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Camera Attribution for Preserving Privacy*

Manoranjan Mohanty, Ming Zhang, Muhammad Rizwan Asghar, and Giovanni Russello

Abstract—Photo Response Non-Uniformity (PRNU) noise-based source camera attribution is a popular digital forensic method. In this
method, a camera fingerprint computed from a set of known images of the camera is matched against the extracted noise of an
anonymous questionable image to find out if the camera had taken the anonymous image. The possibility of privacy leak, however, is
one of the main concerns of the PRNU-based method. Using the camera fingerprint (or the extracted noise), an adversary can identify
the owner of the camera by matching the fingerprint with the noise of an image (or with the fingerprint computed from a set of images)
crawled from a social media account. In this article, we address this privacy concern by encrypting both the fingerprint and the noise
using the Boneh-Goh-Nissim (BGN) encryption scheme, and performing the matching in encrypted domain. To overcome leakage of
privacy from the content of an image that is used in the fingerprint calculation, we compute the fingerprint within a trusted environment,
such as ARM TrustZone. We present e-PRNU that aims at minimizing privacy loss and allows authorized forensic experts to perform
camera attribution. The security analysis shows that the proposed approach is semantically secure. Experimental results show that the
run-time computational overhead is 10.26 seconds when a cluster of 64 computing nodes are used.

Index Terms—Secure computation, PRNU-based camera attribution, Camera Fingerprinting, Privacy.
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1 INTRODUCTION

Photo Response Non-Uniformity (PRNU) noise-based source
camera attribution [2], [3] is an effective method to find out the
source camera of an anonymous image. This method has been
instrumental both to verify whether an anonymous questionable
image, such as the one containing terrorist propaganda or child
pornography, has been taken by a suspected camera, and in the
case of no particular suspected camera, to identify the culprit
camera from a database of suspected cameras.

The PRNU-based approach is based on the PRNU noise
pattern that is present in a camera sensor due to the manufacturing
impurities. Because of the impurities, each pixel in the sensor
generates a different response to light intensity than the ideal
noise-free case, resulting in the PRNU noise. The PRNU noise can
act as a camera fingerprint as this noise is unique for each camera.
Since obtaining the exact PRNU noise is not possible without
the cooperation of the camera manufacturer, the PRNU noise is
typically estimated from an image. Using the estimated PRNU
noise of a set of known images of the camera, a camera fingerprint
is computed. Then, this fingerprint is correlated with the estimated
PRNU noise of an anonymous query image to determine if the
camera has taken the anonymous image. In the rest of this article,
for simplicity, we call the estimated PRNU noise as the PRNU
noise.

All authors are with the School of Computer Science, The University
of Auckland, New Zealand. They can be contacted by email:
m.mohanty@auckland.ac.nz (Manoranjan), ming.zhang@auckland.ac.nz
(Ming), r.asghar@auckland.ac.nz (Rizwan), and g.russello@auckland.ac.nz
(Giovanni).

*This work is an extension of our initial work accepted to be appeared in the
proceedings of the 17th IEEE International Conference On Trust, Security And
Privacy In Computing And Communications (Trustcom) 2018 under the title
“PANDORA: Preserving privacy in PRNU-based source camera attribution”
by Manoranjan Mohanty, Ming Zhang, Muhammad Rizwan Asghar, and
Giovanni Russello [1].

One of the concerns with the PRNU-based approach, however,
is its potential to leak privacy [4], [5]. If someone’s camera finger-
print is leaked, her identity can be known (even if the fingerprint
is anonymized) by linking the fingerprint with the PRNU noise
of images crawled from social media [6]. For example, in a court
case, the identity of a suspect (who can be proved innocent later)
or the identity of a witness can be known by unauthorized persons
using the camera fingerprint of the suspect/witness. Below, we
elaborate this possibility.

• A high-profile personality is under investigation as a sus-
pect in a case of child pornography. Given the sensitivity
of the case, the suspect’s name is suppressed until proven
guilty. Third-party experts extract a fingerprint from the
suspect’s phone to match it against a database of known
child pornography images. However, the suspect’s finger-
print is mishandled and is released to the public. In order
to find out the suspect, journalists match PRNU noise of
images from social media with the leaked fingerprint and
find a matching image on a Facebook account belonging
to a high-profile music personality. The suspect’s name ap-
pears in the headlines of major national and international
news describing him/her as a child abuser. However, later,
the suspect is proved innocent. Nevertheless, the suspect’s
career is now ruined as he/she is now defamed.

• In a trial of a drug case, a witness has provided a picture
showing the dealings of a syndicate. The identity of the
witness is kept secret to ensure her safety. However, the
image is (maliciously) leaked to the public. In order to
identify who has taken the image, the drug syndicate
matches the image with the fingerprint of a number of
investigating journalists (the fingerprint can be previously
known to the syndicate or can be freshly obtained using
images from social media accounts). From the matchings,
the syndicate identifies the journalist who has taken the
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image. Then, the journalist starts receiving threats from
the syndicate.

Although the scenarios above could seem far-fetched, it is
clear that camera fingerprint can be misused to identify users
through their online presence. The problem is further complicated
by the fact that law enforcement agencies are using cloud storage
and external third-party experts for handling digital evidence. For
example, the fingerprints could be stored on a third-party server
(e.g., cloud datacenter), or the fingerprints could be extracted and
matched by external forensic experts.

Previous researches on addressing the privacy issue have
mainly focused on distorting the PRNU noise such that a reliable
PRNU noise cannot be extracted from an image [7]. As explained
in Section 3, these anti-forensic approaches however are not
effective privacy-preserving methods as the PRNU noise is robust
to a number of anti-forensic operations.

1.1 Our Contributions

In this article, we present e-PRNU that addresses the privacy issue
in PRNU-based camera attribution by encrypting the fingerprint
and the PRNU noise, and performing the matching operations
in an encrypted domain. e-PRNU allows the computation of the
fingerprint within the device to be identified. The fingerprint is
computed in a trusted environment where an adversary can neither
access the content of an image (so that the privacy is not leaked
from the image content) nor tamper with the fingerprint. In this
work, we assume that mobile devices’ cameras are the devices to
be identified. As such, given its presence in most current mobile
devices, we use ARM TrustZone as a secure environment to
compute the fingerprint. However, without loss of generality, our
work can be generalized to any computing platform with a similar
secure environment (e.g., Intel SGX) or where a secure element
can be deployed in the device (e.g., secure SIM cards).

In e-PRNU, both the fingerprints and the PRNU noise of
query images are encrypted using the Boneh-Goh-Nissim (BGN)
encryption scheme [8] that is homomorphic to an arbitrary number
of additions and one multiplication. The encrypted fingerprint
can be matched against the PRNU noise of a query image on a
third-party server without accessing neither the fingerprint nor the
PRNU noise in clearttext. As such, e-PRNU enables outsourcing
to third-parties the most costly operations, such as storage and
matching. Unlike previous PRNU noise distortion techniques, our
scheme can ensure privacy while providing utility, as the privacy
leak from the PRNU-based attribution method is minimized while
ensuring that an authorized forensic expert can uninterruptedly
perform her job.

This article is based on our initial work [1]. This article makes
the following new contributions.

• A detailed mathematical construction of the proposed
approach is provided in Section 7.

• Based on the construction, security of the proposed ap-
proach is mathematically analyzed in Section 8. The
security analysis shows that the proposed approach is
semantically secure.

• In the proposed approach, floating point numbers are
converted to integers to make PRNU-based camera at-
tribution method compatible with BGN encryption. The
float to integer conversion is done by rounding the floating
point numbers. In Section 6.4, an analysis of the effect of

float-to-integer rounding error on the PRNU-based camera
attribution is provided.

• The computational overhead and storage overhead of the
proposed method are mathematically analyzed and exper-
imentally computed in Section 9. The analysis and ex-
periments show that the storage overhead of the proposed
method is increased by 32 times. The run-time compu-
tation cost is 404.17 seconds when only one computing
node is used and 10.26 seconds when 64 computing nodes
are used.

• An optimization scheme (for decreasing computational
overhead and storage overhead) of using a select few
pixels of the fingerprint and encrypting a subset of the
selected pixels have been explored in detail. Based on an
experimental study (as presented in Table 1), it is found
that encryption of a subset of pixels is not feasible as this
scheme can leak information about the fingerprint to an
adversary (hence, can lead to data confidentiality issue).

The rest of this article is organized as follows. Section 2
provides an overview of PRNU-based source camera attribution
method, and ARM TrustZone. Section 3 reviews related work on
anti-forensic schemes to PRNU-based source attribution method.
These methods can preserve privacy by denying extraction of a
reliable PRNU noise from an image. Section 4 describes our
system model and threat model. Section 5 presents e-PRNU. In
Section 6, we describe our BGN-based encrypted domain camera
attribution in detail. Construction details of e-PRNU are given in
Section 7, and security analysis is analysed in Section 8. Section 9
explains results and performance analysis of e-PRNU. Finally,
Section 10 concludes this article and provides directions for future
work.

2 BACKGROUND

In this section, first we provide an overview of PRNU-based
source camera attribution method. Then, we describe some details
of the ARM TrustZone.

Fig. 1: PRNU-based source camera attribution: a fingerprint is
computed from a set of known images of a camera while the noise
is extracted from a query image. The fingerprint is matched with
the extracted noise to determine if the query image has been taken
from the same camera.

2.1 PRNU-Based Source Camera Attribution
PRNU-based source camera attribution is a well-studied
method [2], [9]–[17]. This method is based on the fact that the



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

sensor output I of a camera can be modeled as

I = I(0)+ I(0)X +φ ,

where I(0) is the noise-free output, X is the PRNU noise repre-
senting the camera fingerprint, and φ is random noise. Using a de-
noising filter F (such as a wavelet filter) and a set of images of a
camera, we can estimate the camera fingerprint by first estimating
the PRNU noise of the ith image as Fi = Ii −F (Ii), and then
combining the PRNU noise of all the images. For determining
if a specific camera has taken a given query image I′, we can
first obtain the PRNU noise F ′ of the query image using F , and
then correlate F ′ with F to determine if the camera has taken I′

(as illustrated in Fig. 1). The correlation can be computed using
Pearson correlation coefficient (r) that is given as:

r(F,F ′) =
∑

n
i=1(Fi−F)(F ′i −F ′)√

∑
n
i=1(Fi−F)2.

√
∑

n
i=1 (F

′
i −F ′)

2
, (1)

where F =
∑

n
i Fi
n and F ′ = ∑

n
i F ′i
n . If the correlation value r(F,F ′) is

above a threshold, it is concluded that the query image belongs to
the camera. The threshold is chosen per-camera.

2.2 ARM TrustZone
The ARM TrustZone is a trusted execution environment tech-
nology offered by ARM for its ARMv6 processor architecture.
Most of the recent ARM-powered mobile devices are shipped with
the TrustZone. Non-ARM powered mobile devices are equipped
with alternative solutions that still provide a trusted execution
environment, e.g., by Intel’s SGX technology.

The TrustZone divides the processor core into two virtual
isolated cores called worlds: the secure world (also referred to as
the virtual core or simply TrustZone) and the normal world. Both
worlds are separated by hardware extensions, and any access to the
secure world is highly regulated. The TrustZone has its own secure
operating system, secure set of applications, and secure data stor-
age. Since unauthorized data access and processing request cannot
be made to the secure world, highly sensitive applications, such
as Digital Rights Management (DRM) applications that access
protected multimedia content, are executed in the TrustZone. The
general-purpose non-secure applications, on the other hand, are
executed in the normal world.

3 RELATED WORK

In this section, we review anti-forensic approaches that have been
proposed to prevent privacy leaks in PRNU-based methods.

Various anti-forensic methods have been proposed to prevent
PRNU-based source camera attribution [7]. These methods can
either weaken the PRNU noise pattern or misalign the PRNU noise
so that a reliable PRNU noise cannot be extracted from an image,
and hence privacy of the image owner can be preserved.

PRNU noise can be weakened by strong signal processing
operations. Gloe et al. [18] proposed two such PRNU noise
weakening techniques by (i) applying an undetectable re-sampling
operation to the image, and by (ii) forging image origin by
removing PRNU of one camera and by adding PRNU of another
camera. Karakucuk et al. proposed two adaptive PRNU denoising
methods [19], [20] that iteratively remove PRNU noise from an
image based on an estimated gain factor of the PRNU. Another
approach to weakening the PRNU noise is to suppress the PRNU
noise using flat-fielding [18], [21].

The PRNU noise can be misaligned either by applying geo-
metric transformations, such as cropping and resizing, or by using
more sophisticated irreversible transformation techniques, such as
forced seam-carving [4], patch-based desynchronization [22], and
image stitching [7].

Both the PRNU noise weakening method and the PRNU noise
misaligning method, however, have been proved ineffective. The
PRNU noise can withstand common signal processing operations
such as scaling, cropping and compression [23], [24]. According
to Rosenfeld et al. [25], even after eight rounds of de-noising,
there is still a significant correlation between the noise pattern
of a multiply-denoised image and the fingerprint of the camera.
The flat-fielding approach is less practical, and it can be defeated
for a specific use case [26]. Recently, Taspinar et al. [27] showed
that even an irreversible transformation method, such as forced
seam-carving, can also be ineffective. In addition, both the PRNU
noise weakening method and the PRNU noise misaligning method
do not guarantee utility as an authorized forensic expert cannot
extract camera fingerprint for lawful use.

Recently, Valsesia et al. [28] showed that random projection
can be used to preserve privacy in PRNU-based approaches.
Their approach is inspired by Bianchi et al.’s work [29], which
theoretically shows that the random projection can be used as a
low-cost encryption scheme for preserving privacy in compressed
sensing.

To the best of our knowledge, no previous effort has been
made for encrypted domain camera attribution that guarantees
both utility and privacy. Some previous works, however, have
focused on encrypted domain image processing [30]–[33] using
partial homomorphic encryption schemes, such as Shamir’s secret
sharing and Paillier encryption.

4 SYSTEM MODEL

In our work, we consider that the law enforcement agencies have
outsourced most of the camera attribution tasks to a third-party
entity, such as a forensic expert or a third-party organization. The
third-party is responsible for storing fingerprints and performing
matching operations between stored fingerprints and the noise of
an anonymous query image. In our system, we have the following
entities:

• Fingerprint Source: This entity is an individual, an
organization, or an application that computes camera
fingerprint from a set of known images of the camera.
This entity must ensure that the image content is not
leaked to an adversary (to preserve privacy of the camera
owner). In addition, this entity is also responsible to ensure
that the fingerprint has not been tampered to provide
false matchings. Since privacy can still be leaked from
a computed fingerprint (even though it looks like a noise)
by linking the fingerprint with images from social media,
the Fingerprint Source encrypts the fingerprint.
In this work, we assume that the application that generates
the fingerprint is executed in a trusted environment. For
instance, in case of a fingerprint generated from a mobile
device, such as a smartphone, the application is executed
in the ARM TrustZone of the phone. This prevents the
phone owner to tamper with the fingerprint generation
process. To prevent that the fingerprint is leaked in clear-
text, the application encrypts the fingerprint still in the
TrustZone before it sent off for further processing.
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Fig. 2: Overview of e-PRNU: The TrustZone takes as input some a set of known images (Step i) and calculates a fingerprint (Step ii).
The fingerprint is encrypted and sent to the Fingerprint Store (Step iii). Upon request, a Match Maker takes as input a query image (Step
1) and calculates the PRNU noise (Step 2). The noise is encrypted and sent to the Third-Party Expert (Step 3). The Third-Party Expert
fetches the stored fingerprints from the Fingerprint Store and, after performing encrypted matching, sends partial correlation values to
the Match Maker Server (Step 5). The Match Maker Server decrypts partial correlation values (Step 6), computes the final correlation
value and sends it to the Match Maker (Step 7). The Match Maker makes the final decision based on whether the final correlation value
is above a certain threshold (Step 8).

• Third-Party Expert: This entity stores encrypted finger-
prints obtained from the Fingerprint Source, and matches
a fingerprint with noise of a query image in the encrypted
domain. This entity, however, does not know the infor-
mation about the camera or the owner of the camera.
Either an individual or an organization can act as a Third-
Party Expert. In any case, this entity must have enough
storage and processing power to store several thousand
fingerprints and perform matchings in encrypted domain.
To be cost-effective, this entity can outsource storage and
computation to public cloud service providers, such as
Amazon, Google, and Microsoft.

• Match Maker: This entity represents a trusted organiza-
tion (e.g., law enforcement authority, a judge) who has
the anonymous query image and who wants to find the
camera that took the image. The fingerprint matching
process, however, has been outsourced to the Third-Party
Expert, who must not know the image content or the
extracted noise of the image in plaintext. The Match
Maker therefore extracts noise from the query image at
her end, encrypts the noise, and sends the encrypted noise
to the Third-Party Expert.

• Match Maker Server: This entity is under the control
of the Match Maker and it is used for performing the
final part of the matching on the values received from the
Third-Party Expert. In comparison with the infrastructure
managed by the Third-Party Expert, the Match Maker
Server is smaller as it requires less computation power
and storage for performing its tasks.

• Key Management Authority (KMA): This entity is

responsible for generating public and private keys of BGN
encryption.

Threat Model: We assume the KMA as a fully trusted entity.
The KMA can be under the direct control of the law enforcement
authority. We also assume that the KMA securely transfers the
keys to the Fingerprint Source, the Match Maker, and the Match
Maker Server. The one-time key generation process can be pre-
processed. Thus, the KMA can be assumed to be kept offline
in most of the time. The Fingerprint Source, the Match Maker,
and the Match Maker Server are also assumed to be fully trusted
entities.

The Third-Party Expert is assumed to be honest but curious
entity. That is, the Third-Party Expert is trusted to honestly
perform its duty. However, it is not trusted to guarantee data
confidentiality. The adversary can be either an outsider or even
an insider, such as an unfaithful employee working for the Third-
Party Expert. Furthermore, we assume that the Third-Party Expert
has mechanisms to deal with the data integrity and availability.

5 PROPOSED APPROACH

In this section, we provide an overview of our approach for en-
crypted source camera attribution. Fig. 2 shows how the different
entities in our architecture are interconnected. In our approach, the
KMA generates encryption keys, and sends the public key to the
Fingerprint Source and the Match Maker, and the private key to
the Match Maker Server.

Given a set of non-tampered known images (Step i) of a
camera, the Fingerprint Source first extracts the noise from the
images, and then generates a fingerprint by combining the noise
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Fig. 3: Securely computation of a fingerprint using TrustZone.

(as discussed in Section 2). The Fingerprint Source ensures the
integrity of the images either by taking and storing the images in
a trusted environment (such as in TrustZone), or detect tampered
images (and hence discard them) using various image forensic
techniques [34]. The generated fingerprint is encrypted using the
public key received from the KMA (Step ii). The real Camera ID
(CID) associated with the encrypted fingerprint is anonymized by
introducing a dummy CID′ such that a camera cannot be linked
to the Fingerprint Source. The encrypted fingerprint together with
the CID′ is sent to the Third-Party Expert for storage and further
processing (Step iii). The 〈CID, CID′〉 tuple is sent to the Match
Maker (Step iv)1.

The Match Maker will either verify if a particular suspected
camera has taken an anonymous query image (i.e., if a suspected
CID is attached to the query image), or in the case of no suspected
camera, identify the culprit camera (i.e., CID of the query image).
Let us discuss the verification process first. Identification is similar
to verification.

Given a non-tampered query image (Step 1), the Match Maker
first extracts PRNU noise. The extracted noise (Step 2) is then
encrypted. The encrypted noise and its CID′ (Step 3) are sent
to the Third-Party Expert. Using the CID′, the Third-Party Expert
retrieves the corresponding encrypted fingerprint (Step 4), and cor-
relates the fingerprint with the encrypted PRNU noise (i.e., in the
encrypted domain). Since the correlation process involves more
complex operations than what homomorphically possible under
the BGN encryption, the Third-Party Expert performs part of the
correlation process on its end. The partial correlation result is sent
to the Match Maker Server (Step 5). The Match Maker Server
decrypts the encrypted result, and using the decrypted values (Step
6), completes the correlation operation. The correlation value is
sent to the Match Maker (Step 7) that compares the correlation
value with a threshold. If the correlation value is greater than or

1We assume that the communication between the Fingerprint Source and
the Match Maker is protected.

equal to the threshold, it is concluded that the image was taken by
CID′, and hence by CID (Step 8).

The identification is similar to verification as the identification
can be performed using a series of verifications. In case of
identification, the Match Maker can perform one-by-one matching
for the 〈CID, CID′〉 tuples in its database till the correlation value
of a matching is more than or equal to the threshold.

6 SOLUTION DETAILS

The main idea behind e-PRNU is to compute the camera finger-
print and the PRNU noise of a query image in a trusted environ-
ment (such as the ARM TrustZone), and match the fingerprint with
the PRNU noise in encrypted domain. In the following sections,
we explain in details some of the steps executed in e-PRNU.

6.1 Computing Fingerprint
In this article, we assume that the ARM TrustZone is available to
securely compute the fingerprint of a device. Fig. 3 outlines our
approach. The images used in computing the fingerprint must be
non-tampered. Thus, we take and store the images in the TrusZone.

In our approach, the suspect installs the Fingerprint Creator
App, an application that has the main activity Get Fingerprint in
the Rich Operating System (OS) running in the normal world.
When the user launches the app, Get Fingerprint activity requests
the support of the Trusted OS to start the Take Picture service in
the TrustZone. The Take Picture service takes several pictures with
the phone camera. Because the camera is not under the TrustZone
secure environment, an adversary that does not want that the cor-
rect fingerprint is generated might try to modify the pictures before
they reach the Take Picture service. To detect tampered images, the
service uses various image forensic techniques [34]. If it detects
that the pictures have been tampered with, it will discard them.
Similarly, the service can mitigate fingerprint copy attacks using a
previously proposed method [35], and use PRNU-based clustering
technique [15] to find out if the images are from multiple sources
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or from a source that has already been fingerprinted. Otherwise,
the pictures are encrypted (before leaving the TrustZone) and
stored in local storage. Once n number of pictures have been
taken, the Compute Fingerprint service (still in the TrustZone)
is invoked. The Compute Fingerprint service first fetches the
images from the local storage, and then computes fingerprint using
wavelet filter-based method (as discussed in Section 2.1). Finally,
the Compute Fingerprint service encrypts the fingerprint using
our encryption mechanism described in details in the following
section.

Although the application presented is based on TrustZone, our
work can be generalized to any computing platform where a secure
environment is present, such as the Intel SGX. Another alternative,
is to use a secure element such as a secure SIM card that can be
deployed in the suspect’s device.

6.2 Encrypting Fingerprint

We consider that the fingerprint vector is represented using a
vector F = {F1,F2, . . . ,Fn} of length n. Our goal is to encrypt the
value of an element of the vector (i.e., each Fi, where 1 ≤ i ≤ n)
using the BGN encryption. The positions of the vector are kept
in plaintext to facilitate future correlations. Each Fi, however, is a
floating point number that is incompatible with the modular prime
operation of the BGN scheme. Before encryption, we convert Fi
to an integer F int

i by first rounding of Fi by d decimal places and
then multiplying 10d to the round-off value.

The BGN scheme is computationally expensive. According
to our experiments, encryption of a single floating point number
requires 1.2 millisecond (ms). The encryption of a fingerprint
computed from a standard 720× 720 image requires 11 minutes
(as the dimension of the fingerprint is equal to the dimension of
the image). Such high computation overhead is not desirable for a
practical solution. To overcome this issue, we used the concept of
fingerprint compression. In this paper, the fingerprint digest-based
compression [36] has been used. However, other techniques, such
as random projection-based compression [37] [38] can also be
used.

A fingerprint digest is a trimmed down version of the fin-
gerprint. The correlation of the fingerprint digest with the PRNU
digest (produced by trimming down the PRNU noise) can produce
similar error rates (i.e., False Acceptance Rate – FAR – and
False Rejection Rate – FRR) to that of the correlation of the
fingerprint with the PRNU noise. The fingerprint digest therefore
can be used instead of the fingerprint where low overhead is
desired (at the cost of slightly higher error rate). The fingerprint
digest of m (where m < n) elements contains those m pixels
which are more significant to the correlation. For example, the
defective hot pixels (represented with large positive values) and
dead pixels (represented with large negative values) can be part of
the fingerprint digest. In practice, the fingerprint digest is found by
first sorting the fingerprint and then selecting m highest absolute
value elements.

In our work, we replace the full fingerprint F with fingerprint
digest FD ⊂ F , and encrypt the integral representation of each
element of FD. The encrypted fingerprint digest E(FD) is then sent
to the Third-Party Expert.

One of the key requirements of our approach is to determine
the number of elements in the digest, i.e., to find value of m.
The value must be chosen in such a way that both error rate and
overheads are reasonable. In this article, we experimentally set the

value of m to 10,000. For this number, FAR is 0.0521 and FRR is
0.12. In comparison to the non-digest method, the computational
cost is decreased by more than 50 times.

TABLE 1: Error rates for different k when m = 10000.

k 2000 5000 6000 7000 8000 9000
FAR 0.0222 0.0556 0.0444 0.0444 0.0667 0.0778
FRR 0.05 0.05 0.1 0.25 0.3 0.35

One optimization to further decrease the overhead can be en-
crypting a subset of k (where k < m) elements from the fingerprint
digest and keep the remaining m− k elements unencrypted. We
explored this possibility, and found that this approach leaks infor-
mation about the fingerprint. As a matter of fact, the correlation
of m− k unencrypted elements (even when k is large) can still
attribute the correct camera with low error rate. For m = 10000,
Table 1 shows the error rates for different k that we experimentally
obtained. Therefore, to avoid leaking information that could lead
to privacy breaches, we decided to encrypt all elements of the
fingerprint digest FD. The encrypted fingerprint digest E(FD) is
then sent to the Third-Party Expert to perform the encrypted
matching with the encrypted PRNU noise E(F ′) of a query image.
The details of this step are discussed in the next section.

6.3 Matching Fingerprint with the PRNU Noise

The Third-Party Expert obtains the encrypted fingerprint digest
E(FD) from the suspect’s device and the encrypted PRNU noise
E(F ′) of a query image from the court. To perform the match, the
Third-Party Expert first obtains an encrypted PRNU digest E(F ′D)
from the encrypted PRNU using the location information of the
elements of the fingerprint digest. The encrypted fingerprint digest
and the encrypted PRNU digest are then provided as an input to
the Pearson correlation coefficient formula given in Equation 1.

The Pearson correlation coefficient contains additions, scalar
multiplications, one multiplication, a division, and a square root
operation. The additions, scalar multiplications, and one multi-
plication operation can be performed in the encrypted domain as
the BGN encryption is homomorphic to these operations. Thus,
using the encrypted fingerprint digest E(FD) and the encrypted
PRNU noise digest E(F ′), the Third-Party Expert computes in
the encrypted domain the following components of the Pearson
correlation coefficient:

E(A) =
m

∑
i=1

(
E(F int

i )−E(F int)
)(

E(F int,′
i )−E(F int,′)

)
,

E(B) =
|m

∑
i=1

(
E(F int

i )−E(F int)
)2
,

and

E(C) =
m

∑
i=1

(
E(F int,′

i )−E(F int,′)
)2
,

where E(F int) and E(F int,′) represent mean of E(F int) and
E(F int,′) respectively. Then, the Third-Party Expert sends the
encrypted components E(A), E(B), and E(C) to the Match Maker
Server for further processing.

The Match Maker Server performs the remaining operations of
the Pearson correlation coefficient in plaintext form. To this end,
(1) the Match Maker Server obtains A, B, and C by decrypting
E(A), E(B), and E(C); (2) converts back A, B, and C to their
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float values (by dividing 10d); and (3) computes the correlation
coefficient r′(FD,F ′D) as

r′(FD,F ′D) =
A√
BC

.

As last step of the process, the Match Maker obtains the correla-
tion coefficient from the Match Maker Server, and compares the
coefficient with a threshold to determine if the query image was
taken by the suspect’s camera.

Note that since our scheme operates in integer domain and we
consider fingerprint digest, it could be the case that our scheme
might introduce some error when compared to conventional cam-
era attribution method that considers full fingerprint and operates
in floating point domain. However, the effect of fingerprint digest
in camera attribution has been well studied in earlier work [36].
In the following section, we will therefore only study the effect of
rounding error introduced by e-PRNU.

6.4 Rounding Error Analysis
Without loss of generality, let us assume that both an element of
the fingerprint digest, i.e., Fi, and an element of the PRNU digest,
i.e., F ′i , are rounded off by d decimal places. Suppose the error in
rounding the element of the fingerprint and rounding the element
of the PRNU are denoted as εFi and εF ′i

respectively. Then, we can
write Fr

i =Fi+εFi and Fr,′
i =F ′i +εF ′i

, where Fr
i and Fr,′

i are round-
off values of Fi and F ′i , respectively. The fingerprint and PRNU are
assumed to be Gaussian with zero mean and unit variance. Thus,
the rounding errors can also be assumed to be Gaussian with zero
mean and unit variance.

Using Equation 1, we can get the error in correlation coeffi-
cient εr as

εr =
∑

n
i=1(εFi F

r,′
i + εF ′i

Fr
i + εFi εF ′i

)√
∑

n
i=1(F

r
i )

2
√

∑
n
i=1(F

r,′
i )2

. (2)

Due to the property of Pearson correlation coefficient, we know
that

r =
∑

n
i=1 Fr

i Fr,′
i√

∑
n
i=1(F

r
i )

2
√

∑
n
i=1(F

r,′
i )2

is bounded by ±1. We also know that both εFi and εF ′i
satisfy

−0.5× 10−d ≤ εFi ≤ 0.5× 10−d and −0.5× 10−d ≤ εF ′i
≤ 0.5×

10−d , respectively. In average case, |εFi |< Fr
i ×103−d and |εFr,′

i
|<

F ′i ×103−d , as very few elements in the fingerprint and the PRNU
are less than 0.01 (based on experimental observation). By putting
the average case values in Equation 2, we obtain

|εr|<
3r

103−d .

TABLE 2: Change in error rates for different d when p = 0.0157.

d 1 2 3 4
FAR 0.0313 0.0500 0.0563 0.0563
FRR 0.5000 0.1000 0.0500 0.0500

In other words, εr can change the value of r maximum by
| 3r

103−d |, i.e., r′ ≤ r + 3r
103−d . This change can affect the FAR and

FRR rates of the correlation since r′ can be greater than (or less
than) a threshold T while r is less than (or greater than) T . To
decrease this error in the correlation, a higher d must be chosen

such that the probability of wrongful attribution decreases (as εr
will be small enough to make an impact). A way to choose d can
be d > 3+ p, where p represents the number of decimal places
in T . The higher the value of d, the lower the error (as shown
in Table 2 for a single camera). For minimal error in a practical
scenario, the value of d can be fixed to the machine precision.
Note that fixing the value of d to machine precision of a normal
PC (where a float is typically represented by a 4-byte or 8-byte
number) will not increase the computation cost and data overhead
since the number has to be represented as a big number (e.g., a
32-byte number) after the encryption.

Note that rounding errors are not affected by encryption
and decryption as both encryption and decryption are lossless
operations.

7 CONSTRUCTION DETAILS

e-PRNU leverages the BGN scheme proposed by Boneh, Goh
and Nissim in [8]. The BGN scheme is somewhat homomorphic
in a sense that it allows an arbitrary number of additions and a
single multiplication operation. The proposed scheme consists of
the following algorithms.

• KeyGen(1k). The KMA runs the key generation algorithm
in order to generate the public key PK and the secret key
SK. It takes as input a security parameter k and generates
two prime numbers q1 and q2. It computes n = q1q2.
It picks two random generators g,u R← G of order n. It
computes h = uq2 , which is a random generator of the
subgroup of G of order q1. It outputs GT. It defines a
bilinear map: e : G×G→GT, which has the properties of
bilinearity, computability and non-degeneracy [39]. The
public key is PK = (n,G,GT,e,g,h). The secret key is
SK = q1.

• Enc(PK,m). To encrypt a message m (where m< q2) using
PK, the user runs the encryption algorithm. It picks a
random r R← Zn. It computes C = gmhr ∈ G. It outputs
C.

• Dec(SK,C). To decrypt a ciphertext C using SK, the user
runs the decryption algorithm. It computes Cq1 = (gq1)m.
Let ĝ= gq1 . Let Ĉ =Cq1 . To recover m, it takes the discrete
log of Ĉ base ĝ, i.e., m = logĝ Ĉ.

• Add(PK,C1,C2). To add two ciphertexts C1 = gm1 hr1 and
C2 = gm2 hr2 , the server runs the addition algorithm. It
picks a random r R← Zn. It calculates hr. It computes C
as follows.

C = C1 ·C2 ·hr

= gm1 hr1 ·gm2 hr2 ·hr

= gm1+m2 hr1+r2+r

Note that hr is optional. More specifically, hr is used for
re-randomization. Avoiding blinding with hr will make the
homomorphic computation deterministic.

• Mul(PK,C1,C2). To multiply two ciphertexts C1 = gm1 hr1

and C2 = gm2 hr2 , the server runs the multiplication al-
gorithm. It computes g1 = e(g,g), which is of order n.
Next, it computes h1 = e(g,h), which is of order q1. It
picks a random r R← Zn. It calculates h1

r. Recall that
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h = uq2 , which can also be re-written as h = gα·q2 for
some (unknown) α ∈ Z. It computes C as follows.

C = e(C1,C2) ·h1
r

= e(gm1 hr1 ,gm2 hr2) ·h1
r

= e(gm1 ,gm2) · e(gm1 ,hr2) · e(hr1 ,gm2) · e(hr1 ,hr2) ·h1
r

= e(g,g)m1m2 · e(g,h)m1r2 · e(h,g)r1m2 · e(h,h)r1r2 ·h1
r

= g1
m1m2 ·h1

m1r2 · e(gαq2 ,g)r1m2 · e(gα·q2 ,h)r1r2 ·h1
r

= g1
m1m2 ·h1

m1r2 · e(g,gαq2)r1m2 · e(g,h)αq2r1r2 ·h1
r

= g1
m1m2 ·h1

m1r2 · e(g,h)r1m2 ·h1
αq2r1r2 ·h1

r

= g1
m1m2 ·h1

m1r2 ·h1
r1m2 ·h1

αq2r1r2 ·h1
r

= g1
m1m2 ·h1

m1r2+r1m2+αq2r1r2+r

= g1
m1m2 ·h1

r̂

where r̂ = m1r2 + r1m2 +αq2r1r2 + r is distributed uni-
formly in Z. Thus, C denotes the encryption of m1m2
mod n, but in GT rather than G. Clearly, the system is
still additively homomorphic in GT. Note that hr is op-
tional. More specifically, hr is used for re-randomization.
Avoiding blinding with hr will make the homomorphic
computation deterministic.

8 SECURITY ANALYSIS

In this section, we present the security analysis of e-PRNU. Since
e-PRNU is based on the BGN scheme, our security analysis is
also based on similar settings as in [8]. In general, a scheme is
considered secure if no adversary can break the scheme with prob-
ability significantly greater than random guessing. The adversary’s
advantage in breaking the scheme should be a negligible function
(defined below) of the security parameter.
Definition 1 (Negligible Function). A function f is negligible

if for each polynomial p(.), there exists K such that for all
integers k > K it holds that:

f (k)<
1

p(k)

We consider a realistic adversary that is computationally
bounded and show that our scheme is secure against such an
adversary. We model the adversary as a randomized algorithm that
runs in polynomial time and show that the success probability of
any such adversary is negligible. An algorithm that is randomized
and runs in polynomial time is called a Probabilistic Polynomial
Time (PPT) algorithm.

The scheme relies on the existence of a pseudorandom func-
tion f . Intuitively, the output of a pseudorandom function cannot
be distinguished by a realistic adversary from that of a truly
random function. Formally, a pseudorandom function is defined
as:
Definition 2 (Pseudorandom Function). A function f : {0,1}∗×
{0,1}∗ → {0,1}∗ is pseudorandom if for all PPT adversaries
A , there exists a negligible function negl such that:

|Pr[A fs(·) = 1]−Pr[A F(·) = 1]|< negl(k)

where s→ {0,1}k is chosen uniformly randomly and F is a
function chosen uniformly randomly from the set of function
mapping n-bit string to n-bit string.

Our proof relies on two assumptions. The first assumption is
that the Discrete Log (DL) problem is hard in G, i.e., given g

and gα , it is hard for an adversary to compute α . The second
assumption is that the integer factorization of a large composite
number is hard, i.e., given n, it is hard compute (non-trivial) q1
and q2 such that n = q1 ·q2.

Without knowing the factorization of the group order n, it is
hard to decide whether x is in a subgroup of G . This problem is
known as the subgroup decision problem and we formally define
it as follows.
Definition 3 (Subgroup Decision Problem). Let G and GT are

groups of order n = q1q2, where q1 and q2 are primes. Let g
be a generator of G and e : G×G→GT be the bilinear map.
Let x is an element of G , i.e., x ∈ G . For an algorithm A , the
advantage of A in solving the subgroup decision problem is
defined as:

SD−Adv(A ,G) = |Pr[A (n,G ,GT,e,x) = 1]−
Pr[A (n,G ,GT,e,xq2) = 1]|< negl(k)

We say that G satisfies the subgroup decision problem if for
all PPT adversaries A , SD−Adv(A ,G)< negl(k).

Now, we can prove security of the BGN scheme.
Theorem 1. If the subgroup decision problem is hard relative to

G, the BGN scheme is semantically secure.

Proof (Sketch). Let us assume that the BGN scheme is not
semantically secure and there exists a PPT B that can break the
BGN scheme in negl(k). We assume there exists an adversary
A that breaks the subgroup decision assumption with the same
advantage. Given (n,G ,GT,e,x), A works as follows:

• A chooses a random generator g ∈G and gives the public
key (n,G ,GT,e,x) to B.

• B outputs two messages m0 and m1 to which A responds
with C = gmb hr ∈G for a random b R←{0,1} and r R← Zn.

• B outputs b′ ∈ {0,1}. If b = b′, A outputs 1 (meaning x
is uniform in a subgroup of G ); otherwise, A outputs 0
(meaning x is uniform in G ).

As we know that x is uniform in G , the challenge ciphertext C
is uniformly distributed in G . Thus,

Pr[b = b′] = 1/2

On the other hand, if x is uniform in the (q1) subgroup of G , the
public key (n,G ,GT,e,x) and the challenge ciphertext C given to
B are the ones that are given in the real game. By definition of
B, we know that:

Pr[b = b′]> 1/2+negl(k)

A satisfies SD−Adv(A ,G) > negl(k). This implies that A
breaks the subgroup decision problem with negl(k).

Note that the proof is for G. Without loss of generality, it also
holds for GT. For more details, an interested reader is referred to
[8].

Also note that both homomorphic operations including ad-
dition (i.e., Add) and multiplication (i.e., Mul) functions are
pseudorandom due to blinding with hr. hr makes both homomor-
phic operations semantically secure. If we remove it, then both
homomorphic operations will not be semantically secure.
Theorem 2. If the BGN scheme is semantically secure, e-PRNU

is also semantically secure.

Proof (Sketch). In our solution, recall that we represent the camera
fingerprint and the PRNU noise of the query image using two
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integer vectors (the conversion from a floating point number to an
integer has been explained in Section 6.2),

F = {F1,F2, . . . ,Fn}

and
F ′ = {F ′1,F ′2, . . . ,F ′n}

respectively, where each vector is of length n. In our solution, we
perform matching of the camera fingerprint with the PRNU noise
of the query image. Since this matching should be performed
without revealing the data, all the elements in each vector are
encrypted using the BGN scheme. This matching is based on the
correlation coefficient explained in Section 6.3, requiring addition
and multiplication operations. Technically, the respective elements
(i.e., Fi and F ′i , where 1 ≤ i ≤ n) in both vectors are added and
multiplied in an encrypted manner. As we use semantically secure
addition and multiplication operations, the resultant elements after
running the correlation are also semantically secure. Thus, the
correlation vector consisting of the resultant elements is also
semantically secure.

9 RESULTS AND ANALYSIS

In this section, we discuss the experimental results of e-PRNU.
The experiments were performed by executing the Third-Party
Expert, Match Maker Server, and the Match Maker in our Lab’s
infrastructure.

We simulated the TrustZone using Open-TEE 2, a virtual,
hardware-independent software-based TrustZone, that was in-
stalled on a PC powered by Intel Core i5-3570 Quad-Core 3.4
GHz processor and 8 GB RAM. Our version of Open-TEE
runs on Ubuntu 16.04 LTS operating system. In Open-TEE, we
implemented the fingerprint and fingerprint encryption modules
using C++ language. Our fingerprint module was based on the
wavelet filter, which was discussed in Section 2. In this module, we
also computed the fingerprint digest by considering 10000 highest
elements of the fingerprint. In our fingerprint encryption module,
we first converted the floating point numbers in the fingerprint
digest to integers by rounding off the floats by two decimal
places, and then encrypted the integers using BGN encryption.
Our implementation of BGN encryption had a key length of 1024
bits.

The Third-Party Expert was executed in a cluster of 64 nodes,
to recreate a large deployment on a cloud environment. Each node
was powered by Intel Xeon E5-2680 8 Core 2.7GHz processor and
128G RAM, and was running Red Hat Enterprise Linux 6.3 OS.
The nodes were connected using QDR Infiniband (40Gb/s). We
used MPI (Message Passing Interface) message passing system
to maintain communication among the nodes. The Third-Party
Expert was implemented using C++ language. Note that for
lower computation cost, we used a variant of Pearson correlation
coefficient3 in our implementation.

We executed the Match Maker Server and the Match Maker
on a single node that is powered by Intel Xeon E5-2680 8 Core
2.7GHz processor and 128G RAM. As we have clarified before,
the Match Maker does two jobs: computation and encryption of
the PRNU noise of the query image. On the other hand, the Match
Maker Server decrypts the partially-computed Pearson correlation
coefficient, completes the computation of the Pearson correlation

2https://github.com/Open-TEE
3http://www.stat.wmich.edu/s216/book/node122.html

coefficient, and matches the Pearson correlation coefficient with a
threshold. The computation of the PRNU noise and the encryption
of PRNU computed noise were implemented in C++ language
on Ubuntu 16.04 LTS platform. The PRNU noise was computed
using a wavelet filter-based method discussed in Section 2, and the
PRNU noise was also encrypted using BGN encryption. The de-
cryption of the partially-computed Pearson correlation coefficient,
and the remaining computation of the decrypted Pearson correla-
tion coefficient were also implemented using C++ language.

TABLE 3: List of cameras used in our experimentation.

Name No. Name No.
HUAWEI H30 0 Casio EX-Z150 5
iPadMini 1 Kodak M1063 6
Bobi LD700 2 Nikon CoolPix S710 7
SONY C6903 3 Olympus Mju 1050SW 8
Samsung Galaxy S4 4 Samsung L74 9

Our test environment consisted of 10 cameras of 10 different
brands as shown in Table 3. From each camera, we took 10
images for calculating the fingerprint and 40 query images for the
correlation. The chosen images had not gone through geometric
processing, such as scaling, cropping, and rotation. The generated
Pearson correlation coefficient was matched against a threshold
that was set per each camera.

Fig. 4: ROC curve: e-PRNU with digest vs conventional scheme
with digest.

Fig. 5: ROC curve: e-PRNU without digest vs conventional
scheme without digest.

https://github.com/Open-TEE
http://www.stat.wmich.edu/s216/book/node122.html
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To study the practicality of e-PRNU, we compared e-PRNU
with the plaintext domain camera attribution that was implemented
using the above setup. In the plaintext domain scheme, we com-
puted fingerprint in Open-TEE and computed Pearson correlation
coefficient in the cluster of nodes (i.e., Third-Part Expert). Since
the fingerprint and PRNU noise were not encrypted (floating
point numbers were also not rounded off), the Pearson correlation
coefficient was fully computed by the Third-Part Expert without
any involvement of the Match Maker Server. The Match Maker
computed the PRNU noise of the query image, and compared the
Pearson correlation coefficient with the threshold.

(in red) with the ROC curve of the plaintext-based conven-
tional scheme (in blue).

Fig. 4 shows the comparison of ROC curve of e-PRNU (in red)
with the ROC curve of the plaintext-based conventional scheme
(in blue) when fingerprint digest was used. These curves were
obtained by averaging the error rates experimentally obtained from
10 different cameras. As can be seen in the graph, e-PRNU has
comparable error rates with respect to the conventional scheme.
This means that even if we round off values to perform the
encryption, the lack of precision does not affect too much the
validity of the results obtained with e-PRNU. Fig. 5 shows the
ROC curve of e-PRNU (in pink) and the conventional scheme (in
green) when fingerprint digest was not used. As expected, the error
rates when a digest was used is more than the error rates without
a digest.

Performance Analysis. In this section, we analyze the com-
putational and storage overheads incurred by e-PRNU. Clearly,
because our scheme uses encryption it introduces more overhead
when compared to a plaintext scheme. Our goal here is to study
and quantify such overhead.

In e-PRNU, the encryption of an element of the fingerprint
or the encryption of an element of the PRNU noise involves
one round-off operation, three exponential operations, and two
multiplication operations. The encryption of the fingerprint is a
one-time operation. This operation therefore can be performed
offline. The encryption of the PRNU noise, however, needs to be
performed by the Match Maker at runtime. The addition, scalar
multiplication, and multiplication of the encrypted values need to
be implemented using addition, multiplication, and exponentia-
tion. Thus, in comparison to the conventional scheme, the Third-
Party Expert needs more computation cost to partially compute the
Pearson correlation coefficient. The partially-computed Pearson
correlation coefficient needs to be decrypted by the Match Maker
Server. This process requires 12 exponential operations, three
discrete log operations, and one division operation. Note that the
operation at the Third-Party Expert-end and Match Maker Server-
end need to be performed at runtime.

Similar to the computational cost, e-PRNU also increases the
data overhead. Each floating point number is represented as a b-bit
integer, where b is the number of bits in encryption key. Typically,
b = 1024 and the float is represented as 32 bits. Thus, the data
overhead in storing encrypted fingerprint and sending encrypted
fingerprint to the Third-Party Expert is increased by 32 times.
Similarly, the data overhead in sending encrypted PRNU is also
increased by 32 times.

In addition to the above analysis, we also experimentally
studied the computation cost of e-PRNU and the conventional
plaintext scheme. In our experiment, extra computation cost at
the TrustZone is negligible. Therefore, we do not report it. The

TABLE 4: Computation cost of e-PRNU and conventional scheme
at the Third-Party Expert-end.

Scheme Time
Conventional scheme 0.54 ms
e-PRNU (#1 node) 404.17 s
e-PRNU (#4 nodes) 102.58 s
e-PRNU (#16 nodes) 26.60 s
e-PRNU (#64 nodes) 10.26 s

significant computation overhead at the Third-Party Expert-end,
however, is reported in Table 4 for a different number of nodes in
the cluster. As expected, the computation cost decreases with the
increase in the number of nodes used by the Third-Party Expert.
The rate of decrease however is not strictly proportional to the rate
of increase as the communication cost increases when the number
of nodes increases. In our experiment, the computation cost at the
Match Maker Server-end and Match Maker-end are 23.05s and
42.73s, respectively.

10 CONCLUSIONS AND FUTURE DIRECTIONS

PRNU-based camera attribution is a widely used technique to
identify the source camera of an anonymous questionable image.
In this technique, a fingerprint of the camera is first computed from
the PRNU noise of a set of images taken by the camera. Then this
fingerprint is correlated with the PRNU noise of the query image
to determine if the camera has taken the image. Although the
PRNU-based method is very useful for digital forensics, privacy
is one of the main concerns. Using this method, an adversary
can unlawfully link a camera with an anonymous image, or
vice versa. As a result, unethical linking of individuals to sensi-
tive/anonymous information can occur. For example, anonymous
social network accounts can be linked to known accounts if images
of both the accounts belong to the same camera. In this article, we
address this privacy concern by encrypting both the fingerprint
and the noise, and performing the correlation in the encrypted
domain. The PRNU noise and the camera fingerprint are computed
in unencrypted form, but in a trusted environment (e.g., in the
ARM TrustZone). e-PRNU is such that the camera attribution
can be performed by authorized users, who hold decryption keys.
Experiment and analysis showed that e-PRNU incurs reasonable
overhead.

As future work, the performance overhead of the proposed ap-
proach can be further improved by investigating various schemes.
For example, it will be worth to study if a cluster of Graphical
Processing Units (GPUs) can be used. Also, if other optimization
schemes, such as random projection-based compression, a hybrid
of fingerprint digest and binarization, can be used. Furthermore,
the proposed approach can be made more general by using the
Peak-to-Correlation Energy (PCE) instead of Pearson correlation
co-efficient. Although the PCE is based on the Pearson correlation
co-efficient, a universal threshold for all the cameras (unlike per-
camera threshold) can be obtained using PCE. This universal
threshold will not only make the proposed approach more general
but also decrease the computation cost by eliminating the need for
per-camera threshold computation.
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[19] A. Karaküçük and A. E. Dirik, “Adaptive photo-response non-uniformity
noise removal against image source attribution,” Digital Investigation,
vol. 12, no. C, pp. 66–76, 2015.
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