© Copyright Notice

All rights reserved. No part of this publication may be
reproduced, distributed, or transmitted in any form or
by any means, including photocopying, recording, or
other electronic or mechanical methods, without the
prior written permission of the publisher, except in the
case of brief quotations embodied in critical reviews
and certain other non-commercial uses permitted by
copyright law.



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

PANDORA: Preserving Privacy in PRNU-Based
Source Camera Attribution

Manoranjan Mohanty, Ming Zhang, Muhammad Rizwan Asghar, and Giovanni Russello

Abstract—Photo Response Non-Uniformity (PRNU) noise-
based source camera attribution is a popular digital forensic
method. In this method, a camera fingerprint computed from
a set of known images of the camera is matched against the
extracted noise of an anonymous questionable image to find out
if the camera had taken the anonymous image. The possibility of
privacy leak, however, is one of the main concerns of the PRNU-
based method. Using the camera fingerprint (or the extracted
noise), an adversary can identify the owner of the camera
by matching the fingerprint with the noise of an image (or
with the fingerprint computed from a set of images) crawled
from a social media account. In this article, we address this
privacy concern by encrypting both the fingerprint and the
noise using the Boneh-Goh-Nissim (BGN) encryption scheme,
and performing the matching in encrypted domain. To overcome
leakage of privacy from the content of an image that is used
in the fingerprint calculation, we compute the fingerprint within
a trusted environment, such as ARM TrustZone. We present
PANDORA that aims at minimizing privacy loss and allows
authorized forensic experts to perform camera attribution.

I. INTRODUCTION

Photo Response Non-Uniformity (PRNU) noise-based
source camera attribution [1f], [2] is an effective method to
find out the source camera of an anonymous image. This
method has been instrumental both to verify whether an
anonymous questionable image, such as the one containing
terrorist propaganda or child pornography, has been taken by
a suspected camera, and in the case of no particular suspected
camera, to identify the culprit camera from a database of
suspected cameras.

The PRNU-based approach is based on the PRNU noise
pattern that is present in a camera sensor due to the man-
ufacturing impurities. Because of the impurities, each pixel
in the sensor generates a different response to light intensity
than the ideal noise-free case, resulting in the PRNU noise,
which is basically the difference between the noise-free output
and the actual output. The PRNU noise can act as a camera
fingerprint as this noise is unique for each camera. Since
obtaining the exact PRNU noise is not possible without the
cooperation of the camera manufacturer, the PRNU noise is
typically estimated from an image. Using the estimated PRNU
noise of a set of known images of the camera, a camera
fingerprint is computed. Then, this fingerprint is correlated
with the estimated PRNU noise of an anonymous query image
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to determine if the camera has taken the anonymous image.
In the rest of this article, for simplicity, we call the estimated
PRNU noise as the PRNU noise.

One of the concerns with the PRNU-based approach, how-
ever, is its potential to leak privacy [3], [4]]. If someone’s
camera fingerprint is leaked, her identity can be known (even
if the fingerprint is anonymized) by linking the fingerprint with
the PRNU noise of images crawled from social media [5]]. For
example, in a court case, the identity of a suspect (who can
be proved innocent later) or the identity of a witness can be
known by unauthorized persons using the camera fingerprint
of the suspect/witness. Below, we elaborate this possibility.

e A high-profile personality is under investigation as a
suspect in a case of child pornography. Given the sensi-
tivity of the case, the suspect’s name is suppressed until
proven guilty. Third-party experts extract a fingerprint
from the suspect’s phone to match it against a database of
known child pornography images. However, the suspect’s
fingerprint is mishandled and is released to the public. In
order to find out the suspect, journalists match PRNU
noise of images from social media with the leaked
fingerprint and find a matching image on a Facebook
account belonging to a high-profile music personality.
The suspect’s name appears in the headlines of major
national and international news describing him/her as
a child abuser. However, later, the suspect is proved
innocent. Nevertheless, the suspect’s career is now ruined
as he/she is now defamed.

e In a trial of a drug case, a witness has provided a picture
showing the dealings of a syndicate. The identity of the
witness is kept secret to ensure her safety. However, the
image is (maliciously) leaked to the public. In order to
identify who has taken the image, the drug syndicate
matches the image with the fingerprint of a number of
investigating journalists (the fingerprint can be previously
known to the syndicate or can be freshly obtained using
images from social media accounts). From the matchings,
the syndicate identifies the journalist who has taken the
image. Then, the journalist starts receiving threats from
the syndicate.

Although the scenarios above could seem far-fetched, it is
clear that camera fingerprint can be misused to identify users
through their online presence. The problem is further compli-
cated by the fact that law enforcement agencies are using cloud
storage and external third-party experts for handling digital
evidence. For example, the fingerprints could be stored on a
third-party server (e.g., cloud datacenter), or the fingerprints
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could be extracted and matched by external forensic experts.

Previous researches on addressing the privacy issue have
mainly focused on distorting the PRNU noise such that a
reliable PRNU noise cannot be extracted from an image [6].
As explained in Section [[T] these anti-forensic approaches
however are not effective privacy-preserving methods as the
PRNU noise is robust to a number of anti-forensic operations.

In this article, we present PANDORA (Preserving privAcy
in prNu-baseD sOurce cameRa Attribution) that addresses the
privacy issue in PRNU-based camera attribution by encrypting
the fingerprint and the PRNU noise, and performing the
matching operations in an encrypted domain. PANDORA
allows the computation of the fingerprint within the device
to be identified. The fingerprint is computed in a trusted
environment where an adversary can neither access the content
of an image (so that the privacy is not leaked from the image
content) nor tamper with the fingerprint. In this work, we
assume that mobile devices’ cameras are the devices to be
identified. As such, given its presence in most current mobile
devices, we use ARM TrustZone as a secure environment to
compute the fingerprint. However, without loss of generality,
our work can be generalized to any computing platform with a
similar secure environment (e.g., Intel SGX) or where a secure
element can be deployed in the device (e.g., secure SIM cards).

In PANDORA, both the fingerprints and the PRNU noise
of query images are encrypted using the Boneh-Goh-Nissim
(BGN) encryption scheme [7] that is homomorphic to an
arbitrary number of additions and one multiplication. The
encrypted fingerprint can be matched against the PRNU noise
of a query image on a third-party server without accessing
neither the fingerprint nor the PRNU noise in clearttext.
As such, PANDORA allows to outsource to third-party the
most costly operations, such as storage and matching. Unlike
previous PRNU noise distortion techniques, our scheme can
ensure privacy while providing utility, as the privacy leak
from the PRNU-based attribution method is minimized while
ensuring that an authorized forensic expert can uninterruptedly
perform her job.

The rest of this article is organized as follows. Section
[] provides an overview of PRNU-based source camera at-
tribution method, and ARM TrustZone. Section [[I] reviews
related work on anti-forensic schemes to PRNU-based source
attribution method. These methods can preserve privacy by
denying extraction of a reliable PRNU noise from an image.
Section [IV] describes our system model and threat model.
Section [V] presents PANDORA. In Section [VI, we describe
our BGN-based encrypted domain camera attribution in detail.
Construction details of PANDORA are given in Section |VII}
and security analysis is analysed in Section Section
explains results and performance analysis of PANDORA. Fi-
nally, Section [X] concludes this article and provides directions
for future work.

II. BACKGROUND

In this section, first we provide an overview of PRNU-based
source camera attribution method. Then, we describe some
details of the ARM TrustZone.

Known Images
& Query Image

Fingerprint Noise
Fig. 1: PRNU-based source camera attribution: a fingerprint
is computed from a set of known images of a camera while
the noise is extracted from a query image. The fingerprint is
matched with the extracted noise to determine if the query
image has been taken from the same camera.

A. PRNU-Based Source Camera Attribution

PRNU-based source camera attribution is a well-studied
method [1]], [8]-[16]. This method is based on the fact that
the sensor output / of a camera can be modeled as

1=19419% 19,

where I is the noise-free output, X is the PRNU noise
representing the camera fingerprint, and ¢ is random noise.
Using a de-noising filter .# (such as a Weiner filter) and
a set of images of a camera, we can estimate the camera
fingerprint by first estimating the PRNU noise of the ' image
as F; =1, — .7 (I;), and then combining the PRNU noise of all
the images. For determining if a specific camera has taken
a given query image I, we can first obtain the PRNU noise
F’ of the query image using %, and then correlate F’ with
F to determine if the camera has taken I’ (as illustrated in
Figure [T). The correlation can be computed using normalized
correlation (r) that is given as:

iy (Fi—F)(F — F)

— 72’
VEE (B —F)2 /X (F = F)
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where F = ¥ and F/ = Z’TF’ If the correlation value r(F,F’)
is above a threshold, it is concluded that the query image
belongs to the camera. The threshold is chosen per-camera.

r(F,F") =

(D

B. ARM TrustZone

The ARM TrustZone is a trusted execution environment
technology offered by ARM for its ARMv6 processor ar-
chitecture. Most of the recent ARM-powered mobile devices
are shipped with the TrustZone. Non-ARM powered mobile
devices are equipped with alternative solutions that still pro-
vide a trusted execution environment, e.g., by Intel’s SGX
technology.

The TrustZone divides the processor core into two virtual
isolated cores called worlds: the secure world (also referred to
as the virtual core or simply TrustZone) and the normal world.
Both worlds are separated by hardware extensions, and any
access to the secure world is highly regulated. The TrustZone
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has its own secure operating system, secure set of applications,
and secure data storage. Since unauthorized data access and
processing request cannot be made to the secure world, highly
sensitive applications, such as Digital Rights Management
(DRM) applications that access protected multimedia content,
are executed in the TrustZone. The general-purpose non-secure
applications, on the other hand, are executed in the normal
world.

III. RELATED WORK

In this section, we review anti-forensic approaches that
have been proposed to prevent privacy leaks in PRNU-based
methods.

Various anti-forensic methods have been proposed to pre-
vent PRNU-based source camera attribution [6]. These meth-
ods can either weaken the PRNU noise pattern or misalign the
PRNU noise so that a reliable PRNU noise cannot be extracted
from an image, and hence privacy of the image owner can be
preserved.

PRNU noise can be weakened by strong signal processing
operations. Gloe et al. [17] proposed two such PRNU noise
weakening techniques by (i) applying an undetectable re-
sampling operation to the image, and by (ii) forging image
origin by removing PRNU of one camera and by adding PRNU
of another camera. Karakucuk er al. proposed two adaptive
PRNU denoising methods [[18]], [[19] that iteratively remove
PRNU noise from an image based on an estimated gain factor
of the PRNU. Another approach to weakening the PRNU noise
is to suppress the PRNU noise using flat-fielding [17], [20].

The PRNU noise can be misaligned either by applying
geometric transformations, such as cropping and resizing,
or by using more sophisticated irreversible transformation
techniques, such as forced seam-carving [3], patch-based
desynchronization [21]], and image stitching [6].

Both the PRNU noise weakening method and the PRNU
noise misaligning method, however, have been proved ineffec-
tive. The PRNU noise can withstand common signal process-
ing operations such as scaling, cropping and compression [22],
[23]]. According to Rosenfeld er al. [24], even after eight
rounds of de-noising, there is still a significant correlation
between the noise pattern of a multiply-denoised image and
the fingerprint of the camera. The flat-fielding approach is less
practical, and it can be defeated for a specific use case [25].
Recently, Taspinar et al. [26]] showed that even an irreversible
transformation method, such as forced seam-carving, can also
be ineffective. In addition, both the PRNU noise weakening
method and the PRNU noise misaligning method do not
guarantee utility as an authorized forensic expert cannot extract
camera fingerprint for lawful use.

To the best of our knowledge, no previous effort has been
made for encrypted domain camera attribution that guarantees
both utility and privacy. Some previous works, however, have
focused on encrypted domain image processing [27]—[30] us-
ing partial homomorphic encryption schemes, such as Shamir’s
secret sharing and Pailier encryption.

IV. SYSTEM MODEL

In our work, we consider that the law enforcement agencies
have outsourced most of the camera attribution tasks to a third-
party entity, such as a forensic expert or a third-party organiza-
tion. The third-party is responsible for storing fingerprints and
performing matching operations between stored fingerprints
and the noise of an anonymous query image. In our system,
we have following entities:

e Fingerprint Source: This entity is an individual, an
organization, or an application that computes camera
fingerprint from a set of known images of the camera.
This entity must ensure that the image content is not
leaked to an adversary (to preserve privacy of the camera
owner). In addition, this entity is also responsible to
ensure that the fingerprint has not been tampered to
provide false matchings. Since privacy can still be leaked
from a computed fingerprint (even though it looks like a
noise) by linking the fingerprint with images from social
media, the Fingerprint Source encrypts the fingerprint.
In this work, we assume that the application that gener-
ates the fingerprint is executed in a trusted environment.
For instance, in case of a fingerprint generated from a
mobile device, such as a smartphone, the application
is executed in the ARM TrustZone of the phone. This
prevents the phone owner to tamper with the fingerprint
generation process. To prevent that the fingerprint is
leaked in cleartext, the application encrypts the finger-
print still in the TrustZone before it sent off for further
processing.

e Third-Party Expert: This entity stores encrypted finger-
prints obtained from the Fingerprint Source, and matches
a fingerprint with noise of a query image in the encrypted
domain. This entity, however, does not know the infor-
mation about the camera or the owner of the camera.
Either an individual or an organization can act as a Third-
Party Expert. In any case, this entity must have enough
storage and processing power to store several thousand
fingerprints and perform matchings in encrypted domain.
To be cost effective, this entity can outsource storage
and computation to public cloud service providers, such
as Amazon, Google, and Microsoft.

e Match Maker: This entity represents a trusted organiza-
tion (e.g., law enforcement authority, a judge) who has
the anonymous query image and who wants to find the
camera that took the image. The fingerprint matching
process, however, has been outsourced to the Third-Party
Expert, who must not know the image content or the
extracted noise of the image in plaintext. The Match
Maker therefore extracts noise from the query image at
her end, encrypts the noise, and sends the encrypted noise
to the Third-Party Expert.

e Match Maker Server: This entity is under the control
of the Match Maker and it is used for performing the
final part of the matching on the values received from the
Third-Party Expert. In comparison with the infrastructure
managed by the Third-Party Expert, the Match Maker
Server is smaller as it requires less computation power
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Fig. 2: The overview of PANDORA: The TrustZone takes as input some a set of known images (Step i) and calculates a
fingerprint (Step ii). The fingerprint is encrypted and sent to the Fingerprint Store (Step iii). Upon request, a Match Maker
takes as input a query image (Step 1) and calculates the PRNU noise (Step 2). The noise is encrypted and sent to the Third-
Party Expert (Step 3). The Third-Party Expert fetches the stored fingerprints from the Fingerprint Store and, after performing
encrypted matching, sends partial correlation values to the Match Maker Server (Step 5). The Match Maker Server decrypts
partial correlation values (Step 6), computes the final correlation value and sends it to the Match Maker (Step 7). The Match
Maker makes the final decision based on whether the final correlation value is above a certain threshold (Step 8).

and storage for performing its tasks.

e Key Management Authority (KMA): This entity is
responsible for generating public and private keys of
BGN encryption.

Threat Model: We assume the KMA as a fully trusted
entity. The KMA can be under the direct control of the law
enforcement authority. We also assume that the KMA securely
transfers the keys to the Fingerprint Source, the Match Maker,
and the Match Maker Server. The one-time key generation
process can be pre-processed. Thus, the KMA can be assumed
to be kept offline in most of the time. The Fingerprint Source,
the Match Maker, and the Match Maker Server are also
assumed to be fully trusted entities.

The Third-Party Expert is assumed to be honest but curious
entity. That is, the Third-Party Expert is trusted to honestly
perform its duty. However, it is not trusted to guarantee data
confidentiality. The adversary can be either an outsider or even
an insider, such as an unfaithful employee working for the
Third-Party Expert. Furthermore, we assume that the Third-
Party Expert has mechanisms to deal with the data integrity
and availability.

V. PROPOSED APPROACH

In this section, we provide an overview of our approach for
encrypted source camera attribution. Figure [2] shows how the
different entities in our architecture are interconnected. In our
approach, the KMA generates encryption keys, and sends the
public key to the Fingerprint Source and the Match Maker,
and the private key to the Match Maker Server.

Given a set of non-tampered known images (Step i) of a
camera, the Fingerprint Source first extracts the noise from
the images, and then generates a fingerprint by combining
the noise (as discussed in Section [[). The Fingerprint Source
ensures the integrity of the images either by taking and storing
the images in a trusted environment (such as in TrustZone), or
detect tampered images (and hence discard them) using various
image forensic techniques [31]]. The generated fingerprint is
encrypted using the public key received from the KMA (Step
ii). The real Camera ID (CID) associated with the encrypted
fingerprint is anonymized by introducing a dummy CID’ such
that a camera cannot be linked to the Fingerprint Source. The
encrypted fingerprint together with the CID' is sent to the
Third-Party Expert for storage and further processing (Step
iii). The (CID, CID') tuple is sent to the Match Maker (Step
iv

The Match Maker will either verify if a particular suspected
camera has taken an anonymous query image (i.e., if a
suspected CID is attached to the query image), or in the case
of no suspected camera, identify the culprit camera (i.e., CID
of the query image). Let us discuss the verification process
first. Identification is similar to verification.

Given a non-tampered query image (Step 1), the Match
Maker first extracts PRNU noise. The extracted noise (Step
2) is then encrypted. The encrypted noise and its CID’
(Step 3) are sent to the Third-Party Expert. Using the CID/,
the Third-Party Expert retrieves the corresponding encrypted

'We assume that the communication between the Fingerprint Source and
the Match Maker is protected.
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Fig. 3: Fingerprint computation using TrustZone.

fingerprint (Step 4), and correlates the fingerprint with the
encrypted PRNU noise (i.e., in the encrypted domain). Since
the correlation process involves more complex operations than
what homomorphically possible under the BGN encryption,
the Third-Party Expert performs part of the correlation process
on its end. The partial correlation result is sent to the Match
Maker Server (Step 5). The Match Maker Server decrypts
the encrypted result, and using the decrypted values (Step 6),
completes the correlation operation. The correlation value is
sent to the Match Maker (Step 7) that compares the correlation
value with a threshold. If the correlation value is greater than
or equal to the threshold, it is concluded that the image was
taken by CID’, and hence by CID (Step 8).

The identification is similar to verification as the identifica-
tion can be performed using a series of verifications. In case
of identification, the Match Maker can perform one-by-one
matching for the (CID, CID') tuples in its database till the
correlation value of a matching is more than or equal to the
threshold.

VI. SOLUTION DETAILS

The main idea behind PANDORA is to compute the camera
fingerprint and the PRNU noise of a query image in a trusted
environment (such as the ARM TrustZone), and match the
fingerprint with the PRNU noise in encrypted domain. In the
following sections, we explain in details some of the steps
executed in PANDORA.

A. Computing Fingerprint

In this article, we assume that the ARM TrustZone is
available to securely compute the fingerprint of a device.
Figure 3| outlines our approach. The images used in computing
the fingerprint must be non-tampered. Thus, we take and store
the images in the TrusZone.

In our approach, the suspect installs the Fingerprint Creator
App, an application that has the main activity Get Fingerprint
in the Rich Operating System (OS) running in the normal
world. When the user launches the app, Get Fingerprint
activity requests the support of the Trusted OS to start the
Take Picture service in the TrustZone. The Take Picture
service takes several pictures with the phone camera. Because
the camera is not under the TrustZone secure environment,
an adversary that does not want that the correct fingerprint
is generated might try to modify the pictures before they
reach the Take Picture service. To detect tampered images,
the service uses various image forensic techniques [31]. If
it detects that the pictures have been tampered with, it will
discard them. Otherwise, the pictures are encrypted (before
leaving the TrustZone) and stored in local storage. Once n
number of pictures have been taken, the Compute Fingerprint
service (still in the TrustZone) is invoked. The Compute
Fingerprint service first fetches the images from the local
storage, and then computes fingerprint using Winer filter-
based method (as discussed in Section [[I-A). Finally, the
Compute Fingerprint service encrypts the fingerprint using our
encryption mechanism described in details in the following
section.

Although the application presented is based on TrustZone,
our work can be generalized to any computing platform where
a secure environment is present, such as the Intel SGX.
Another alternative, is to use a secure element such as a secure
SIM card that can be deployed in the suspect’s device.

B. Encrypting Fingerprint

We consider that the fingerprint vector is represented using a
vector F = {F},Fa,...,F,} of length n. Our goal is to encrypt
the value of an element of the vector (i.e., each F;, where
1 <i < n) using the BGN encryption. The positions of the
vector are kept in plaintext to facilitate future correlations.
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Each F;, however, is a floating point number that is incompat-
ible with the modular prime operation of the BGN scheme.
Before encryption, we convert F; to an integer F™ by first
rounding of F; by d decimal places and then multiplying 10¢
to the round-off value.

The BGN scheme is computationally expensive. According
to our experiments, encryption of a single floating point
number requires 1.2 millisecond (ms). The encryption of a
fingerprint computed from a standard 720 x 720 image requires
11 minutes (as the dimension of the fingerprint is equal to the
dimension of the image). Such high computation overhead is
not desirable for a practical solution. To overcome this issue,
we used the concept of fingerprint digest [32].

A fingerprint digest is a trimmed down version of the
fingerprint. The correlation of the fingerprint digest with the
PRNU digest (produced by trimming down the PRNU noise)
can produce similar error rates (i.e., False Acceptance Rate —
FAR - and False Rejection Rate — FRR) to that of the corre-
lation of the fingerprint with the PRNU noise. The fingerprint
digest therefore can be used instead of the fingerprint where
low overhead is desired (at the cost of slightly higher error
rate). The fingerprint digest of m (where m < n) elements
contains those m pixels which are more significant to the
correlation. For example, the defective hot pixels (represented
with large positive values) and dead pixels (represented with
large negative values) can be part of the fingerprint digest.
In practice, the fingerprint digest is found by first sorting
the fingerprint and then selecting m highest absolute value
elements.

In our work, we replace the full fingerprint F with finger-
print digest Fp C F, and encrypt the integral representation of
each element of Fp. The encrypted fingerprint digest E(Fp) is
then sent to the Third-Party Expert.

One of the key requirements of our approach is to determine
the number of elements in the digest, i.e, to find value
of m. The value must be chosen in such a way that both
error rate and overheads are reasonable. In this article, we
experimentally set the value of m to 10,000. For this number,
FAR is 0.0521 and FRR is 0.12. In comparison to the non-
digest method, the computational cost is decreased by more
than 50 times.

TABLE I: Error rates for different £ when m = 10000.

k 2000 5000 6000 7000 8000 9000
FAR 0.0222 0.0556 0.0444 0.0444 0.0667 0.0778
FRR 0.05 0.05 0.1 0.25 0.3 0.35

One optimization to further decrease the overhead can be
encrypting a subset of k (where k < m) elements from the
fingerprint digest and keep the remaining m — k elements
unencrypted. We explored this possibility, and found that this
approach leaks information about the fingerprint. As a matter
of fact, the correlation of m — k unencrypted elements (even
when k is large) can still attribute the correct camera with
low error rate. For m = 10000, Table [I] shows the error rates
for different k that we experimentally obtained. Therefore, to
avoid leaking information that could lead to privacy breaches,
we decided to encrypt all elements of the fingerprint digest

Fp. The encrypted fingerprint digest E(Fp) is then sent to the
Third-Party Expert to perform the encrypted matching with the
encrypted PRNU noise E(F’) of a query image. The details
of this step are discussed in the next section.

C. Matching Fingerprint with the PRNU Noise

The Third-Party Expert obtains the encrypted fingerprint di-
gest E(Fp) from the suspect’s device and the encrypted PRNU
noise E(F') of a query image from the court. To perform the
match, the Third-Party Expert first obtains an encrypted PRNU
digest E(F},) from the encrypted PRNU using the location
information of the elements of the fingerprint digest. The
encrypted fingerprint digest and the encrypted PRNU digest
are then input to the Pearson correlation coefficient formula
given in Equation [T]

The Pearson correlation coefficient contains additions,
scalar multiplications, one multiplication, a division, and a
square root operations. The additions, scalar multiplications,
and one multiplication operation can be performed in the
encrypted domain as the BGN encryption is homomorphic to
these operations. Thus, using the encrypted fingerprint digest
E(Fp) and the encrypted PRNU noise digest E(F'), the Third-
Party Expert computes in the encrypted domain the following
components of the Pearson correlation coefficient:

m
E(A) = Y (E(E™) ~ EGE) (B(E™) ~ EGF0),
i=1
|m
E(B)= Y, (E(F™)~E(F™))’,
i=1
and ”
E(C)=Y (E(F"™")—E(Fm7))?,

1

where E(F) and E(Fi') represent mean of E(F™) and
E(F™') respectively. Then, the Third-Party Expert sends the
encrypted components E(A), E(B), and E(C) to the Match
Maker Server for further processing.

The Match Maker Server performs the remaining operations
of the Pearson correlation coefficient in plaintext form. To
this end, (1) the Match Maker Server obtains A, B, and C by
decrypting E(A), E(B), and E(C); (2) converts back A, B, and
C to their float values (by dividing 10¢); and (3) computes the
correlation coefficient r/(Fp, F})) as

A
VBC'
As last step of the process, the Match Maker obtains the
correlation coefficient from the Match Maker Server, and
compares the coefficient with a threshold to determine if the
query image was taken by the suspect’s camera.

Note that since our scheme operates in integer domain
and we consider fingerprint digest, it could be the case that
our scheme might introduce some error when compared to
conventional camera attribution method that considers full
fingerprint and operates in floating point domain. However, the
effect of fingerprint digest in camera attribution has been well
studied in earlier work [32]. In the following section, we will

r/(FD7Fl/)) =
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therefore only study the effect of rounding error introduced
by PANDORA.

D. Rounding Error Analysis

Without loss of generality, let us assume that both an
element of the fingerprint digest, i.e., F;, and an element of the
PRNU digest, i.e., Fl/ , are rounded off by d decimal places.
Suppose the error in rounding the element of the fingerprint
and rounding the element of the PRNU are denoted as €
and &p! respectively. Then, we can write F" = F; 4+ €, and

FY' = F '+ &, where F/ and F " are round-off values of F;
and F/, respectlvely The fingerprint and PRNU are assumed
to be Gaussian with zero mean and unit variance. Thus, the
rounding errors can also be assumed to be Gaussian with zero
mean and unit variance.
Using Equation [I we can get the error in correlation
coefficient €&, as
Y (enF + ep F + ergpy)
&= . 2)
1 (F)2 X (F)?

4

Due to the property of Pearson correlation coefficient, we

know that ¥ -
& FA F.‘
=1

1 (F)2 X (F)?

1

is bounded by 1. We also know that both &z, and € satisfy
—0.5x107? < g < 0.5x 107 and —0.5 x 10~ d<£F/§
0.5 x 1079, respectively. In average case, |er| < F/ % 1034
and ‘EF}r,/| < F/ % 10379, as very few elements in the ﬁngerprmt
and the PRNU are less than 0.01 (based on experimental
observation). By putting the average case values in Equation 2]

we obtain
3r

|£r| < 10% —d”

TABLE II: Change in error rates for different d when p =
0.0157.

d 1 2 3 4
FAR 0.0313 0.0500 0.0563 0.0563
FRR  0.5000 0.1000 0.0500 0.0500

In other words, &, can change the value of r maximum by
| 103 |, e, ¥ <r+ 103 . This change can affect the FAR and
FRR rates of the correlation since 7 can be greater than (or
less than) a threshold 7" while r is less than (or greater than)
T. To decrease this error in the correlation, a higher d must
be chosen such that the probability of wrongful attribution
decreases (as & will be small enough to make an impact). A
way to choose d can be d > 3+ p, where p represents the
number of decimal places in 7. The higher the value of d, the
lower the error (as shown in Table II| for a single camera). For
minimal error in a practical scenario, the value of d can be
fixed to the machine precision. Note that fixing the value of d
to machine precision of a normal PC (where a float is typically
represented by a 4-byte or 8-byte number) will not increase
the computation cost and data overhead since the number has

to be represented as a big number (e.g., a 32-byte number)
after the encryption.

Note that rounding errors are not affected by encryption
and decryption as both encryption and decryption are lossless
operations.

VII. CONSTRUCTION DETAILS

PANDORA leverages the BGN scheme proposed by Boneh,
Goh and Nissim in [7]. The BGN scheme is somewhat
homomorphic in a sense that it allows an arbitrary number of
additions and a single multiplication operation. The proposed
scheme consists of the following algorithms.

e KeyGen(1¥). The KMA runs the key generation algo-
rithm in order to generate the public key PK and the
secret key SK. It takes as input a security parameter k
and generates two prime numbers g; and g,. It computes
n = q1q». It picks two random generators g,u &G of
order n. It computes & = 192, which is a random generator
of the subgroup of G of order ¢;. It outputs Gr. It defines
a bilinear map: ¢ : G x G — G, which has the properties
of bilinearity, computability and non-degeneracy |[33|.
The public key is PK = (n,G,Gr,e, g,h). The secret key
is SK =q;.

e Enc(PK,m). To encrypt a message m (where m < q2)
using PK, the user runs the encryption algorithm. It picks
a random r & Zy. It computes C = g"h" € G. It outputs
C.

e Dec(SK,C). To decrypt a ciphertext C using SK, the user
runs the decryption algorithm. It computes C9! = (g91)™.
Let § = g?. Let C = C%. To recover m, it takes the
discrete log of C base g, i.e., m= loggé.

e Add(PK,C;,C,). To add two ciphertexts C; = g™ A"t and
C> = g"™h"2, the server runs the addition algorithm. It

picks a random r & Z,. 1t calculates h". It computes C

as follows.

Ci-C-W
nghI‘Q . hr
m1+m2hr1 +ry+r

gmlhrl .

8

Note that 4" is optional. More specifically, 4" is used for
re-randomization. Avoiding blinding with A" will make
the homomorphic computation deterministic.

e Mul(PK,Cy,C,). To multiply two ciphertexts C; = g
and Cp = g"h"2, the server runs the multiplication al-
gorithm. It computes g; = e(g,g), which is of order n.
Next, it computes h; = e(g,h), which is of order ¢;. It
picks a random r < Z,. It calculates h;". Recall that
h = u?2, which can also be re-written as h = g*% for

mj hr1
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some (unknown) & € Z. It computes C as follows.

C €(C1,C2)~h1r

e(g"h",g"h"?) "

e(g™,8") e(g" h"™) e(h™,g") e(h"" ,h"?) -
e(g,8)™M"™ -e(g,h)™" - e(h,g)""™ - e(h,h)""2 -y

— glmlmz ,hlmlrz ,e(ga6127g)rlm2 ,e(ga‘f127h)r1r2 'h1r
— glmlmz _h]mlr2 ,e(g,gaﬂlz)flm ,e(g,h)aflzrlrz ~h1r
— glrmmz ,hlmlrz -e(g,h)r‘mz .hlaqzrlrz .hlr

= gM"m . M2 g M2 G922 T

— glm1m2 .h1m1r2+r1m2+(xq2r1r2+r

= a""-n’

where 7 = myry 4+ rymy + Qqariry + r is distributed uni-
formly in Z. Thus, C denotes the encryption of mjm;
mod n, but in Gr rather than G. Clearly, the system is
still additively homomorphic in Gt. Note that A" is op-
tional. More specifically, 4" is used for re-randomization.
Avoiding blinding with /" will make the homomorphic
computation deterministic.

VIII. SECURITY ANALYSIS

In this section, we present the security analysis of
PANDORA. Since PANDORA is based on the BGN scheme,
our security analysis is also based on similar settings as in [[7]].
In general, a scheme is considered secure if no adversary can
break the scheme with probability significantly greater than
random guessing. The adversary’s advantage in breaking the
scheme should be a negligible function (defined below) of the
security parameter.

Definition 1 (Negligible Function): A function f is negligi-
ble if for each polynomial p(.), there exists K such that for
all integers k > K it holds that:

We consider a realistic adversary that is computationally
bounded and show that our scheme is secure against such an
adversary. We model the adversary as a randomized algorithm
that runs in polynomial time and show that the success
probability of any such adversary is negligible. An algorithm
that is randomized and runs in polynomial time is called a
Probabilistic Polynomial Time (PPT) algorithm.

The scheme relies on the existence of a pseudorandom
function f. Intuitively, the output a pseudorandom function
cannot be distinguished by a realistic adversary from that of
a truly random function. Formally, a pseudorandom function
is defined as:

Definition 2 (Pseudorandom Function): A function f :
{0,1}* x {0,1}* — {0,1}* is pseudorandom if for all PPT
adversaries o7, there exists a negligible function negl such
that:

|Pria?50) = 1] = PriazT0) = 1]] < negl (k)

where s — {0,1}¥ is chosen uniformly randomly and F is a
function chosen uniformly randomly from the set of function
mapping n-bit string to n-bit string.

Our proof relies on two assumptions. The first assumption
is that the Discrete Log (DL) problem is hard in G, i.e., given
g and g%, it is hard for an adversary to compute o. The second
assumption is that the integer factorization of a large composite
number is hard, i.e., given n, it is hard compute (non-trivial)
g1 and ¢ such that n =q; - q>.

Without knowing the factorization of the group order n, it is
hard to decide whether x is in a subgroup of ¢. This problem
is known as the subgroup decision problem and we formally
define it as follows.

Definition 3 (Subgroup Decision Problem): Let &4 and Gt
are groups of order n = q1q», where g; and g, are primes. Let
g be a generator of 4 and e : G x G — G be the bilinear map.
Let x is an element of ¥, i.e., x € 4. For an algorithm o7, the
advantage of ./ in solving the subgroup decision problem is
defined as:

SD —Adv(<7,G) = |Pr[<f (n,9,Gr,e,x) = 1] —
Pr[%(n7g7GT7e7xq2) = 1” < negl(k)

We say that ¢ satisfies the subgroup decision problem if
for all PPT adversaries <7, SD —Adv(«,G) < negl (k).

Now, we can prove security of the BGN scheme.

Theorem 1: If the subgroup decision problem is hard relative
to G, the BGN scheme is semantically secure.
Proof (Sketch). Let us assume that the BGN scheme is not
semantically secure and there exists a PPT % that can break
the BGN scheme in negl(k). We assume there exists an
adversary 7 that breaks the subgroup decision assumption
with the same advantage. Given (n,¥,Gr,e,x), &/ works as
follows:

e o/ chooses a random generator g € G and gives the public
key (n,9,Gr,e,x) to AB.

e % outputs two messages mg and m; to which <7 responds
with C = g™ i’ € G for a random b & {0,1} and r & Z,,.

e % outputs b’ € {0,1}. If b =1/, o/ outputs 1 (meaning
x is uniform in a subgroup of ¥); otherwise, .2/ outputs
0 (meaning x is uniform in ¥).

As we know that x is uniform in ¢, the challenge ciphertext

C is uniformly distributed in ¢. Thus,

Prib=01=1/2

On the other hand, if x is uniform in the (q;) subgroup of ¥,
the public key (n,¥,Gr,e,x) and the challenge ciphertext C
given to A are the ones that are given in the real game. By
definition of 4, we know that:

Pr[b=b'] > 1/2+negl(k)

o satisfies SD —Adv(</ ,G) > negl(k). This implies that .o/
breaks the subgroup decision problem with negl(k).

Note that the proof is for G. Without loss of generality, it
also holds for Gr. For more details, an interested reader is
referred to [7].

Also note that both homomorphic operations including
addition (i.e., Add) and multiplication (i.e., Mul) functions
are pseudorandom due to blinding with A". A" makes both
homomorphic operations semantically secure. If we remove
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it, then both homomorphic operations will not be semantically
secure.

Theorem 2: If the BGN scheme is semantically secure,
PANDORA is also semantically secure.
Proof (Sketch). In our solution, recall that we represent the
camera fingerprint and the PRNU noise of the query image
using two integer vectors (the conversion from a floating point
number to an integer has been explained in Section [VI-B)),

F:{F17F27"'7Fn}

and
F/z{F{,FZ/,...,Fn/

respectively, where each vector is of length n. In our solution,
we perform matching of the camera fingerprint with the PRNU
noise of the query image. Since this matching should be
performed without revealing the data, all the elements in each
vector are encrypted using the BGN scheme. This matching is
based on the correlation coefficient explained in Section
requiring addition and multiplication operations. Technically,
the respective elements (i.e., F; and F,-’ , where 1 <i<n) in
both vectors are added and multiplied in an encrypted manner.
As we use semantically secure addition and multiplication
operations, the resultant elements after running the correlation
are also semantically secure. Thus, the correlation vector con-
sisting of the resultant elements is also semantically secure.

IX. RESULTS AND ANALYSIS

In this section, we discuss the experimental results of
PANDORA. The experiments were performed by executing
the Third-Party Expert, Match Maker Server, and the Match
Maker in our Lab’s infrastructure.

We simulated the TrustZone using Open-TEE EI, a virtual,
hardware-independent software-based TrustZone, that was in-
stalled on a PC powered by Intel Core 15-3570 Quad-Core 3.4
GHz processor and 8 GB RAM. Our version of Open-TEE
runs on Ubuntu 16.04 LTS operating system. In Open-TEE,
we implemented the fingerprint and fingerprint encryption
modules using C++ language. Our fingerprint module was
based on the Winer filter, which was discussed in Section
In this module, we also computed the fingerprint digest by
considering 10000 highest elements of the fingerprint. In our
fingerprint encryption module, we first converted the floating
point numbers in the fingerprint digest to integers by rounding
off the floats by two decimal places, and then encrypted the
integers using BGN encryption. Our implementation of BGN
encryption had a key length of 1024 bits.

The Third-Party Expert was executed in a cluster of 64
nodes, to recreate a large deployment on a cloud environment.
Each node was powered by Intel Xeon ES5-2680 8 Core
2.7GHz processor and 128G RAM, and was running Red Hat
Enterprise Linux 6.3 OS. The nodes were connected using
QDR Infiniband (40Gb/s). We used MPI (Message Passing
Interface) message passing system to maintain communication
among the nodes. The Third-Party Expert was implemented
using C++ language. Note that for lower computation cost,

Zhttps://github.com/Open-TEE!

we used a variant of Pearson correlation coefficienf] in our
implementation.

We executed the Match Maker Server and the Match Maker
on a single node that is powered by Intel Xeon E5-2680 8
Core 2.7GHz processor and 128G RAM. As we have clarified
before, the Match Maker does two jobs: computation and
encryption of the PRNU noise of the query image. On the other
hand, the Match Maker Server decrypts the partially-computed
Pearson correlation coefficient, completes the computation of
the Pearson correlation coefficient, and matches the Pearson
correlation coefficient with a threshold. The computation of
the PRNU noise and the encryption of PRNU computed noise
were implemented in C++ language on Ubuntu 16.04 LTS
platform. The PRNU noise was computed using a Winer filter-
based method discussed in Section and the PRNU noise
was also encrypted using BGN encryption. The decryption of
the partially-computed Pearson correlation coefficient, and the
remaining computation of the decrypted Pearson correlation
coefficient were also implemented using C++ language.

TABLE III: List of cameras used in our experimentation.

Name No. | Name No.
HUAWEI H30 0 Casio EX-Z150 5
iPadMini 1 Kodak M1063 6
Bobi LD700 2 Nikon CoolPix S710 7
SONY C6903 3 Olympus Mju 1050SW | 8
Samsung Galaxy S4 | 4 Samsung L74 9

Our test environment consisted of 10 cameras of 10 different
brands as shown in Table From each camera, we took 10
images for calculating the fingerprint and 40 query images
for the correlation. The chosen images had not gone through
geometric processing, such as scaling, cropping, and rotation.
The generated Pearson correlation coefficient was matched
against a threshold that was set per each camera.

0.9

— PANDORA

0.8 m— Conventional Method

0.7

0.6

True Positive Rate

0.5

0.4

0 0.2 0.4 0.6 0.8 1
False Positive Rate

Fig. 4: ROC curve: PANDORA vs conventional scheme.

To study the practicality of PANDORA, we compared
PANDORA with the plaintext domain camera attribution that
was implemented using the above setup. In the plaintext
domain scheme, we computed fingerprint in Open-TEE and
computed Pearson correlation coefficient in the cluster of

3http://www.stat.wmich.edu/s216/book/node 122.html


https://github.com/Open-TEE
http://www.stat.wmich.edu/s216/book/node122.html

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

nodes (i.e., Third-Part Expert). Since the fingerprint and PRNU
noise were not encrypted (floating point numbers were also
not rounded off), the Pearson correlation coefficient was fully
computed by the Third-Part Expert without any involvement
of the Match Maker Server. The Match Maker computed the
PRNU noise of the query image, and compared the Pearson
correlation coefficient with the threshold.

Figure[d] shows the comparison of ROC curve of PANDORA
(in red) with the ROC curve of the plaintext-based con-
ventional scheme (in blue). These curves were obtained by
averaging the error rates experimentally obtained from 10
different cameras. As can be seen in the graph, PANDORA
has comparable error rates with respect to the conventional
scheme. This means that even if we round off values to
perform the encryption, the lack of precision does not affect
too much the validity of the results obtained with PANDORA.

1) Performance Analysis: In this section, we analyze the
computational and storage overheads incurred by PANDORA.
Clearly, because our scheme uses encryption it introduces
more overhead when compared to a plaintext scheme. Our
goal here is to study and quantify such overhead.

In PANDORA, the encryption of an element of the fin-
gerprint or the encryption of an element of the PRNU noise
involves one round-off operation, three exponential operations,
and two multiplication operations. The encryption of the
fingerprint is a one-time operation. This operation therefore
can be performed offline. The encryption of the PRNU noise,
however, needs to be performed by the Match Maker at
runtime. The addition, scalar multiplication, and multiplication
of the encrypted values need to be implemented using addition,
multiplication, and exponentiation. Thus, in comparison to
the conventional scheme, the Third-Party Expert needs more
computation cost to partially compute the Pearson correlation
coefficient. The partially-computed Pearson correlation coeffi-
cient needs to be decrypted by the Match Maker Server. This
process requires 12 exponential operations, three discrete log
operations, and one division operation. Note that the operation
at the Third-Party Expert-end and Match Maker Server-end
need to be performed at runtime.

Similar to the computational cost, PANDORA also increases
the data overhead. Each floating point number is represented
as a b-bit integer, where b is the number of bits in encryption
key. Typically, b = 1024 and the float is represented as 32
bits. Thus, the data overhead in storing encrypted fingerprint
and sending encrypted fingerprint to the Third-Party Expert is
increased by 32 times. Similarly, the data overhead in sending
encrypted PRNU is also increased by 32 times.

TABLE IV: Computation cost of PANDORA and conventional
scheme at the Third-Party Expert-end.

Scheme Time
Conventional scheme 0.54 ms
PANDORA (#1 node) 404.17 s
PANDORA (#4 nodes) 102.58 s

PANDORA (#16 nodes) 26.60 s
PANDORA (#64 nodes) 10.26 s

In addition to the above analysis, we also experimentally
studied the computation cost of PANDORA and the conven-

tional plaintext scheme. In our experiment, extra computation
cost at the TrustZone is negligible. Therefore, we do not
report it. The significant computation overhead at the Third-
Party Expert-end, however, is reported in Table for a
different number of nodes in the cluster. As expected, the
computation cost decreases with the increase in the number
of nodes used by the Third-Party Expert. The rate of decrease
however is not strictly proportional to the rate of increase
as the communication cost increases when the number of
nodes increases. In our experiment, the computation cost at
the Match Maker Server-end and Match Maker-end are 23.05s
and 42.73s, respectively.

X. CONCLUSION

PRNU-based camera attribution is a widely used technique
to identify the source camera of an anonymous questionable
image. In this technique, a fingerprint of the camera is first
computed from the PRNU noise of a set of images taken
by the camera. Then this fingerprint is correlated with the
PRNU noise of the query image to determine if the camera
has taken the image. Although the PRNU-based method is
very useful for digital forensics, privacy is one of the main
concerns. Using this method, an adversary can unlawfully
link a camera with an anonymous image, or vice versa. As a
result, unethical linking of individuals to sensitive/anonymous
information can occur. For example, anonymous social net-
work accounts can be linked to known accounts if images
of both the accounts belong to the same camera. In this
article, we address this privacy concern by encrypting both the
fingerprint and the noise, and performing the correlation in the
encrypted domain. The PRNU noise and the camera fingerprint
are computed in unencrypted form, but in trusted environment
(e.g., in the ARM TrustZone). PANDORA is such that the
camera attribution can be performed by authorized users, who
hold decryption keys. Experiment and analysis showed that
PANDORA incurs reasonable overhead.
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