
E-GRANT: Enforcing Encrypted Dynamic Security
Constraints in the Cloud

Muhammad Rizwan Asghar
Department of Computer Science

The University of Auckland

New Zealand

Email: r.asghar@auckland.ac.nz

Giovanni Russello
Department of Computer Science

The University of Auckland

New Zealand

Email: g.russello@auckland.ac.nz

Bruno Crispo
DistriNet

KU Leuven

Belgium

Email: bruno.crispo@kuleuven.be

Abstract—Cloud computing is an established paradigm that
attracts enterprises for offsetting the cost to more competitive
outsource data centres. Considering economic benefits offered by
this paradigm, organisations could outsource data storage and
computational services. However, data in the cloud environment
is within easy reach of service providers. One of the strong
obstacles in widespread adoption of the cloud is to preserve
confidentiality of the data. Generally, confidentiality of the data
could be guaranteed by employing existing encryption schemes.
For regulating access to the data, organisations require access
control mechanisms. Unfortunately, access policies in cleartext
might leak information about the data they aim to protect. The
major research challenge is to enforce dynamic access policies
at runtime, i.e., enforcement of dynamic security constraints
(including dynamic separation of duties and Chinese wall) in
the cloud. The main challenge lies in the fact that dynamic
security constraints require notion of sessions for managing access
histories that might leak information about the sensitive data
if they are available as cleartext in the cloud. In this paper,
we present E-GRANT: an architecture able to enforce dynamic
security constraints without relying on a trusted infrastructure,
which can be deployed as Software-as-a-Service (SaaS). In E-
GRANT, sessions’ access histories are encrypted in such a way
that enforcement of constraints is still possible. As a proof-
of-concept, we have implemented a prototype and provide a
preliminary performance analysis showing a limited overhead,
thus confirming the feasibility of our approach.

I. INTRODUCTION

With its cost-effective model, cloud-based services are
very attractive for enterprises and government sectors. Initially
developed as a cheap storage solution (monthly $0.026/GB
and $0.03/GB, as of March 2015, offered by Google [1] and
Amazon [2], respectively), the cloud paradigm today is able
to offer affordable software solutions. The term Software-as-
a-Service (SaaS) is used to indicate software products offered
as a service through the cloud. Several vendors have adopted
this model to offer their products at a more affordable price.
Classes of software products available as SaaS range from
document management tools (such as Google Drive [3]) to
image processing tools (such as Adobe Photoshop [4]).

Recently, Business Process Management (BPM) solutions
have become available as SaaS from major players in this
field, such SAP with its Business ByDesign [5]. One of the
crucial aspects of such systems is the enforcement of access
control decisions for assigning human resources to execute
tasks. If this control is too restrictive then it could hamper

the productivity. On the other hand, a very lax approach might
undermine the confidentiality of sensitive data (when accessed
by unauthorised users), resulting in serious consequences for
the organisation. In such a system, the access control mecha-
nism has to take into account business-related notions such as
conflict-of-interests. Typical examples are that of an employee
able to execute two tasks that might lead to fraudulent actions
and that of an employee executing the same task over two
different sets of data that could be in conflict with each other.
Over the years, a huge amount of research effort has been put
on this topic. The results have culminated in identifying and
enforcing dynamic security constraints [6]–[10].

For correctly enforcing dynamic security constraints, the
cloud server needs to maintain history of all actions executed
by the entities that it controls, as well as contextual information
of the requester (e.g., time and location). When the server
receives a new request, it checks whether allowing the current
request violates any constraints in view of the earlier actions
performed by the same (group of) requesters. State-of-the-
art enforcement techniques [7], [11]–[13] rely on a trusted
infrastructure, which expects information to be in cleartext.
That is, the history of actions, contextual information, and
constraints are all stored in cleartext to be readily accessible.

With the move towards outsourced solutions, the trust
assumptions in the management of the infrastructure do not
hold any longer. The cloud providers that have control over
the hardware, where data and security constraints reside or
are evaluated, could easily have access to them. The data can
be protected using encryption techniques [14]–[16]; however,
state-of-the-art enforcement techniques [7], [11]–[13] lack to
preserve confidentiality of dynamic security constraints be-
cause they expect all information in cleartext at both de-
ployment and enforcement times. The problem here is that
learning about the security constraints might leak information
about the data itself. There are some cryptographic techniques
that can enforce static security constraints in outsourced envi-
ronments [17]–[21]. Unfortunately, there is no cryptographic
solution that can enforce dynamic security constraints in the
cloud.

In this paper, we want to fill this gap and propose a novel
solution for enforcing dynamic security constraints that can
be offered either as a stand-alone SaaS solution or integrated
with other SaaS products that require the enforcement of these
constraints. Unlike state-of-the art solutions for enforcing only
static constraints, our novel solution is capable of enforcing

dynamic security constraints without revealing sensitive in-
formation, such as the dynamic session information, to the
untrusted infrastructure.

We named our solution E-GRANT (EnforcinG encRypted
dynAmic security constraiNts in The cloud). E-GRANT
makes significant research contributions. Most importantly, E-
GRANT can enforce constraints while taking into account
contextual information (such as time and location of the
user) without revealing any information to cloud providers.
In our mechanism, an administrator (of the organisation that
uses cloud services) can specify constraints with contextual
conditions including non-monotonic boolean expressions and
range queries. In E-GRANT, constraints as well as session
information are encrypted. The encryption scheme we use is
such that it does not require users to share any encryption keys.
In case a user leaves the organisation, the system is still able
to perform its operations without requiring re-encryption of
constraints or access histories managed by the session. Finally,
we have implemented a prototype of E-GRANT and analysed
its performance to quantify the incurred overhead.

The rest of this paper is organised as follows. Section II
provides an overview of the dynamic security constraints
supported in E-GRANT. Section III describes the E-GRANT
architecture. Section IV focuses on solution details. Section V
provides security analysis. Section VI describes implemen-
tation details and analyses the performance overhead of the
E-GRANT prototype. Section VII reviews the related work.
Finally, Section VIII concludes this paper and gives directions
for future work.

II. DYNAMIC SECURITY CONSTRAINTS IN E-GRANT

E-GRANT focuses mainly on enforcing dynamic security
constraints. There are two variants of dynamic security con-
straints: (i) Dynamic Separation of Duties (DSoD) [8], [9]
and (ii) Chinese Wall (CW) [10]. Both DSoD and CW can
be implemented by maintaining access history for each entity
active in the system [22]. At each new request, the system has
to check that none of the defined constraints are violated by
granting the received request with respect to the earlier actions
performed by the same (group of) requesters. With each variant
of constraints, it is possible to specify contextual conditions,
i.e., enforcing constraints while taking into account contextual
information, such as time and location of the requester. In the
following, first we briefly explain both variants and then we
describe contextual conditions.

A. Dynamic Separation of Duties

DSoD constraints [8], [9] aim at providing multi-user con-
trol over the resources when there is any conflict-of-interest for
completing a business process. There are multiple categories
of DSoD varying from coarse-grained to fine-grained levels,
as discussed in [23]. In Simple DSoD (SDSoD), a user may
be a member of two mutually exclusive roles but must not be
active in both roles simultaneously. In Object-Based DSoD
(ObDSoD), a user may be active in mutually exclusive roles
simultaneously, but must not act in both roles upon a single
object. In Operational DSoD (OpDSoD), a user may be active
in mutually exclusive roles simultaneously, but must not get
authorised to execute all actions of a business process. In

History-Based DSoD (HBDSoD), a user may be active in
mutually exclusive roles simultaneously, but the user must not
get authorised to execute all actions of a business process
involving the same object. For example, a user active in
both clerk and manager roles can either issue or approve a
particular instance of the purchase order. HBDSoD combines
ideas behind ObDSoD and OpDSoD, requiring a detailed
access history on each object. Thus, it is the most fine-grained
category of DSoD.

B. Chinese Wall

A CW constraint [10] prevents users to access an object
belonging to a domain which is in conflict-of-interest with
other domain whose object is previously accessed by the
same (group of) users. In other words, a CW constraint aims
at providing confidentiality by preventing illegitimate infor-
mation flow between domains that are in conflict-of-interest.
For instance, let us consider the consultant organisation that
provides services to companies that are in conflict-of-interest,
say Google and Microsoft. The CW constraint will help the
consultant organisation to enforce the policy that an employee
can work at either Google or Microsoft but cannot work at
both companies.

III. THE E-GRANT ARCHITECTURE

The E-GRANT architecture aims at enforcing dynamic
security constraints in outsourced environments in such a
way that contents of constraints, contextual conditions, session
information for maintaining access histories and contents of
the request are not revealed to cloud providers because they
are encrypted. Therefore, the enforcement mechanism can
be deployed in the cloud without the need of fully trusting
administrators of cloud providers. Our main goal here is to
protect the confidentiality of information used by the enforce-
ment mechanism for taking its access control decisions. The
rationale behind this is that even if the data is protected (e.g.,
encrypted) a curious administrator might learn information
about the data by inspecting the constraints and access histories
that are typically deployed in cleartext.

A. The System Model

Let us assume an organisation ORG that uses cloud ser-
vices and deploys E-GRANT for enforcing sensitive dynamic
security constraints. There are the following entities in E-
GRANT:

Admin User: An Admin User, who works for ORG, is
responsible for deploying, updating and deleting dynamic
security constraints.

Requester: A Requester, who also works for ORG, is a user
that can make requests to access resources and execute actions
in the system.

Outsourced Enforcement Module (OEM): It is responsible
for storing and enforcing dynamic security constraints. In E-
GRANT, the OEM is deployed as SaaS in the outsourced
environment, managed by the cloud provider and paid by
ORG.

Trusted Key Management Authority (TKMA): It is a trusted
authority responsible for generating keys used for protecting

����

��

����������

	
��������

���	
�

����

������

�	�����

�����

���

���
���������������

�����

��������
� 	
��
��
�
���

�
�
��
�
�
��
�
	

�
��
�
�
��
�
�
		

�
�
��
�
�
�
�
�
�	

���������	
����������

��	���

���

����������

����

����������

���

�������

� �

��!�

"#��$�����

%"##���

�������

�&�

���'����

�(�

����������

�)�

*������

+�,��-�����

�.�

�����/���!

+�,��-�����

�0�

��!�

"#��$�����

%"##���

���'����

�1�

*������

2'3���

4��

�����
�05�

"##���

�������

�����
���
��

�����
�
���

���������

�
�
�

�
�
�
�
��
�
		
	

�
�
��
�
�
�
�
�
�	

����
�

���
� ��

Fig. 1. The E-GRANT architecture for enforcing dynamic security constraints in outsourced environments.

data stored on the OEM. For each user (be it an Admin User
or a Requester), the TKMA generates the client key set and
the server key set that are sent to the user and the OEM,
respectively. The OEM stores all server side key sets in the
Key Store and is responsible for revoking users. The TKMA
is only the minimal infrastructure that is run within a trusted
environment. However, the TKMA can be kept offline because
it generates the key only once when any user gets registered
with the system.

The Threat Model. We assume that cloud provider is honest-
but-curious (as assumed in [20], [21]): that is, it allows the
components to follow the protocol for performing requested
actions but curious to deduce information about contents of
constraints, access histories and requests. We also assume that
users (Admin Users and Requesters) may collude. Further-
more, we consider that the TKMA is fully trusted and plays
a role at the time of system initialisation. Last but not least,
we assume only passive adversaries and do not consider active
adversaries that can manipulate the exchanged information.

B. Deployment of Constraints

In E-GRANT, an Admin User can deploy new constraints
and update (or delete) existing constraints. For deploying new
constraints, an Admin User sends the (i) Constraint to the OEM
as shown in Figure 1. The Administration Point is a component
of the OEM that receives (i) and then stores it in the Constraint
Repository (ii), which is managed by the OEM.

C. Evaluation of Constraints

A Requester can send a (1) Request to the OEM as
illustrated in Figure 1. The Policy Enforcement Point (PEP)
receives (1) and then identifies whether (1) is a role activation
request or an access request. The PEP forwards the (2) Role
Activation/Access Request to the Policy Decision Point (PDP).
The PDP is the core component that can grant the request
after evaluating the deployed constraints. For evaluating con-
straints, the PDP fetches the (3) Constraint from the Constraint
Repository and the (4) Session Information from the Session
component of the OEM. The Session component maintains two
repositories including Active Roles and the Access History.
Active Roles is a repository that keeps record of roles that
have been activated for a Requester while the Access History
is a repository that maintains what information has been
accessed by a Requester. The Session Information can include
information about active roles or the access history; thus, it
plays a vital role in evaluating the constraints.

The constraints could be enforced under some contextual
conditions. A PDP evaluates contextual conditions after col-
lecting contextual information, such as time and information
about the Requester, e.g., her location. The Policy Information
Point (PIP) is a trusted entity that provides (5) Contextual
Information to the PDP. The contextual information must
satisfy contextual conditions for the successful enforcement
of constraints.

After the evaluation, the PDP sends the (7) Role Activa-
tion/Access Response to the PEP. The response in (7) is either
allow or deny depending on the PDP evaluation. In case of
allow, the PDP updates the session with the role activation or

access information by sending the (6) Session Update message
to the Session. The PDP forwards its decision to the PEP. If
the decision is allow, the PEP forwards (7B) Access Request
to the Service Interface. Finally, the PEP may send the (8)
Response to the Requester.

IV. SOLUTION DETAILS

A. Representation of Constraints

For representing both DSoD and CW constraints1, we
extend the tree structure proposed by Bethencourt et al. in [24],
which they used for representing Ciphertext-Policy Attribute-
Based Encryption (CP-ABE) policies. Internal nodes of the
tree represent AND, OR or threshold gates (e.g., 2 out of 3)
while leaf nodes represent values of the condition predicates of
a constraint. We extend the tree structure by encrypting leave
nodes in the tree that basically represent variable and values
associated with conditions. Figure 2 illustrates an example of
the HBDSoD constraint, where a Requester can execute either
issue or approve but not both actions on the same instance of
the purchase order.

���

����������	�
�

� �������������	�������	��	

������������

Fig. 2. An example of HBDSoD, where a Requester’s action can be 1-of-

(Issue,Approve) AND Object-Type is Purchase-Order.

B. Representation of a Request

The access request can be represented as a tuple REQ =
〈R,A,O, I〉, where R is role of the Requester, A indicates the
action to be taken, O and I describe type of the object being
accessed and its instance identifier, respectively. For instance,
consider a Requester, active in a role manager, takes the ap-
prove action over the instance of a purchase order. The object
type O may be a fully qualified name that may include the
domain hierarchy an object type may belong to. For example,
consider a CW constraint, where a Requester (employed by a
consultant organisation) cannot work on instances belonging
to both Google’s marketing project and Microsoft’s marketing
project. Here, the object type O is Project while the domain
hierarchy is: Google/Marketing and Microsoft/Marketing. In
case, if it is the role activation request then a Requester just
needs to send her role. Thus, the access request is more
complex than the role activation request; therefore, we will
focus more on the access request in rest of the paper.

C. Technical Details

The main idea behind E-GRANT is to employ the en-
cryption scheme for protecting constraints and the sessions
while delegating the enforcement mechanism to the OEM.
Our proposed encryption scheme uses as a building block the

1For brevity reasons, we omit details of some operations (including en-
forcement of SDSoD, ObDSoD and OpDSoD) and cover the most complex
operations offered by E-GRANT including enforcement of HBDSoD and CW.

proxy encryption proposed by Dong et al. [25]. The proxy
encryption in [25] handles only a single keyword; whereas,
our proposed scheme extends it by incorporating complex
conditional expressions, such as range queries. The encryption
scheme is multi-user, where users can write or read the data.

Initialisation: A TKMA generates two prime numbers p and
q such that q|p − 1. It generates g such that G is the unique
order q subgroup of Z∗

p. It chooses a random x ∈ Z∗

q , which is
a master secret key. It publishes public parameters including
G, g, q, h = gx, a collision-resistant hash function H , a
pseudorandom function f and a random key s for f .

Key Generation: In E-GRANT, each user (including an
Admin User and a Requester) gets a client side key set, a
random xi1 ∈ Z∗

q and s, from the TKMA while the OEM as a
proxy server also receives a server side key set, xi2 ← x−xi1,
corresponding to that user i. The OEM maintains all these
key sets in a Key Store, which can be accessed by different
components of the OEM including the Administration Point,
the PDP and the PEP.

Constraint Deployment: For deploying a constraint, an Ad-
min User performs the first round of encryption using the client
side key set. In this round of encryption (see ClientEnc(.)),
each leaf node e of the constraint tree is encrypted while non-
leaf nodes representing AND, OR or threshold gates are in
cleartext. After the first round of encryption, constraints are
protected but they cannot be enforced yet as they are not in
common format. To convert constraints into a common format,
the Administration Point of the OEM performs the second
round of encryption (see ServerReEnc(.)) using the server side
key set corresponding to the same Admin User who performed
the first round of encryption. In fact, the second round of
encryption by the Administration Point serves as a proxy
encryption. The common format implies that the constraints
get encrypted with the master secret key, which is known
neither to any users nor to the OEM. Like the first round of
encryption, each leaf node of the tree representing the security
constraint is re-encrypted. Finally, the re-encrypted constraints
are stored by the Constraint Repository.

• ClientEnc(e, xi1, s): The client chooses a random
r ∈ Z∗

q . It computes: σ = fs(e). Finally, it generates
c∗i (e) = (ĉ1, ĉ2, ĉ3), where ĉ1 = gr+σ, ĉ2 = ĉxi1

1 and
ĉ3 = H(hr).

• ServerReEnc(c∗i (e), i): The server retrieves from the
Key Store the key xi2 corresponding to the user i.
Next, it computes: c(e) = (c1, c2), where c1 =
(ĉ1)

xi2 .ĉ2 = ĉxi1+xi2

1 = (gr+σ)x = hr+σ and
c2 = ĉ3 = H(hr).

If an encrypted request satisfies any encrypted deployed
constraint, then the session information is required to be
matched against elements of the constraint. That is, the session
information is matched with those elements of the constraint
that are not present in the request. For example, let us consider
the SDSoD constraint, where a user may be a member of two
mutually exclusive roles clerk and manager but must not be
active in both roles simultaneously. Let us assume that the
requester’s role is clerk. Since the requester’s role is matched
against the same role in the constraint, the OEM will consult
the session to check if the same user is active in manager’s

role. For performing such a check, the OEM requires trapdoors
of the constraint because only trapdoors could be matched with
the encrypted information. That is why, trapdoors are stored
along with the encrypted constraint at deployment time. For
calculating these trapdoors, an Admin User performs the first
round of trapdoor generation (see ClientTD(.)) using the client
side key set for each leaf node e in the request while the
OEM performs the second round of trapdoor generation (see
ServerTD(.)) using the server side key set corresponding to
that Admin User. The trapdoor representation does not leak
any information.

• ClientTD(e, xi1, s): The client chooses a random r ∈
Z∗

q . It computes: σ = fs(e). Finally, it generates
td∗i (e) = (t1, t2), where t1 = g−rgσ and t2 =
hrg−xi1rgxi1σ = gxi2rgxi1σ .

• ServerTD(td∗i (e), i): The server retrieves from the
Key Store the key xi2 corresponding to the user i.
Next, it computes: td(e) = T = txi2

1 .t2 = gxσ.

Request: For making a request, a Requester generates REQ
and transforms it into trapdoors (see ClientTD(.)) using the
client side key set for each element in the request. That is,
there is a trapdoor for each element in REQ . Finally, REQ is
sent over to the PEP of the OEM.

Constraint Evaluation: The deployed constraints are checked
when the OEM receives a request from any Requester. The
request is not in the common format yet and requires another
round of the trapdoor generation. In the second round of
trapdoor generation (see ServerTD(.)), the PEP generates the
server side trapdoors for each element in REQ . Next, the PEP
forwards the request to the PDP. The PDP fetches encrypted
constraints from the Constraint Repository and matches it
against the encrypted request. More specifically, each element
in the constraint is matched against each element in the request
(see MatchElement(.):). If a match is found then, in order
to enforce the constraint, certain elements of the constraint
(i.e., all elements except one that is present in the request) are
required to be matched against the session information. Recall
that the constraint is represented as a tree, where each leaf is
encrypted. In order to enforce the constraint, each leaf node is
matched against elements in the session. After evaluating all
leaf nodes, the OEM evaluates all internal nodes up to the root
node. If the root node is matched, the request will be denied.

• MatchElement(c(e), td(e)): The server matches the
encrypted element against the trapdoor: it evaluates

c2
?
= H(c1.T

−1) and returns true in case of a match
and false otherwise.

While performing the encrypted match between the
encrypted session information and the encrypted con-
straint/request, the OEM does not reveal the content. If con-
textual information is required to be matched, it is matched in
the same way as other elements of the constraint/request are
matched against the session information. After checking the
session information, if the constraint is not satisfied, the access
is permitted and the role activation (or the access) response is
sent from the PDP to the PEP as allow.

Session Update: If the evaluation is successful, the PDP
updates the session to maintain the access history, as well

as active roles. For updating the session, the PDP requires
the request (and contextual information). The Requester may
send encrypted request along with the trapdoors of the request.
Alternatively, the PDP/PEP can collect this information after
the PDP evaluation is succeeded. In both cases, the OEM
performs the second round of encryption and finally updates
the Session with the encrypted request. Finally, the PEP may
send a response to the Requester.

User Revocation: In E-GRANT, users (both Admin Users and
Requesters) do not share any keys and even if a compromised
user is removed, there is no need to re-encrypt deployed
constraints or re-distribute keys. For removing a user from the
system, the Administration Point of the OEM takes the user
identifier and then removes the server side key corresponding
to that user from the Key Store.

V. SECURITY ANALYSIS

Definition 1 (Negligible Function). A function f is negligible
if for each polynomial p(.) there exists N such that for all
integers n > N it holds that f(n) < 1

p(n) .

Definition 2 (Decisional Diffie-Hellman (DDH)
Assumption). The DDH problem is hard regarding
a group G if for all Probabilistic Polynomial Time
(PPT) adversaries A, there exists a negligible
function negl such that |Pr[A(G, q, g, gα, gβ , gαβ) =
1] − Pr[A(G, q, g, gα, gβ, gγ) = 1]| < negl(k) where G is a
cyclic group of order q (|q| = k) and g is a generator of G,
and α, β, γ ∈ Zq are uniformly randomly chosen.

Theorem 1. If the DDH problem is hard relative to G, then
ClientGeneratedConstraint CGC is INDistinguishable under
Chosen-Plantext Attack (IND-CPA) secure against the server
S , i.e., for all PPT adversaries A there exists a negligible
function negl such that:

SuccACGC,S(k) = Pr

b′ = b

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(param,msk)← Init(1k)
(Ku,Ks)← KeyGen(msk,U)

w0, w1 ← A
CGC(Ku ,·)(Ks)

b
R
←− {0, 1}

c∗i (wb) = CGC(xi1, wb)

b′ ← ACGC(Ku ,·)(Ks, c
∗
i (wb))

< 1
2
+ negl(k)

(1)

Proof. Recall that CGC encrypts each leaf node in the
access tree using two variants of encryption: ClientEnc
and ClientTD. Therefore, the security of CGC boils down
to the security of ClientEnc and ClientTD. As proved
in [25], both ClientEnc and ClientTD are INDistinguishable
under Chosen Plaintext Attack (IND-CPA) secure under the
assumption the DDH problem is hard relative to the group G.
Thus, CGC is also IND-CPA secure.

Theorem 2. If the DDH problem is hard relative to G,
then ClientGeneratedRequest CGR is IND-CPA secure against
the server S , i.e., for all PPT adversaries A there exists a
negligible function negl such that:

SuccACGR,S(k) = Pr

b′ = b

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(param,msk)← Init(1k)
(Ku,Ks)← KeyGen(msk,U)

w0, w1 ← A
CGR(Ku,·)(Ks)

b
R
←− {0, 1}

c∗i (wb) = CGR(xi1, wb)

b′ ← ACGR(Ku ,·)(Ks, c
∗
i (wb))

< 1
2
+ negl(k)

(2)

Proof. Recall that CGR encrypts each element in the
request using two variants of encryption: ClientTD and
ClientEnc. Like CGR, the security of CGR boils down to
the security of ClientTD and ClientEnc. As proved in [25],
both ClientTD and ClientEnc are IND-CPA secure under
the assumption the DDH problem is hard relative to the group
G. Thus, CGR is also IND-CPA secure. For further details,
an interested reader is referred to [26].

VI. PERFORMANCE ANALYSIS

In this section, we quantify E-GRANT cryptographic oper-
ations performed at both the client and the server sides. During
this performance evaluation, we are not taking into account
the latency introduced by the network. In the following, we
first describe implementation details of the prototype we have
developed. Next, we show the performance evaluation of: (i)
deploying dynamic security constraints, (ii) making a request,
(iii) evaluating dynamic security constraints and (iv) finally
updating session with the information within the request.

A. Implementation Details

We have developed a prototype of E-GRANT for enforcing
dynamic security constraints. The prototype is implemented
in Java 1.6. For this prototype, we have designed all the
components of the architecture required for deploying and
evaluating constraints.

The security parameter we have considered in our experi-
mentation is of size 1024 bits. We have tested our E-GRANT
prototype on a single node based on an Intel Core2 Duo
2.2 GHz processor with 2 GB of RAM, running Microsoft
Windows XP Professional version 2002 Service Pack 3. The
values of the execution time shown in the following graphs
are averaged over 1000 iterations.

B. Performance Analysis of Deploying Dynamic Security Con-
straints

In this section, we analyse the performance of deploying
dynamic security constraints. We measure the performance of
deploying both types of security constraints including HBD-
SoD and CW. The simplest HBDSoD constraint is defined
as either of two actions. For increasing complexity of the
HBDSoD constraint, we can consider more than two actions
using the following notation: HBDSoD(Ya), where Y (≥ 2)
denotes the number of actions in the constraint. Similarly,
the simplest CW constraint is defined at the object level,
meaning a user cannot access an instance of an object whose
instance has already been accessed. In order to increase the
complexity of the CW constraint, we can include the domain
hierarchy. Generally, the CW constraint can be represented as:

 0

 50

 100

 150

 200

HBDSoD(2a)

HBDSoD(3a)

HBDSoD(4a)

HBDSoD(5a)

CW
(o)

CW
(d/o)

CW
(2d/o)

CW
(3d/o)

T
im

e
(in

 m
ill

is
ec

on
ds

) Client side
Server side

Fig. 3. Performance overhead of deploying dynamic security constraints.

CW (Zd/o), where Z (≥ 0) denotes the number of domains
that may be present in the domain hierarchy. If the constraint
is at the object level, the value of Z will be 0 and constraint
would become CW(o). However, if the constraint includes any
domains, then the value of Z will be more than 0. For instance,
if there is one domain then the constraint would be represented
as CW(d/o). Similarly, if there are two domains (i.e., one
domain and one subdomain) in the domain hierarchy of an
object then the constraint would be represented as CW(2d/o)
and so on.

Figure 3 indicates the performance overhead incurred by
deploying constraints on both the client and the server sides.
During the performance evaluation, we consider both HBDSoD
and CW constraints, each with varying level of complexity,
where number of actions in the HBDSoD constraint are varied
from 2 to 5 (with step size 1) and number of domains in
the CW constraint are varied from 0 to 3 (with step size 1),
respectively. As we can expect, the performance overhead of
each type of constraint grows linearly if we gradually increase
its complexity. Furthermore, we can observe that algorithms on
the client side take more time as compared to that of the server
side for deploying any type of constraints. This is mainly due
to the fact the client side performs more complex cryptographic
operations such as random number generations and hash
calculations than the respective algorithms on the server side.
However, these operations are executed only when the Admin
User has to deploy a new constraint or update existing ones. On
the other hand, constraints are evaluated every time a request
is made. Thus, the performance of generating requests and
evaluating constraints, which are measured in the following
sections, is of great importance, considering it could impact
the latency for providing access to the data.

C. Performance Analysis of Generating Requests

In this section, we analyse the performance of generating
access requests on the Requester’s client side. To make the
access request, a Requester has to generate the REQ =
〈R,A,O, I〉 tuple representing that role R is requesting to
perform action A on instance I of object type O. Each
element of REQ is transformed into trapdoors, necessary
for performing the match against encrypted HBDSoD or CW
constraints deployed on the OEM. The trapdoor representation
does not leak information on elements of REQ . Furthermore,
each element of REQ is also encrypted, necessary for storing

the REQ tuple as encrypted in the session after REQ is
granted. The time required to generate such a tuple is around
120 milliseconds as shown in the graph of Figure 4.

 0
 50

 100
 150
 200
 250
 300

REQ
REQ(t)

REQ(l)

REQ(t,l)

REQ(d,t,l)

REQ(2d,t,l)

REQ(3d,t,l)

T
im

e
(in

 m
ill

is
ec

on
ds

)

Fig. 4. Performance overhead of generating access requests on the Requester’s
client side.

In our experiments, we considered case in which the
contextual information is included with every REQ tuple. We
selected two types of contextual information: the time and the
location of the Requester. As we explained in Section IV, the
time t is represented as three elements indicating the office
hour (from 9:00 to 17:00 hrs i.e., 8 options) while the location
l is represented as a single string element.

The graph in Figure 4 shows the performance overhead
incurred at the Requester’s client when the REQ tuple contains
the value of time t (REQ(t) in the graph) and location l
(REQ(l) in the graph). As can be seen in the graph, the time
incurs higher overhead than the location because the time value
t is represented as three elements, requiring generation of three
trapdoors. On the other hand, the value l of the location is
represented by just a single element, requiring generation of
only a single trapdoor. We also measured the case in which
both time and location trapdoors are generated with the REQ
tuple and the overhead is a combination of two previous cases
(REQ(t, l) in the graph).

When CW constraints are enforced, it might be needed to
include additional information about the target resource within
the REQ tuple. This additional information is the domain
hierarchy an object type may belong to. In the domain hierar-
chy, there may be multiple levels of domains. The trapdoors
representing this information need also to be generated by
the Requester’s client. We performed experiments, considering
combinations of time, location and domain information in the
REQ tuple. Moreover, we also varied the depth of the domain
hierarchy from one domain level (represented as REQ(t, l, d))
to three levels (represented as REQ(t, l, 3d)). The last three
values in Figure 4 provide the measurements for these cases.
As it is quite obvious, the performance overhead of generating
these requests increases linearly with the increase in domains
levels. However, it should be noticed that even in the worst case
(where time, location and three domain levels are inserted in
the REQ tuple), the average time for generating a request is
still below 325 milliseconds.

D. Performance Analysis of Evaluating Dynamic Security
Constraints

HBDSoD: Let us assume that a Requester makes a request
REQ for executing the action approve on the object type
purchase order. As an example of a HBDSoD constraint, let
us consider one that limits a Requester to execute only one
out of the two actions issue and approve that can be executed
on a particular instance of a purchase order. First, the PDP
matches the object type in REQ with the object type of the
deployed constraints in the Constraint Repository. If the match
is successful, the PDP will match the action in REQ with
one of the action specified in the HBDSoD constraint. On
the second successful match, the PDP has to check that the
Requester has not executed the issue action on this specific
instance of purchase order in the past. To perform this check,
the PDP searches in the Access History to find all records
where the object type and instance match with that of REQ
tuple. If such a record is found then the PDP checks if the
action value in the records matches the k-out-of-n condition
of the HBDSoD constraint. In the context of example we
considered, it means the PDP searches in the Access History
to find any records containing action approve. If this is the
case, the constraint is violated and the PDP will not grant the
action. Otherwise, the Requester can issue the purchase order.

From the above example, it is clear that the performance of
enforcing a constraint depends on three main factors. The first
factor is the number of constraints deployed in the Constraint
Repository. When a request arrives, the PDP has to find in the
repository a matching constraint. Finding a matching constraint
clearly depends on the number of constraints in the repository.
The second factor is the number of elements specified in the
constraint. These elements can include two or more actions
that could be executed only once by a Requester on a given
instance of an object. Moreover, contextual information can
be taken into account. Finally, the other major factor is the
number of records in the Access History that the PDP has
to search to check whether a given constraint is violated or
not. Asymptotically, the enforcement of HBDSoD constraints
is O(Y · c · r), where Y is the number of actions specified
in the constraints, c is the number of constraints deployed in
the repository and r is the number of records in the Access
History.

To measure the performance overhead, we performed the
following experiments. We deployed 100 different HBDSoD
constraints in the repository such that the one that matches the
incoming request is the last one. This, of course, represents
the worst case scenario. To study how the complexity of the
constraint specification and number of records in the Access
History affect the performance of the constraint evaluation, we
execute several runs of our experiments varying the constraint
complexity and number of records. Figure 5(a) shows the
evaluation time in seconds in different settings. As we can
observe in Figure 5(a), the evaluation time increases with the
increase in the number of actions in the constraint (from 2
actions up to 5) and when contextual information such as
time t and/or location l of the Requester are also considered.
Similarly, the evaluation time increases with the increase in
the number of records in the Access History.

CW: A CW constraint enforces that a Requester cannot
gain access to two mutually exclusive objects. When a request

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500

T
im

e
(in

 s
ec

on
ds

)

Number of records in Access History

HBDSoD(2a)
HBDSoD(2a,t)
HBDSoD(2a,l)

HBDSoD(2a,t,l)
HBDSoD(3a,t,l)
HBDSoD(4a,t,l)
HBDSoD(5a,t,l)

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500

T
im

e
(in

 s
ec

on
ds

)

Number of records in Access History

CW(o)
CW(o,t)
CW(o,l)

CW(o,t,l)
CW(d/o,t,l)

CW(2d/o,t,l)
CW(3d/o,t,l)

(b)

Fig. 5. Performance overhead of evaluating (a) HBDSoD and (b) CW on the OEM.

REQ tuple is received, the PDP has to search the CW
constraints relevant to the object type specified in the request
tuple. Basically, the object type in the request tuple has to
match one of the object types specified in a CW constraint. If a
match is found, the PDP has to search in the Access History for
a record containing the object type specified in the constraint
that is not matched with that of the REQ tuple (and that is
relevant to the Requester). If such a record is found, it means
the constraint is violated; that is, the Requester has accessed in
the past a object type that is in conflict with the one specified
in the current request. In this case, the action in the request
will not be permitted. The CW constraints can be specified at
the level of object types. However, a fine-grained specification
may be achieved if the domain hierarchy, objects may belong
to, is also taken into account. In this case, we assume that REQ
and records in the Access History repository have the domain
information at the same level (where level indicates number of
domains) as is present in the constraint, where each element
of the domain information in REQ will be matched with the
corresponding element in the constraint.

As for the HBDSoD constraints, the time for evaluating the
CW constraints depends on the number of deployed constraints
in the repository, the complexity of the constraint specification
and the number of records in the Access History. Thus,
the asymptotic complexity can be calculated as O(Z · c · r)
similarly to that of HBDSoD constraints. To measure the
actual overhead, we performed a similar set of experiments as
conducted for HBDSoD constraints. We deployed 100 different
CW constraints and considered the worst case scenario. We
then changed the number of elements in the constraint and
the number of records in the Access History. The results are
shown in Figure 5(b).

The above results clearly show that there is a penalty
to be paid for the enforcement of encrypted constraints in
outsourced environments. The execution time varies from 100
milliseconds to 2.5 seconds as number of records in the Access
History increase from 100 to 500. To be fair, our experiments
have been executed with very basic hardware. We expect
that our solution would be able to perform better with more
dedicated resources, such as servers deployed in a cloud infras-
tructure. Moreover, all the executions have been performed as a
centralised solution. Clearly, having in these settings a single
PEP and a single PDP to process all the incoming requests

represent a bottleneck. To solve this problem, we are planning
to develop a distributed version of our architecture that can be
deployed on multiple nodes and adapted to the actual request
demand.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

REQ
REQ(t)

REQ(l)

REQ(t,l)

REQ(d,t,l)

REQ(2d,t,l)

REQ(3d,t,l)

T
im

e
(in

 m
ill

is
ec

on
ds

)

Fig. 6. Performance overhead of updating the Session with the request data.

E. Performance Evaluation of Session Update

After the PDP checks that the current request is not
violating any deployed constraints and the request is granted,
the Access History in the Session needs to be updated with
the information in the executed request. The session update
is managed by the PEP that executes the second round of
encryption before storing the encrypted data in the Session.
Figure 6 shows the performance overhead of encrypting the
request for storing it in the Session. The graph shows the
execution time of different formats of the REQ tuple: that
is, from the basic format containing only subject, action and
target information to more complex ones having time, location
and a domain hierarchy of objects up to three levels.

VII. RELATED WORK

There is a significant amount of research on enforcing
dynamic security constraints including DSoD [6], [8], [9] and
CW [10]. State of the art solutions including GTRBAC [11],
MFOTL [27] and [7], [13] mainly focus on formally specifying
the constraints. They assume a trusted infrastructure in order to
enforce the constraints. There are some approaches that extend
the enforcement mechanisms for taking into account contextual
information such as time and location while making the access

decision [11], [28]. However, none of the existing approaches
are applicable when the enforcement mechanism is delegated
to a third party that is not trusted. These approaches operate on
the constraints that are stored in cleartext. Unfortunately, these
constraints may leak information about the internal policies of
an organisation and can result in serious implications if not
adequately protected.

There are some approaches for enforcing static security
constraints in outsourced environments [17]–[21]. The idea
of delegating the access control mechanism to an outsourced
environment has initially been explored by De Capitani di
Vimercati et al. in [21] and they extended it in [20]. Their
proposed solution is based on the key derivation method [29],
where each user has a key capable of decrypting resources
she is authorised to access. The main drawback of this type of
approaches is that they tightly couple security policies with the
enforcement mechanism; therefore, any changes in the security
policies require to generate new keys and to redistribute them
to the users.

In [19], we propose ESPOON, where a data owner may
attach an authorisation policy with her data while storing it
on the server running in the outsourced environment. A data
consumer may request for the data and get access if the
authorisation policy is satisfied. ESPOON does not consider
concept of roles. In [17], [18], we extend ESPOON for
supporting an encrypted version of the RBAC model and pro-
pose ESPOONERBAC . In ESPOONERBAC , it is possible to
enforce static security constraints, such as static separation of
duties; however, it is not possible to delegate the enforcement
of dynamic security constraints, such as HBDSoD and CW.
The main issue is that the proposed architectures in [17], [18]
lack to manage encrypted session management.

The security policy enforcement is mainly based on en-
crypted matching schemes in untrusted environments. There
are number of schemes that address encrypted matching in
outsourced environments [14]–[16], [24], [30], [31]. Song
et al. [14] are the first to propose an encrypted matching
scheme, where documents and requests are encrypted using
symmetric keys. The main drawback of this scheme is that
it is a single-user scheme. Multi-user Searchable Symmetric
Encryption (MSSE) [16] is the first scheme to support en-
crypted matching in multi-user settings. In MSSE scheme,
a data owner controls the search access by granting and
revoking the search privileges to the users within her group by
employing the symmetric encryption. The issue with scheme
is that it requires redistribution of secret to all users once a
user is revoked. Boneh et al. [15] are the first to propose the
encrypted matching scheme in the public settings; however, it
is not a multi-user scheme. Shao et al. [31] introduce Proxy
Re-Encryption with keyword Search (PRES) scheme that is
a combination of proxy encryption and PEKS. In PRES, a
delegation key is generated for the target user. The target
user re-encrypts the ciphertext with the delegated key. The re-
encryption algorithm outputs another ciphertext corresponding
to the public key of the target user. That is why, this scheme
high performance overhead for re-encrypting ciphertext.

There are schemes based on ABE including CP-ABE [24]
and Key-Policy ABE (KP-ABE) [30]. In CP-ABE, policies
are attached with ciphertext; while, in KP-ABE, attributes
are attached with ciphertext. The main issue is that both

schemes leave policies and attributes in cleartext, respectively.
Unfortunately, policies and attributes in cleartext may reveal
private information about the encrypted data.

The homomorphic encryption schemes [32]–[34] allow
untrusted parties to perform mathematical operations on en-
crypted data without compromising the encryption. There are
a number of issues with these schemes. The major issue
is scalability. Unfortunately, state-of-the-art schemes are not
suitable in practice for processing a huge amount of data
due to computational limitations. Another problem is the key
management. These schemes consider a single user that can
perform the decryption.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed E-GRANT, an architecture
for enforcing dynamic security constraints as an outsourced
service running in the cloud. The main contribution of E-
GRANT is that it supports the enforcement of encrypted
security constraints while maintaining encrypted session in
the cloud. In this way, cloud providers learn neither about
the information stored by the session nor about the content
of security constraints being enforced. The approach provides
a scalable key management, where users do not share any
encryption keys. When users leave the organisations or keys
get compromised, keys can be revoked without requiring
the re-distribution of keys and the re-encryption of deployed
constraints.

As future work, we are planning to explore ways of making
the enforcement architecture accountable, thus preventing the
cloud provider the possibility to repudiate the operations that
have been performed. Another substantial part of our future
research aims at re-engineering the architecture in a distributed
manner in order to run several instances on multiple nodes of
the cloud provider. One of the key aspects here is to adapt
the number of instances to the actual request load in order
to offer a reasonable Quality of Service (QoS) without over-
provisioning the resources.

ACKNOWLEDGEMENT

We would like to thank anonymous reviewers for providing
their feedback for improving the quality of our work. The
work of first and second authors was supported by the Secu-
rity Technologies Returning Accountability, Transparency and
User-centric Services in the Cloud (STRATUS) project, funded
by the Ministry of Business, Innovation, and Employment
(MBIE), New Zealand.

REFERENCES

[1] Google, “Google cloud storage pricing,” https://cloud.google.com/
storage/#pricing, September 2014, last Accessed: March 9, 2015.

[2] Amazon, “Amazon s3 pricing,” http://aws.amazon.com/s3/pricing/,
September 2014, last Accessed: March 9, 2015.

[3] Google, “Introducing google drive... yes, really,” http://googleblog.
blogspot.it/2012/04/introducing-google-drive-yes-really.html, April
2012, google Official Blog, Last Accessed: September 9, 2014.

[4] P. Pehrson, “Adobe’s new SAAS model,” http://www.paulpehrson.com/
2011/04/11/adobes-new-software-as-a-service-model/ , April 2011, last
Accessed: March 9, 2015.

[5] SAP, “SAP Business ByDesign,” http://www.sap.com/pc/tech/cloud/
software/business-management-bydesign/overview/index.html, last Ac-
cessed: March 9, 2015.

https://cloud.google.com/storage/#pricing
https://cloud.google.com/storage/#pricing
http://aws.amazon.com/s3/pricing/
http://googleblog.blogspot.it/2012/04/introducing-google-drive-yes-really.html
http://googleblog.blogspot.it/2012/04/introducing-google-drive-yes-really.html
http://www.paulpehrson.com/2011/04/11/adobes-new-software-as-a-service-model/
http://www.paulpehrson.com/2011/04/11/adobes-new-software-as-a-service-model/
http://www.sap.com/pc/tech/cloud/software/business-management-bydesign/overview/index.html
http://www.sap.com/pc/tech/cloud/software/business-management-bydesign/overview/index.html

[6] D. Basin, S. J. Burri, and G. Karjoth, “Separation of duties as a service,”
in Proceedings of the 6th ACM Symposium on Information, Computer

and Communications Security, ser. ASIACCS ’11. New York, NY,
USA: ACM, 2011, pp. 423–429.

[7] J. Crampton and H. Khambhammettu, “A framework for enforcing con-
strained RBAC policies,” in Computational Science and Engineering,

2009. CSE ’09. International Conference on, vol. 3, August 2009, pp.
195–200.

[8] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” Computer, vol. 29, pp. 38–47, February
1996.

[9] M. Nash and K. Poland, “Some conundrums concerning separation of
duty,” in Research in Security and Privacy, 1990. Proceedings., 1990
IEEE Computer Society Symposium on, May 1990, pp. 201–207.

[10] D. Brewer and M. Nash, “The chinese wall security policy,” in Security

and Privacy, 1989. Proceedings., 1989 IEEE Symposium on, May 1989,
pp. 206–214.

[11] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor, “A generalized temporal
role-based access control model,” Knowledge and Data Engineering,

IEEE Transactions on, vol. 17, no. 1, pp. 4–23, January 2005.

[12] G.-J. Ahn and R. Sandhu, “Role-based authorization constraints speci-
fication,” ACM Trans. Inf. Syst. Secur., vol. 3, pp. 207–226, November
2000.

[13] V. Gligor, S. Gavrila, and D. Ferraiolo, “On the formal definition
of separation-of-duty policies and their composition,” Security and

Privacy, IEEE Symposium on, 1998.

[14] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Security and Privacy, 2000. S P 2000.

Proceedings. 2000 IEEE Symposium on, 2000, pp. 44–55.

[15] D. Boneh, G. Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Advances in Cryptology -

EUROCRYPT 2004, ser. Lecture Notes in Computer Science, C. Cachin
and J. L. Camenisch, Eds. Springer Berlin Heidelberg, 2004, vol. 3027,
pp. 506–522.

[16] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
in Proceedings of the 13th ACM conference on Computer and commu-

nications security, ser. CCS ’06. New York, NY, USA: ACM, 2006,
pp. 79–88.

[17] M. R. Asghar, M. Ion, G. Russello, and B. Crispo, “ESPOONERBAC :
Enforcing security policies in outsourced environments,” Elsevier Com-

puters & Security (COSE), vol. 35, pp. 2–24, 2013.

[18] M. R. Asghar, G. Russello, and B. Crispo, “Poster:
ESPOONERBAC : Enforcing security policies in outsourced
environments with encrypted RBAC,” in Proceedings of the 18th ACM
conference on Computer and communications security, ser. CCS ’11.
New York, NY, USA: ACM, 2011, pp. 841–844.

[19] M. R. Asghar, M. Ion, G. Russello, and B. Crispo, “ESPOON: Enforcing
encrypted security policies in outsourced environments,” in The Sixth
International Conference on Availability, Reliability and Security, ser.
ARES’11, August 2011, pp. 99–108.

[20] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Encryption policies for regulating access to outsourced
data,” ACM Trans. Database Syst., vol. 35, no. 2, pp. 12:1–12:46, May
2010.

[21] ——, “Over-encryption: management of access control evolution on
outsourced data,” in Proceedings of the 33rd international conference

on Very large data bases, ser. VLDB ’07. VLDB Endowment, 2007,
pp. 123–134.

[22] V. C. Hu, D. F. Ferraiolo, and D. R. Kuhn, “Assessment of access
control systems,” National Institute of Standards and Technology, Tech.
Rep., September 2006.

[23] A. Schaad, P. Spadone, and H. Weichsel, “A case study of separation
of duty properties in the context of the austrian ”elaw” process.” in
Proceedings of the 2005 ACM symposium on Applied computing, ser.
SAC ’05. New York, NY, USA: ACM, 2005, pp. 1328–1332.

[24] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in Security and Privacy, 2007. SP ’07. IEEE Sym-

posium on, May 2007, pp. 321–334.

[25] C. Dong, G. Russello, and N. Dulay, “Shared and searchable encrypted
data for untrusted servers,” Journal of Computer Security, vol. 19, no. 3,
pp. 367–397, 2011.

[26] M. R. Asghar, “Privacy preserving enforcement of sensitive policies in
outsourced and distributed environments,” Ph.D. dissertation, University
of Trento, Trento, Italy, December 2013, http://eprints-phd.biblio.unitn.
it/1124/.

[27] D. Basin, F. Klaedtke, and S. Müller, “Monitoring security policies
with metric first-order temporal logic,” in Proceedings of the 15th ACM
symposium on Access control models and technologies, ser. SACMAT
’10. New York, NY, USA: ACM, 2010, pp. 23–34.

[28] M. Strembeck and G. Neumann, “An integrated approach to engineer
and enforce context constraints in RBAC environments,” ACM Trans.

Inf. Syst. Secur., vol. 7, pp. 392–427, August 2004.

[29] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken, “Dynamic and
efficient key management for access hierarchies,” ACM Trans. Inf. Syst.

Secur., vol. 12, pp. 18:1–18:43, January 2009.

[30] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryp-
tion for fine-grained access control of encrypted data,” in Proceedings

of the 13th ACM conference on Computer and communications security,
ser. CCS ’06. New York, NY, USA: ACM, 2006, pp. 89–98.

[31] J. Shao, Z. Cao, X. Liang, and H. Lin, “Proxy re-encryption with
keyword search,” Information Sciences, vol. 180, no. 13, pp. 2576–
2587, 2010.

[32] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D. disserta-
tion, Stanford University, Stanford, CA, USA, 2009, aAI3382729.

[33] C. Gentry and S. Halevi, “Implementing Gentry’s fully-homomorphic
encryption scheme,” in Advances in Cryptology - EUROCRYPT 2011,
ser. Lecture Notes in Computer Science, K. Paterson, Ed. Springer
Berlin Heidelberg, 2011, vol. 6632, pp. 129–148.

[34] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Advances in Cryptology - EUROCRYPT 99, ser.
Lecture Notes in Computer Science, J. Stern, Ed. Springer Berlin
Heidelberg, 1999, vol. 1592, pp. 223–238.

http://eprints-phd.biblio.unitn.it/1124/
http://eprints-phd.biblio.unitn.it/1124/

