key is given to the CCN nodes that a user (or

content provider) interacts with. This means that every node

that is interacted by the user maintains a key store for storing

server side keys.

• Init(k): Given a security parameter k, the KMS generates

two prime numbers p and q such that q|p−1. It generates

g such that G is the unique order q subgroup of Z∗p.

It chooses a random s ∈ Z∗q and x ∈ Z∗q, which is a

master secret key and calculates h = gx. It publishes

public parameters Params = (G,g,q,h, f ) (where f is a

pseudorandom function) and keeps securely the master

secret key MSK = (x,s) The key store KS is initialised

as: KS← φ .

• KeyGen(MSK, i): For each user i, the KMA chooses a

random xi1 ∈ Z∗q and computes xi2 = x− xi1. Next, it

transmits KUi
= (xi1,s) securely to user i and KSi

=(i,xi2)
to the CCN nodes that store all server side keys KSi

in

their key stores: KS← KS∪KSi
.

The CCN network configures routing tables with all the

available content in the network. This step is completed using

a routing algorithm such as [16], [17].

B. Request Generation Phase

To preserve privacy of users, a user client runs UserTD

for transforming every component in Content Name into a

corresponding trapdoor using the user key provided by the

KMS. As compared to the standard messaging flow illustrated

in Figure 2, the additional step is that the user client prepares



trapdoors before Step 1. Once these trapdoors are generated,

they are sent to the CCN node in Step 1, which is same as a

user client does in case of the traditional CCN architecture.

• UserTD(e,KUi
): The user client computes: σ = fs(e).

Finally, it generates td∗i (e) = (t1, t2), where t1 = gσ and

t2 = t
xi1
1 = gxi1σ .

C. CCN Re-Encryption Phase

To preserve functionalities of the CCN, CCN nodes need to

perform comparison operations based on Content Names. As

users send encrypted Content Names in the form of trapdoors,

CCN nodes must transform them in such a way they can

still perform these comparisons. This is achieved by means

of re-encrypting Content Names. CCN nodes run CCNTD.

As a result, names are re-encrypted using the server side key

corresponding to the user that issued the request. Due to the

proxy encryption property, CCN nodes are able to perform

queries without knowing user client keys. In other words, CCN

nodes are not able to decrypt Content Names to learn any

information.

• CCNTD(i, td∗i (e)): The CCN node retrieves from the key

store the key KSi
corresponding to the user i. Next, it

computes: td(e) = T = t
xi2
1 .t2 = gxσ .

D. CCN Lookup Phase

As we illustrated in Figure 2, CCN nodes maintain three

tables: CS, PIT and FIB. All these tables must support two

types of operations: the exact match and the longest prefix

match, explained in Section II-A.

For performing the encrypted matching, a CCN node runs

MatchTDs. As usual, the CCN algorithm is executed and

CS, PIT and FIB tables are queried to retrieve content.

First, the CS is revisited to check whether content is in the

cache. For instance, it looks for an exact match between the

encrypted Content Name and the encrypted entries of the

table. Second, in case the content is not found, another exact

match is searched, but now, in the PIT. If the response is

still negative, a longest prefix match is performed in the FIB

table and immediately after, the Interest is forwarded. All these

comparisons are performed over encrypted operands, i.e., CCN

nodes neither learn about entries being queried nor the name

being requested.

• MatchTDs(td(e1), td(e2)): The CCN node compares two

encrypted elements by performing a simple equality

match, i.e., by evaluating T1
?
= T2. It returns true in case

of a match and false otherwise.

E. Content Generation Phase

Content providers furnish content and Content Names. In

PROTECTOR, a content provider encrypts content using proxy

encryption. A content provider runs Content-Provider-Enc,

which takes as input the user key of the content provider and

encrypts the content. In order to benefit from the performance

of symmetric cryptosystems, the content is encrypted using

a randomly generated symmetric key. This symmetric key is

then encrypted by running Content-Provider-Enc. Likewise,

content providers protect components in content name by

running UserTD. The client encrypted content and content

names are sent to the CCN node. CCN nodes re-encrypt the

content and Content Names by running Content-Provider-Re-

Enc and CCNTD, respectively. For the re-encryption, CCN

nodes fetch the server side key corresponding to the content

provider from its key store. Once the content and Content

Names are re-encrypted, they could be searched.

• Content-Provider-Enc(D,KUi
): User i encrypts data us-

ing proxy encryption. For each data element D, it chooses

random r from Z∗q. Next, it computes PE∗i (D) = (ê1, ê2),
where ê1 = gr and ê2 = grxi1 D. Finally, PE∗i (D) is sent

to the CCN node.

• Content-Provider-Re-Enc(i,PE∗i (D)): The CCN node

fetches the server side key KSi
corresponding to user i and

computes (ê1)
xi2 · ê2 = (gr)xi2 ·grxi1D = grxi1+rxi2 D = grxD

in order to get PE(D) = (e1,e2), where e1 = gr and

e2 = grxD.

F. CCN Pre-Decryption Phase

Once content is found in the network, a Data message

follows the reverse path taken by its corresponding Interest

message. The Data message arrives eventually to the CCN

node directly connected with the user who made the request.

As the content is encrypted, the CCN node needs to translate

it in such a manner that the user is able to understand content.

Thus, the CCN node pre-decrypts the content using the server

side key corresponding to the target user. CCN nodes run

CCN-Pre-Dec. A CCN node cannot understand the content

before and after the pre-decryption.

It is important to mention that our solution only needs to

decrypt the Payload of the Data message. The Data name

remains encrypted. However, to simplify the explanation, we

have referred as Data message instead of Payload of the Data

message.

• CCN-Pre-Dec( j,PE(D)): The CCN node fetches the

server side key KS j
corresponding to user j. The cipher-

text PE(D) is decrypted as e2 ·(e1)
−x j2 = grxD ·(gr)−x j2 =

gr(x−x j2 D = grx j1 D. The CCN node sends to the user

PE∗j (D) = (ê1, ê2), where ê1 = gr and ê2 = grx j1 D.

G. User Decryption Phase

When a user receives the Data message, the message has

been previously pre-decrypted by a CCN node. A user client

runs User-Dec. The user proceeds to decrypt it using her

key. It is important to highlight that this user is the only

one capable of decrypting the message because she holds

the corresponding user key. As a result of decryption, the

symmetric key is extracted. This key is ultimately used to

decrypt the content. Thus, the retrieval of content procedure

ends without compromising privacy of Content Names and the

content itself.

• User-Dec(PE∗j (D),KU j
): The user decrypts ciphertext as

ê2 · (ê1)
−x j1 = grx j1 D · (gr)−x j1 = D.



H. Revocation Phase

Eventually, a user (or content provider) key may be com-

promised or she may ask to be removed from the system. In

this case, all the server keys associated to this user could be

revoked. This operation is managed by the KMS. The KMS

runs Revoke. The KMS communicates securely to CCN nodes

and request them to remove the server side key corresponding

to requested user.

• Revoke(i): The CCN node revokes user i access the data

by removing KSi
from the key store as follows: KS ←

KS\KSi
.

VI. SECURITY ANALYSIS

In this section, we analyse the security of PROTECTOR

including protection of interest packets and data messages. In

general, a scheme is considered secure if no adversary can

break the scheme with probability significantly greater than

random guessing. The adversary’s advantage in breaking the

scheme should be a negligible function (defined below) of the

security parameter.

Definition 1 (Negligible Function): A function f is negligi-

ble if for each polynomial p(), there exists N such that for all

integers n > N it holds that f (n)< 1
p(n) .

We consider a realistic adversary that is computationally

bounded and show that our scheme is secure against such an

adversary. We model the adversary as a randomised algorithm

that runs in polynomial time and show that the success

probability of any such adversary is negligible. An algorithm

that is randomised and runs in polynomial time is called a

Probabilistic Polynomial Time (PPT) algorithm.

Our scheme relies on the existence of a pseudorandom

function f . Intuitively, the output a pseudorandom function

cannot be distinguished by a realistic adversary from that of

a truly random function. Formally, a pseudorandom function

is defined as:

Definition 2 (Pseudorandom Function): A function f :

{0,1}∗× {0,1}∗ → {0,1}∗ is pseudorandom if for all PPT

adversaries A , there exists a negligible function negl such

that:

|Pr[A fs(·) = 1]−Pr[A F(·) = 1]|< negl(n)
where s→ {0,1}n is chosen uniformly randomly and F is a

function chosen uniformly randomly from the set of function

mapping n-bit strings to n-bit strings.

Our proof relies on the assumption that the Decisional

Diffie-Hellman (DDH) is hard in a group G, i.e., it is hard

for an adversary to distinguish between group elements gαβ

and gγ given gα and gβ .

Definition 3 (DDH Assumption): The DDH problem is

hard regarding a group G if for all PPT adversaries A , there

exists a negligible function negl such that:

|Pr[A (G,q,g,gα ,gβ ,gαβ ) = 1]
−Pr[A (G,q,g,gα ,gβ ,gγ ) = 1]|< negl(k)

where G is a cyclic group of order q (|q| = k) and g

is a generator of G, and α,β ,γ ∈ Zq are uniformly randomly

chosen.

Theorem 1: If the DDH problem is hard relative to G, then

the trapdoor scheme T D is secure against PPT adversaries A .

Proof. The trapdoor scheme T D consisting of UserTD and

CCNTD could be realised as the DDH problem because of

the following mapping: for g,h = gx
,gσ and gxσ , there exists

a negligible function negl as follows:

|Pr[A (G,q,g,gx,gσ ,gxσ ) = 1]
−Pr[A (G,q,g,gx,gσ ,gγ) = 1]|< negl(k)

Theorem 2: If the DDH problem is hard relative to G, then
the proxy encryption scheme PE is INDistinguishable under
Chosen Plaintext Attack (IND-CPA) secure against the server
S, i.e., for all PPT adversaries A there exists a negligible
function negl such that:

SuccA
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Proof. See Theorem 1 in [13].

VII. PERFORMANCE ANALYSIS

A. Implementation Details and Evaluation Parameters

The implementation prototype is developed in Java. The

implementation consists of three components: a module for the

KMS (KMS-module), a module for the CCN (CCN-module)

and a module for the user client (user-module).

The actual experiments are run on a standard notebook

with 2.7 GHz processor and 8.0 GB RAM. The experimental

results described below constitute the average over 1000

independent executions. Network latency is not considered in

these experiments.

B. Evaluating the KMS-Module

Evaluating the performance of the KMS-module consists of

measuring the overhead of key generation.
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Key Generation Phase. Figure 3(a) illustrates the computa-

tional overhead of the key generation phase. In our experiment,

we consider generating keys simultaneously for a number

of users, logarithmically varying from 1 to 10000. The key

generation time grows linearly with increase in number of

users as shown in Figure 3(a). On average, it takes less than 2
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Fig. 4: Evaluation of the CCN-module: performance overhead

of (a) re-encrypting trapdoors of components, (b) re-encrypting

a large number of trapdoor requests and (c) performing en-

crypted matching at CCN nodes.

µ seconds per user. As we can see in Figure 3(a), we consid-

ered two different security parameters: 1024-bit and 2048-bit.

For generating 2048-bit key pairs for 10000 users, the KMS-

module just takes 12.61 milliseconds (ms). Asymptotically, the

computational complexity of the key generation phase is O(k),
where k is the security parameter. The storage complexity is

same as the computational complexity. For storing the server

side keys at CCN nodes, we need a storage of size k.U bytes,

where U represents the number of users.

C. Evaluating the User-Module

Evaluating the performance of the User-module consists of

measuring the overhead of generation of user requests, i.e.,

user trapdoors, client encryption and decryption. For brevity

reasons, we just focus on generation of user requests.

Request Generation Phase. Figure 3(b) illustrates the com-

putational overhead of generating user requests, i.e., client

trapdoors. In PROTECTOR, we generate a trapdoor for each

component in content name. In our experiment, we consider

different number of components ranging from 2 to 20. The

client trapdoor generation time grows linearly with increase in

number of components as shown in Figure 3(b). For generating

20 trapdoors, the client takes 102 ms and 712 ms with keys

generated using 1024-bit and 2048-bit security parameters,

respectively. The curve in graph is not smooth due to random

nature of the components used in the power. Asymptotically,

the computational complexity of the request generation phase

is O(k.|C|), where |C| indicates number of components in

content name. The storage/bandwidth complexity is same as

the computational complexity.

D. Evaluating the CCN-Module

For the performance evaluation of the CCN-module, we

measure the overhead of looking up content, i.e., re-encrypting

trapdoors with varying number of components in content

names, re-encrypting trapdoors from a large number of users

and matching trapdoors at CCN nodes.

CCN Re-Encryption Phase. We conduct two experiments

to observe effect on re-encryption of trapdoors. In the first

experiment, we consider a variable number of components in

content name. In the second experiment, we see effect of a

large number of trapdoor requests.

Figure 4(a) shows the performance overhead of re-

encrypting trapdoors in the request. For this experiment, we

consider up to 20 components in content name1 and run it

with two different security parameters: 1024-bit and 2048-bit.

For generating 20 server trapdoors, the CCN-module takes 55

ms and 369 ms with security parameters of sizes 1024-bit and

2048-bit, respectively. The computational complexity of re-

encrypting trapdoors grows linearly with increase in number of

components in content name or size of the security parameter.

Asymptotically, the computational complexity of re-encrypting

trapdoors is O(k.|C|). The storage/bandwidth complexity is

same as the computational complexity.

Figure 4(b) illustrates the performance overhead of re-

encrypting trapdoors. In this experiment, we consider that each

request contains 10 components in content name. Like other

experiments, we observe the behaviour of CCN nodes while

taking into account different sizes of security parameters.

For processing 10000 requests, the CCN-module just takes

294 seconds and 2281 seconds with 1024-bit and 2048-bit

security parameters, respectively. On average, a CCN node can

process more than 34 re-encryption requests when we choose

a security parameter of 1024-bit. As expected, the trapdoor

re-encryption time grows linearly with increase in number of

users. Asymptotically, the computational complexity of re-

encrypting trapdoors is O(k.|C|.U). The storage/bandwidth

complexity is same as the computational complexity.

CCN Lookup Phase. This is the most important phase of

PROTECTOR. In this phase, a CCN node performs encrypted

match of requests against encrypted content names in the FIB

table maintained by CCN nodes. This is the most critical

operation in a sense that it will be performed most of the times

at various CCN nodes in particular when requested content is

not found at a CCN node and requests are disseminated within

the network. For this experiment, we assume that a CCN node

performs 20 comparisons to lookup the requested content.

The rationale behind this assumption is the efficient data

structure used for lookups. For instance, it could be a binary

search tree using which components of content names are

sorted, though they are encrypted using trapdoors. Figure 4(c)

illustrates performance of encrypted lookups at CCN nodes.

For processing 1 million requests, the CCN-module merely

takes 69 ms and 74 ms with 1024-bit and 2048-bit security

parameters, respectively. Thus, such level of efficiency makes

PROTECTOR scalable. Like other experiments, the matching

time grows linearly with increase in the security parameters

or number of requests. Asymptotically, the computational

complexity of re-encrypting trapdoors is O(k.|C|.|L|.U), where

1According to Content Name datasets available at http://www.icn-names.
net/, the average number of components in content name is no more than 6.

http://www.icn-names.net/
http://www.icn-names.net/


L represents entries (or components) of content names in the

FIB table managed by a CCN node.

VIII. RELATED WORK

Although the content-centric architecture addresses existing

problems in the current Internet, it introduces an array of new

privacy threats including cache privacy, content privacy, name

privacy and signature privacy [8]. Ács et al. [18] study the

problem of cache privacy. They present timing attacks used

to learn whether nearby consumers have recently requested

certain content. Mannes et al. [11] propose a proxy-encryption

scheme for addressing the problem of content privacy. How-

ever, they do not consider name privacy. Chaabane et al. [8] are

the first to solve the problem of name privacy. They propose

a solution that is based on bloom filters. There are two main

issues: first, they do not provide any security analysis; second,

bloom filters may return false positive. Tourani et al. [9]

propose an anti-censhorship mechanism based on huffman

coding. The Huffman coding encodes and protects Content

Names at a high speed rate. Tsudik et al. [12] protect Content

Names and content with anonymous communication. Requests

are wrapped into layers of encryption that are used to prevent

monitoring activites. Both solutions tie requests to the end-

user and are unusable to serve new requests, loosing all the

benefits from in-network caching.

Fotiou et al. [10] propose a privacy-preserving lookup using

homomorphic encryption. Basically, they model the problem

as Private Information Retrieval (PIR). Unfortunately, the ma-

jor issue with all PIR-based schemes [19]–[22] and Oblivious

RAM (ORAM) [23]–[25] is that they are infeasible for large

scale deployment due to their high computational complexity.

The problem of encrypted matching in CCN could be

realised an instance of the wider problem of a search over

encrypted data. Song et al. [26] propose a search scheme

over encrypted data based on symmetric keys. The symmetric

nature of the scheme rules out its applicability in CCN due

to loosely coupled nature of users and content providers. The

PEKS scheme [27] supports a search on encrypted data in the

public key setting. The main drawback of this scheme is its

computational cost. Similarly, the Attribute-Based Encryption

(ABE) schemes [28], [29] or solutions based on them [30] use

bilinear pairing that incurs high performance overheads.

IX. CONCLUSIONS AND FUTURE WORK

User privacy is a major concern in content-centric archi-

tectures, which could be compromised by content names or

content they are semantically tied with. To solve this problem,

in this paper, we have presented PROTECTOR, a privacy-

preserving scheme that protects content name and the content

itself without compromising any underlying functionality of

the CCN. The security analysis indicates that our proposed

scheme is secure. Depending on the security parameter,

PROTECTOR can handle over 34 requests per second at

boundary nodes and over 10 million requests per second

at other CCN nodes, thus making our proposal practically

feasible.

As future work, we expect to investigate possible per-

formance overheads of protecting content of various types

including, but are not limited to, large documents, audio and

video. Second, we would like to integrate our scheme with

CCNx [31] and see the gain by using caching features.
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