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Abstract—A Content Delivery Network (CDN) is a distributed
system composed of a large number of nodes that allows users to
request objects from nearby nodes. CDN not only reduces end-to-
end latency on the user side but also offloads Content Providers
(CPs), providing resilience against Distributed Denial of Service
(DDoS) attacks. However, by caching objects and processing
user requests, CDN providers could infer user preferences and
the popularity of objects, thus resulting in information leakage.
Unfortunately, such information leakage may result in loss of
user privacy and reveal business-specific information to untrusted
or compromised CDN providers. State-of-the-art solutions can
protect the content of sensitive objects but cannot prevent CDN
providers from inferring user preferences and the popularity of
objects.

In this work, we present a privacy-preserving encrypted CDN
system to hide not only the content of objects and user requests,
but also protect user preferences and the popularity of objects
from curious CDN providers. We employ encryption to protect
the objects and user requests in a way that both the CDNs and
CPs can perform the search operations without accessing objects
and requests in cleartext. Our proposed system is based on a
scalable key management approach for multi-user access, where
no key regeneration and data re-encryption are needed for user
revocation. We have implemented a prototype of the system and
show its practical efficiency.

Index Terms—CDN, Multi-CDN, Confidentiality, Security, Pri-
vacy, Searchable encryption, Access pattern, Request pattern.

I. INTRODUCTION

A Content Delivery Network (CDN) is a distributed system
composed of a large number of nodes deployed across the
world. Each node caches the replica of the most frequently or
most recently requested objects, e.g., files, images, and videos.
When a user requests a certain object, the request will be
forwarded to the nearby node, rather than the Content Provider
(CP) (i.e., origin server). CDN not only decreases the end-
to-end latency on the user side but also reduces the load on
CPs, ensuring availability in the face of Distributed Denial of
Service (DDoS) attacks.

Problem. Despite these benefits, the use of CDNs also
raises confidentiality and privacy issues for CPs and users,
respectively. The CDN infrastructure could be compromised
by attacks performed by hackers. For instance, in 2015, the
Syrian Electronic Army (SEA) attacked the CDN providers of
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some major news media outlets [2]. By taking over the CDN
servers, the SEA were able to send customised news feeds to
the Washing Post’s readers. Similarly, an attacker or a rogue
employee of the CDN provider could also collect information
regarding user’s preferences. In some commercial sites, user
requests and preferences are business-critical information.

Motivations. In the literature, several works [3]–[5] provide
methods to encrypt objects and requests. Unfortunately, due to
possible inference attacks [6], [7] that a CDN provider might
be able to mount, encrypting the objects and requests only
is not sufficient to ensure their confidentiality. For example,
existing works [8], [9] have shown that even when web
contents are encrypted, the retrieval of a collection of objects
of various sizes can yield information about the web page
that was being retrieved. Similarly, user requests can also be
inferred from relative popularity of web pages or objects, even
when the requests themselves are encrypted. As a matter of
fact, CDN providers capture all the interests in order to provide
a reliable service to their customers. However, disgruntled
employees and hackers are always a risk that is outside the
control of the CPs. From the CP’s point of view, this risk can
be mitigated if (i) the content of objects and requests, (ii) the
popularity of objects, and (iii) user preferences are protected
from the CDN providers.

There are also several other types of network infrastructures
with cache functionalities, such as Content-Centric Network-
ing (CCN) [10] and Named Data Networking (NDN) [11], that
enable users to get the requested object from the nearest cache
node. In the literature, there are many approaches to preserve
privacy of requests and objects in these networks. For instance,
in [12] and [13] the identifiers or names of objects and requests
are protected using deterministic cryptographic hash functions,
and [14]–[16] propose to ensure confidentiality of objects and
support fine-grained access control over the objects. Although
these approaches can also be leveraged to protect the objects
and requests in CDNs, they are unable to hide the popularity
of the objects and users preference from attackers.

Design Goals. In this work, we have three main goals.
• First, we attempt to ensure confidentiality of the objects

and user requests while the CDN nodes are still able to
return the request objects users correctly.

• Second, we aim at hiding the popularity of objects and
user preferences from CDN nodes. The popularity of an
object means the number of times it has been requested
by the users. User preferences indicate a set of objects
accessed by the user in a certain time period. If such
information is revealed to the curious CDN providers, as
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discussed in [6]–[9], it could be leveraged to infer the
content of objects and requests. In this work, we aim to
solve the issue using the multi-CDN strategy.

• Third, we also consider the key management for multi-
user access. Specifically, our system could revoke com-
promised users efficiently without regenerating the secret
key and re-encrypting the cached objects.

Contributions. We present a privacy-preserving encrypted
CDN system to achieve above goals by combing Searchable
Encryption (SE) with multi-CDN strategy and with a tradeoff
on performance. In our approach, we encrypt the objects and
user requests with SE such that both CDNs and CPs can
perform the matching operation efficiently without perform-
ing any decryption. By distributing the objects and requests
across multiple CDN providers, user preferences and object
popularity are concealed from CDN providers as long as they
do not collude. A scalable key management is also achieved
due to the cooperation of multiple CDN service providers. Our
main contributions are as follows:
• We propose a framework that enables CDNs to deliver

the requested objects to users without learning users’
interests.

• Our scheme does not leak the request and object access
patterns, making it robust against the attacks described in
[6]–[9], [17], [18], which also means our scheme protects
the object popularity and user preferences from each
single CDN provider.

• Our system is equipped with a scalable key management
mechanism, where users can join or leave the system
without requiring key re-generation and re-encryption of
names or objects cached in CDNs.

The rest of the paper is organised as follows. In the next sec-
tion, we cover some basic knowledge about CDN and Multi-
CDN approaches. In Section III, we provide the overview of
our system. Solution details can be found in Sections IV and V.
In Section VI, we give the security definition and proof of our
scheme. Complexity and performance analysis are reported in
Sections VII and VIII, respectively. We discuss the limitations
of our system in Section IX. The related work in the literature
is reviewed in Section X. Finally, we conclude this paper in
Section XI.

II. BACKGROUND

A. CDN

There are two key issues that CDNs typically address. First,
CDN nodes should return the latest objects to users. Basically,
the node obtains objects from CPs either by a push or pull
method. In the push mode, once the objects are updated or
new objects are uploaded, the CPs will send them to the CDN
nodes in advance. In the pull mode, if the requested object is
already cached locally, the node just returns it to the user. In
case if the object is not found in the cache or is out of date,
the node will forward the request to the CP to retrieve the
object. In general, both modes are integrated into most CDNs.

Second, users should be served by the ‘closest’ CDN
node. The request-routing system in CDNs is responsible for

directing users’ requests to the ‘closest’ node. Technically, the
‘closest’ node is determined according to various policies and
metrics, such as the geographical distance between the user
and the node, the congestion of the network and the load on
the node. The most commonly used request-routing techniques
include the URL rewriting and DNS-based request routing. In
URL rewriting based CDN, all the requests from users are
direct to the CPs first, and then the CPs modify the URL of
the request object such that the user will fetch the object in
the closest node. In DNS-based request routing approach, a
DNS server is employed to map domain names to a set of
numerical IP addresses of CDN nodes. When receiving a user
request, the DNS server of the CDN provider returns the IP
addresses of the nodes. Then, the DNS resolver on the user
side will choose the closest one for retrieving. More details
of these two approaches and other request-routing techniques
can be found in [19].

In this paper, we focus on the CDN systems that use the
pull-based mode and DNS-based request routing.

B. Multi-CDN

The time to fulfil users’ requests strongly depends on the
availability of CDN nodes. Ideally, the more the nodes, the
more efficient it is to retrieve the object. However, the nodes
owned by one CDN provider are not everywhere, and their
performance varies across regions, throughout the day. Multi-
CDN is one of the strategies to ensure that objects are delivered
to users as quickly as possible by combining a range of
existing nodes in the same region and owned by different
CDN providers into a single network known as a cluster.
In this strategy, user requests can be distributed to the most
optimal node within the cluster. Due to its benefits, the use of
multi-CDN has risen in recent years for those organisations
that find their sites experiencing huge amounts of traffic on
a global scale, such as Netflix, Linkedin, and Twitter [20].
CDN Aggregator (e.g., Cedexis [21]) and Load Balancer (e.g.,
Amazon Route 53) [22] are two options for implementing
a multi-CDN. Moreover, there are already many multi-CDN
strategies in commence, such as [23]–[25]. In this work,
we exploit multi-CDN to conceal user preference and object
popularity from CDN providers.

C. Peering CDNs

In particular, in our system, the nodes provided by different
vendors might communicate with each other. The architecture
of peering CDNs [26] can be leveraged to build the CDN
cluster and manage the communication among the nodes.
Peering CDNs virtualise multiple CDN providers and allow
flexible resource sharing and dynamic collaboration between
autonomous individual CDNs. Specifically, the models for
peering CDNs proposed in [19], [27]–[29] can be utilised
in our system. Moreover, in case the peering CDNs is not
available, we can employ a trusted proxy to manage the
communication among the CDN nodes. That is, all the nodes
in the cluster only communicate with the proxy, and the proxy
forwards the messages to different nodes.
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Fig. 1: Proposed architecture: A CDN cluster is composed of a set of CDN nodes located in the same region but owned by different CDN
providers. To request an object, the user first gets the IPs of the ‘closest’ nodes from the RRS (Step 0), and then issues the encrypted request
(Step 1). Starting from the ‘closest node’, the nodes in the cluster search their storage one-by-one until the requested object is found. When
there is a hit, the matched object is sent to the user (Step 2). Meanwhile, the matched object is re-randomised and migrated to another
node (Step 3). However, if the object is not found in the cluster, the request will be sent to the CP, the CP searches locally and uploads the
matched object to the cluster (Step I).

TABLE I: Notations used and meaning.

Notation Meaning
O = 〈name, payload〉 An Object consisting of name and payload
PEO = 〈PEN,PEP 〉 A Pre-Encrypted Object stored on the CP consisting of the Pre-Encrypted Name PEN and Pre-Encrypted Payload PEP
EO = 〈EN,EP 〉 An Encrypted Object stored on CDN node, consisting of the Encrypted Name EN and Encrypted Payload EP
ER Encrypted Request
n, η, α Nonces included in EN , EP , ER, respectively
Ppid The pid-th partition
W The number of objects in each partition
Ni The i-th CDN node
N The number of CDN nodes in a cluster

III. SOLUTION OVERVIEW

A. System Model

As shown in Figure 1, our system involves four main
entities:
• User: It represents the client that can request objects.
• Content Provider (CP): The content provider is the

object publisher that is basically a customer of the CDN.
It stores and distributes its objects to CDN nodes.

• CDN Cluster: It is a set of CDN nodes located in the
same geographical region, e.g., a country, but provided by
the CDN providers that should be in conflict of interest.
Each CDN node can receive user requests and return the
matched objects, or redirect the request to the CP.

• Request Routing System (RRS): It is responsible for
directing user requests to a high-performing available
node.

B. Threat Model

We assume the CP and users are trustworthy. A CP encrypts
the outsourced objects and authorises users to get objects from
CDN nodes.

In general, the CDN nodes might perform properly as per
specified protocol. However, they can be compromised and
controlled by the attacker, like the SEA attack occurred in
2015 [2]. For simplicity, in this work, we assume the CDN
provider is honest-but-curious, meaning it is honest to follow
the designated protocol but curious about the cached objects
and user requests. Specifically, the curious provider might try

to infer the objects and user privacy by analysing the cached
objects and user request history. Moreover, the CDN provider
could take snapshots of the cached objects and requests at
any time, and check if new requests match stale objects or
new objects match previous requests.

Our design does not defend against an active attacker who
attempts to modify objects, disrupt communications, or block
requests. In [30], Levy et al. have introduced a method to
handle an actively malicious adversary by preserving the
integrity of object stored on CDN nodes. In this work, we
assume the CDN providers do not attempt to tamper, modify,
or delete any objects or requests.

Moreover, we assume that the CDN providers in conflict of
interest do not collude with each other, or collude with revoked
users. Note that the CDN nodes in our system can also be
provided by one trusted CDN provider as long as its nodes are
in conflict of interest; more specifically, we assume attackers
can not compromise any two adjacent nodes simultaneously.

Considering there is no content stored on RRS, it could be
managed by the CP or CDN provider.

C. Approach Overview

In this work, we propose a framework that provides CDN
services while aim at ensuring user privacy. To protect sensi-
tive data, we can employ state-of-the-art SE techniques [31],
[32]. The challenge is to hide the popularity of objects and
user preferences. When the CDN provider can tell whether
any two users are requesting the same object or not, it can
identify how many times each object has been requested by
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each user from the request history, even if the objects and
requests are encrypted.

To hide object popularity and user preferences, we first use a
semantically secure algorithm to encrypt user requests, making
all the encrypted requests look different no matter if they
are generated from the same query or not. However, a CDN
provider could still infer whether two requests are the same
if they match the same object. That is, based on the location
of the requested object, a CDN provider can tell if the same
object was requested twice or not. To address this issue, our
basic idea is to migrate the matched object across a set of
nodes owned by different CDN providers after each request.
More specifically, we combine the nodes located in the same
geographical region but owned by different CDN providers
into a CDN cluster. When receiving a request, the nodes in
a cluster search their storage one by one until the object is
found. After returning the matched object to the user, the node
caching the requested object migrates it to another node. In
this way, whether this object will match future requests in
other nodes is no longer known to the node.

Even with the idea of using multi-CDN nodes and mi-
grating matched objects, a malicious node may still record
the matched objects and check if they match future requests
privately. Similarly, it could also keep previous requests and
check if they match the new objects migrated from other
nodes. So, the main challenge is how to ensure the forward
and backward privacy (i.e., a malicious node could neither
check if the matched objects match a new request nor check if
previous requests match the new objects migrated from other
nodes) without increasing any overhead on users. To solve
this problem, our idea is to encrypt each object with a one-off
nonce and store the nonces and encrypted objects in two non-
colluding nodes. For each request, the node could perform the
search operation only when getting the one-off nonces from
another node. After searching, the objects will be re-encrypted
with new nonces before migrating to another node. This
will protect matching information from potentially malicious
nodes. More importantly, our design does not introduce any
significant storage, computation, or bandwidth overheads to
users. Because of the scheme used in our system, when a
cluster forwards the encrypted request to the CP after a cache
miss, the CP can perform the search over its local storage
easily, just like searching over the objects in plaintext. With
the use of the one-off nonces, we can securely revoke users
without re-encrypting objects and distributing new keys.

For simplicity, Figure 1 illustrates the architecture of our
system using only one CP and one multi-CDN cluster. It can
be easily scaled to multiple CPs and clusters. First, the user
gets the IP addresses of the closest node from RRS (Step 0).
Next, the encrypted request is directed to the selected node
(Step 1). Then, the node searches over the cached objects and
returns the matched one if there is a hit (Step 2). Otherwise, the
request will be forwarded to another node in this cluster until
the object is found. However, if the object is not found, the
request will be forwarded to the CP. The CP searches locally,
encrypts the matched object and uploads it to the CDN node
(Step I), and then the CDN node forwards this object to the
user. After returning the matched object to the user, it will be

re-encrypted and migrated to another CDN node (Step 3). The
details of processing user requests are given in Section V.

IV. DATA REPRESENTATION

In this section, we explain how the object is represented
and stored on the CDN cluster and the CP. For clarity, the
notations used in this article are listed in Table I.

A. System Setup

We consider a CDN cluster with N nodes: N1, . . . , NN ,
where N ≥ 3 and Ni,Ni+1 (N > i > 0), i.e., any two
adjacent nodes, should be provided by the CDN providers in
conflict of interest (discussed in detail in Section VI).

Let λ be the security parameter in our system. The system
is set by the CP by generating the secret key k and configuring
CDN clusters. k is shared among users and is used to protect
the request and objects from CDN providers.

B. Data Representation

The object cached by CDN nodes (or hereafter nodes in
short) could be a document, image, or video. In this work,
we specifically consider the object as a digital document and
model it as a 2-tuple O = 〈name, payload〉. Each object can
be identified by its unique name, and both name and payload
are represented as binary strings.

To hide the content of each object, it should be encrypted
when caching in the CDN cluster. However, the CDN provider
might still be able to distinguish the objects based on their
sizes. This can be solved by padding (with fake data) all the
objects up to a maximum size. However, holding the fake data
might consume a large volume of storage on the nodes; in
Section IX, we discuss how we can save storage. For clarity,
in the following, we assume all the objects are of the same
size.

Before uploading objects to CDNs, they should be encrypted
by the CP. Formally, each object stored in CDNs is encrypted
as:

EO = 〈EN ← Hk(name)⊕ n, EP ← fk(payload)⊕ η〉

where Hk : {0, 1}λ ← {0, 1}∗ is a keyed-hash function, fk :
{0, 1}∗ ← {0, 1}∗ represents symmetric encryption primitives,
such as AES, and n, η are two nonces. Here, we stress that, to
achieve fine-grained access control over the objects, Attribute-
Based Encryption (ABE) schemes, such as [33], [34], can be
utilised to protect the payload.

The CP computes and locally stores:

PEO = 〈PEN ← Hk(name), PEP ← fk(payload)〉

Once requested by a node, say N1, the CP XORs PEO with
nonces 〈n, η〉 and sends it toN1. The pair of nonces 〈n, η〉 will
be sent to N2. The size of nonce η is same as the payload of
the object. To reduce the storage overhead on nodes, we could
use a much shorter seed and a pseudo-random generator to
generate a long bit-string as nonce η. In this case, N2 just
needs to store the short seed, rather than the nonce.

At this stage, we re-encrypt objects with nonces for two
main reasons. First, due to the nonces, our system achieves the
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TABLE II: The storage on the CP and CDN nodes.

(a) Pre-encrypted objects on CP
id objects
0 〈Hk(name1), fk(payload1)〉
1 〈Hk(name2), fk(payload2)〉
. . . . . .

(b) Content Store (CS)
pid id objects

0
0 〈Hk(namei)⊕ n0, fk(payloadi)⊕ η0〉
. . . . . .

W − 1 〈Hk(namej)⊕ n0, fk(payloadj)⊕ η0〉

1 W 〈Hk(namel)⊕ n1, fk(payloadl)⊕ η1〉
. . . . . .

(c) Nonce Store (NS)
pid nonces
0 〈n0, η0〉
1 〈n1, η1〉
. . . . . .

Table (a) stores the pre-encrypted objects. It is held by the CP. Table (b) stores the encrypted object, consisting of the encrypted name EN ← Hk(name)⊕ n for search, and
the encrypted payload EP ← fk(payload)⊕ η for data retrieval. The objects stored in this table are virtually divided into partitions. W is the size of each partition. The
objects in the same partition are encrypted with the same nonces. Table (c) stores the nonces 〈n, η〉. Each node in a CDN cluster should store both Table (b) and Table (c).

However, the nonces stored in Ni+1’s Table (c) are those included in Ni’s Table (b).

forward and backward privacy. Without the nonce provided
by Ni+1, the Ni can not perform any search operation
independently (as described in Section V). Second, the nonce
ensures that users can not recover the payload only with the
secret key k. The nonces are generated by the CP and stored
by Ni+1, but they are unknown to users. Only with both the
nonce η and the secret key k, the user could decrypt the object,
which means we do not need to update the secret key k or
re-encrypt all the cached objects in case of user revocation.

We assume that each object could be identified using a
unique name. Hence, the objects can be encrypted with the
same nonce. In order to reduce both storage and communi-
cation overheads (see Section V), every W objects cached in
a node will be encrypted with the same nonce. The objects
cached in each node are divided into partitions {P0, P1, . . .}
based on their physical store location in the node, e.g., the first
W objects cached in a node is in the first partition P1. As a
result, Ni+1 just needs to store a nonce pair 〈n, η〉 for each
partition rather than each object.

C. Data Storage

Each node has two separate stores: Content Store (CS) and
Nonce Store (NS), where the CS caches EO, and the NS
caches the pair of nonces 〈n, η〉. Note that the nonces pairs
associated with the EOs cached in Ni are stored in the NS
of Ni+1. For instance, N2 stores the nonce pairs associated
with the objects stored in N1, and N1 stores the nonce pairs
for NN .

Table II shows an example of the store in our system.
Table II(a) is kept on the CP and stores all the pre-encrypted
objects. Table II(b) and Table II(c) represent the CS and the NS
cached in CDN nodes, respectively. More specifically, Table
II(b) stores a set of the encrypted objects, consisting of the
encrypted name EN for search and encrypted payload EP
for data retrieval. Moreover, every W objects in order are in
the same partition and encrypted with the same nonce. Table
II(c) stores the pair of nonces 〈n, η〉 for each partition. The
encrypted objects in CS are identified with unique ids, and
the nonce pairs in the NS are identified with pids. Note that,
the nonce pair 〈npid, ηpid〉 stored in Ni is the one included
in Ppid = {EOpid∗W , . . . , EOpid∗W+W−1} stored in Ni−1,
rather than Ni.

V. REQUEST PROCESS

In this section, we show how the request is encrypted by
users and processed by CDN nodes or the CP. Based on
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Fig. 2: The components of each entity: The user is provided with the
Encryption and Decryption to encrypt requests and decrypt returned
payloads. Each node Ni is equipped with Nonce-blind, Search, and
Post-search to process encrypted requests. The CP is only provided
with the Search-on-CP to provide the missing objects not stored by
CDN clusters.

the cached location of requested objects, the requests are
processed in different ways. Specifically, we give the details
for the cases where the requested object is cached in the closest
node to the user, not in the closest node and in the CP.

The components on each entity are shown in Fig. 2. Basi-
cally, the user is provided with the Encryption and Decryption
to encrypt requests and decrypt returned payloads. Each node
Ni is equipped with Nonce-blind, Search, and Post-search
to process encrypted requests, where Nonce-blind is used to
provide nonces for the search to be performed onNi−1, Search
is used to search its CS, and Post-search is used to process
the objects migrated from Ni−1. The CP is only provided with
the Search-on-CP to provide the missing objects not stored by
CDN clusters. The implementation detail of each component
is given below.

Algorithm 1 Encryption(name,Ni,Ni+1)
1: counter ← 0

2: ER0 ← Hk(name)⊕ α0, α0
1 $← {0, 1}λ

3: Send the encrypted request ER0 and counter to Ni, and send α0 to Ni+1

Algorithm 2 Nonce-blind2(αs−2)
1: ENS ← ∅
2: for each npid ∈ NS do
3: ENS[pid]← h(npid ⊕ αs−2)
4: Send ENS = {h(n1 ⊕ αs−2), h(n2 ⊕ αs−2), . . .} to Ns−1

A. Encryption on the User
Before issuing any request to the CDN cluster, the user

first gets the IP addresses of the closest available nodes. In

1αi means the nonce α is generated by Ni. For instance, αs−2 is
generated by Ns−2. Particularly, α0 is generated by the user.

2s identifies the host node running Algorithms 2, 3, and 4. For instance,
when Ni+1 running Algorithm 2, s = i+ 1.
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Algorithm 3 Search(ER, counter)
1: if counter > 0 then
2: ER← ER⊕ αs−2

3: Get ENS from Ns+1

4: for each EOid ∈ CS do
5: pid← b idW c
6: if ENS[pid] = h(ENid ⊕ ER) then
7: Send EPid to the user, and send pid to Ns+1

8: n′
$← {0, 1}λ, η′ $← {0, 1}|payload|

9: for each EOid ∈ Ppid do
10: EO′id ← EOid ⊕ 〈n′, η′〉
11: Send Ppid = {EO′pid∗W , . . . , EO

′
pid∗W+W−1} to Ns+1

12: Send 〈n′, η′〉 to Ns+2

13: Remove all the objects in Ppid from CS
14: Exit
15: if the requested object is not found in CS then
16: if counter = N then
17: Send (ER,N) to the CP
18: else
19: counter + +

20: ERs ← ER⊕ αs, αs
$← {0, 1}λ

21: Send (ERs, counter) to Ns+1

22: Send αs to Ns+2

23: if counter = N then
24: Send αs to the CP

Algorithm 4 Post-search(Ppid, pid)
1: for each EO′id ∈ Ppid do
2: EOid ← EO′id ⊕ 〈npid, ηpid〉
3: Insert EOid into the CS
4: Remove 〈npid, ηpid〉 from the NS

this work, our system requires the cooperation of two adjacent
nodes, and the user needs to communicate with both of them.
Therefore, unlike traditional RRS, in our system IP addresses
should be registered by pairs. One of them points to the node
Ni storing the objects, and the other one points to the node
Ni+1 that stores the corresponding nonces.

The encryption algorithm implemented on the user end is
described in Algorithm 1. To avoid an infinite loop, the user
initialises a counter to record the number of times the request
has been forwarded. The name of the required object is hashed
and encrypted with a nonce α0. The nonce can ensure that the
encrypted request ER0 is semantically secure, which means
the CDN provider can not tell whether the users are making
requests for the same object or not. Finally, (ER0, counter)
and the nonce α0 are sent to Ni and Ni+1, respectively.

B. Search operation on Ni
For clarity, we take i = 1 as an example, i.e., assume N1

is the closest node to the user. Fig. 3 illustrates the request
process steps and the communication between different entities
when the requested object is cached in N1. In the following,

Algorithm 5 Search-on-CP(ER,αi+N )
1: ER← ER⊕ αi+N
2: for each PEOid do
3: if PENid = ER then
4: Send PEPid to the user
5: Ask Ni+N to send lid, the identifer of the last object in its CS
6: if (lid+ 1)%W > 0 then
7: Ask Ni+N+1 to send the last 〈n, η〉 in its NS
8: else
9: n

$← {0, 1}λ, η $← {0, 1}|payload|, send 〈n, η〉 to Ni+N+1

10: EOid ← PEOid ⊕ 〈n, η〉, send EOid to Ni+N
11: Exit

1a. ER0, 0
1b. α0

4a. ηpid

3a. EPid

2. ENS

name

User

Case1

N1 N2 N3

Encryption

Nonce-blind

Search
3b. pid

4c. n’, η’Decryption

Post-search

4b. Ppid

Fig. 3: The request process steps and the communications for the first
round of search: The encrypted request ER0 and counter = 0 are
sent to the closest node N1 (Step 1a). The nonce used to randomise
ER0, α0, is sent to N2 (Step 1b), with which N1 can generate
ENS. The blinded nonces set ENS is sent to N1 (Step 2). Then,
N1 performs the search. Once the requested object is found, it will be
sent to the user (Step 3a). Meanwhile, the matched partition identifier
pid is sent to N2 (Step 3b), with which N2 can return the related
nonce ηpid to the user (Step 4a). At the same time, N1 re-randomises
all the objects in the matched partition with new a nonce pair 〈n′, η′〉
and migrates them to N2 (Step 4b). 〈n′, η′〉 is sent to N3 (Step 4c).

we explain the procedures in details with Algorithms 2, 3, and
4.

First, node N1 receives the encrypted request ER0 and
counter from the user (Step 1a, Fig. 3). Considering both
the request and objects are encrypted with nonces, N1 alone
would not be able to check if there is a match. It needs N2’s
assistance. Specifically, after receiving α0 from the user (Step
1b, Fig. 3), N2 executes Nonce-blind (Algorithm 2) to blind
all the nonces stored in the NS. Formally, for each npid, it
computes:

ENS[pid]← h(α0 ⊕ npid)

where h : {0, 1}∗ → {0, 1}λ is a hash function. The set ENS
is sent to N1 for search (Step 2, Fig. 3). If counter < N ,
N1 searches over its CS to check if there is a hit with Search
component (Algorithm 3). Specifically, for each object EOid
stored in CS, N1 checks if it matches the request (Line 6,
Algorithm 3). To be more specific, N1 checks if:

h(α0 ⊕ npid)
?
= h(Hk(name)⊕ α0 ⊕Hk(nameid)⊕ npid)

It is clear that there is a match when name = nameid. Once
there is a match, N1 stops the search, returns the matched
EPid to the user (Step 3a, Fig. 3), and notifies N2 to send
the ηpid to the user by sending the matched pid to it (Step
3b and Step 4a, Fig. 3). Subsequently, all the records in the
matched partition are re-encrypted with a new nonce pair
〈n′, η′〉 (Line 10, Algorithm 3) and sent to N2 (Step 4b, Fig.
3). Meanwhile, the new nonce pair 〈n′, η′〉 is sent to N3 (Step
4c, Fig. 3). Afterwards, all the records in the matched partition
are removed from N1. Consequently, whether these objects
will match future requests will be unknown to N1.

If N2 receives the migrated partition Ppid, it carries out
Post-search (Algorithm 4). Specifically, N2 removes the old
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case2
1a. ER0, 0
1b. α0

6a. ηpid

5a. EPid

2. ENS

name

User N1 N2 N3

Encryption

Nonce-blind

Search

5b. pid

6c. n’, η’Decryption

Post-search

3a. ER1, 1
3b. α1

Nonce-blind

Search

4. ENS

N4

6b. Ppid

Fig. 4: The request process steps and the communication for the
second round of search: When the requested object is not cached in
N1, the request will be re-randomised into ER1 with a new nonce
α1. ER1 and counter = 1 are sent to N2 for the second round
of search (Step 3a). Meanwhile, α1 is sent to N3 for blinding the
nonces stored in N3 (Step 3b). Then, N2 repeats the search over its
NS as N1 did (Steps 4-6c). Note that when N=3, 〈n′, η′〉 is sent to
N1 (Step 6c).

nonces 〈npid, ηpid〉, which are stored in its NS, from each
object in Ppid with XOR operation (Line 2, Algorithm 4).
Consequently, they are only bound to the new nonce pair
〈n′, η′〉. Finally, N2 inserts Ppid into its CS and removes
〈npid, ηpid〉 from its NS.

C. Search operation on Ni+1

Instead, as shown in Fig. 4, if the requested object is not
cached on N1, the request will be re-encrypted with a new
nonce α1 (Line 20, Algorithm 3) and forwarded to N2 for
the second round of search (Step 3a, Fig. 4). Formally, the
re-encrypted request is:

ER1 = Hk(name)⊕ α0 ⊕ α1

Meanwhile, if counter < N , α1 is sent to N3 (Step 3b, Fig.
4), with which N3 could help N2 to perform the second round
of search operation by running Nonce-blind and generating
ENS (Step 4, Fig. 4).

Unlike N1, N2 first removes α0 from ER1 (Line 2, Al-
gorithm 3). Recall that N2 has already received α0 from the
user. Then, with ENS, N2 could perform the second round
of search over its CS as N1 did. The same operations will be
performed on the rest nodes until the requested object is found
or counter = N .

D. Search operation on the CP

If the requested object is not found when counter = N , i.e.,
all the nodes have been searched, the request will be forwarded
to the CP. The message flow for the search on CP is shown
in Fig. 5.

Formally, the CP receives ERN = Hk(name) ⊕ αN and
αN from NN and NN−1 (Step 2N − 1b and 2N + 1, Fig.

case3
1a. ER0, 0
1b. α0

2. ENS

name

User N1 NN

Encryption

Nonce-blind

Search
3a. ER1 , 1
3b. α1

CP…

Search
2N+1. ERN, N

2N-1b. αN

Search-on-CP2N+2. PEPid
2N+3. EOid

Nonce-blind 2N. ENS

2N+4. n, ηDecryption

Fig. 5: The request process steps and the communication for the
search on the CP: When the requested node is not cached in the
CDN cluster, the request ERN and the nonce αN are forwarded to
the CP (Step 2N +1 and 2N −1). The CP searches its local storage
and returns the matched object to user (Step 2N+2). Afterwards, the
requested object is also re-randomised with a nonce pair and sent to
NN (Step 2N +3), and the nonce pair is sent to N1 (Step 2N +4).

5), respectively. By XOR-ing αN with ERN , the CP could
get Hk(name). Then, the CP searches its pre-encrypted store.
Considering the hash function H is deterministic, the search
operation over pre-encrypted store can be performed like the
search on plaintext domain, where the CP just checks if:

Hk(name)
?
= Hk(nameid)

The matched object is first sent to the user (Step 2N +2, Fig.
5), and then it will be re-encrypted with nonces and sent to
NN (Step 2N + 3, Fig. 5). Depending on the location where
the new replica will be cached in, the nonce pair used to
encrypt it can be retrieved in two different ways. If the new
replica will be part of an existing partition, the CP needs to
get the corresponding nonce pair from N1 (Line 7, Algorithm
5). Otherwise, the CP generates a new pair and sends it to N1

(Line 9, Algorithm 5).3 Moreover, the partition containing the
matched object should be re-encrypted and migrated to N1

(Step 2N + 4, Fig. 5).

E. Decryption

If the requested object is found in the cluster, the user
will receive EPid = fk(payload) ⊕ ηpid and ηpid. It can
easily get fk(payloadid) by XOR-ing them. On the contrary,
if the requested object is found in the CP, the user could
get fk(payload) directly. It can finally decrypt the matched
payload by executing f−1k with the secret key k.

F. Performance Optimisation using TTL

A high cache hit rate means the requested objects are found
after searching a certain number of nodes in a cluster. To
achieve this, the CPs upload more replicas of the most popular

3The matched object and nonce can also be sent to the user by NN and
N1.
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objects to the CDN. Here, we give an approach where the sys-
tem could adaptively load multiple replicas of popular objects
to the CDN cluster without revealing sensitive information
to the CDN provider. Basically, to decrease response time,
we set a Time To Live (TTL) value to limit the lifetime of
requests. The TTL value determines the number of nodes a
request should traverse. During a search, if the TTL expires
before the object is found, the request will be forwarded to
the CP. When TTL < N , over time, multiple replicas for
the most popular objects will be cached in the CDN cluster.
Consequently, the cache hit rate is improved.

G. User Revocation

Because of the nonces bound to EO, without the assistance
of the CDN providers, the revoked user is unable to access
and recover the payload. Therefore, for user revocation, we
just need to manage a revoked user list at each node. Once a
user is revoked, the CP informs them to add this user to their
revoked user list. When receiving a request, the node will first
authenticate the user and check if it has been revoked. If yes,
they will reject the request. Over time, the revoked list might
be very long and hard to manage. To solve this issue, we set
a threshold, and when the list of revoked users reaching the
threshold, the key k will be regenerated, and the objects will
be re-encrypted with the new k.

VI. SECURITY ANALYSIS

In this work, we aim to provide confidentiality of objects
and requests. Due to the encryption over the objects and
request, the CDN provider can not learn the content of the
object and request directly from their ciphertext. However,
by analysing the request history, the CDN providers can get
the popularity of objects and user preferences. According to
[6]–[9], based on statistical information and given related
background knowledge about the users and the CP, the CDN
provider is still able to infer the content of the objects
and requests when mounting inference attacks. To solve this
issue, our solution is to hide the object popularity and user
preferences by migrating the objects among the CDN nodes
that are in conflict of interest and ensuring each object is only
requested once in the view of each CDN node.

In this section, we show how our solution protects the
object popularity and user preferences from CDN providers.
Basically, we give formal definitions of object popularity
privacy and user preference privacy, forward and backward
privacy, and briefly analyse how our system achieves them.
We also analyse possible collusion attacks in our system.

A. Object Popularity and User Preferences

Informally, given a period of time, user preferences mean
which objects have been requested and what is the frequency
of each one for each user, and the popularity of an object
means the number of times it has been requested by users. User
preferences mean which objects have been requested and what
is the frequency of each one for each user. Formally, we define
the user preference privacy and object popularity privacy as
follows:

Definition 1. (User Preference Privacy) At time t, assume Ni
has received a set of requests {ER1, . . . , ERt} issued by a
user. We say that the user’s preferences are protected if Ni
can not infer whether any two requests, ERµ and ERν , are
generated from the same name with the probability greater
than 1

2 + σ(λ), where 0 < µ < ν ≤ t.

Definition 2. (Object Popularity Privacy) At time t, assume
Ni has returned t requested objects {EO1, . . . , EOt} to users.
We say the object popularity privacy is achieved if Ni can
not infer whether any two objects, EOµ and EOν , are the
same object with the probability greater than 1

2 +σ(λ), where
0 < µ < ν ≤ t.

Claim 1. If our system achieves both forward and backward
privacy and each node can only see a 1-time match for each
object, it also hides user preferences and the popularity of
objects.

Proof. User Preference Privacy. According to the defined
protocol in Section V, each node Ni gets the encrypted request
ER from the user or Ni−1, a set of nonces ENS from
Ni+1, and the matching object EO when processing a request.
The CDN node can infer user preferences only based on the
messages it receives and the data it stores. In the following,
we will prove the CDN node can not infer if ERµ and ERν
are the same request or not from any one of them.

First of all, due to the nonces, ERµ and ERν are seman-
tically secure, and Ni learns nothing from the ciphertext of
ERµ and ERν .

Second, it can not infer whether ERµ and ERµ are gener-
ated from the same name or not by comparing their matching
objects. Assume EOµ and EOν are the matching objects of
ERµ and ERν , respectively. Likewise, because of the nonce
pairs, Ni learns nothing from their ciphertext, but Ni could
also compare their physical locations.

In terms of their store locations, there are 4 possible cases:
(i) both EOµ and EOν are found in Ni; (ii) neither EOµ nor
EOν is found in Ni; (iii) only EOµ is found in Ni; (iv) or
only EOν is found in Ni.

The first case can be divided into two sub cases: EOν is
already cached in Ni before processing ERµ and EOν is
migrated to Ni after processing ERµ. In the first sub case,
Ni could check whether ERµ matches EOν or not, and then
infer the relationship between ERµ and ERν . However, in the
second sub case, Ni can not tell whether both ERµ and ERν
are same or not, since our scheme achieves both forward and
backward privacy, i.e., it can not check if ERµ matches with
EOν or ERν matches with EOµ. Moreover, Ni is unable to
tell whether EOµ and EOν are the same object or not because
of the nonce.

In the second case, after the searching on Ni, both ERµ
and ERν will be re-encrypted and forwarded to other nodes
for further search operations. Physical locations of both EOµ
and EOν are unknown to Ni.

If only EOµ is cached inNi, after the search for ERµ, EOµ
will be re-encrypted and migrated to Ni+1. On the contrary,
after the search for ERν , ERν will be re-encrypted and
forwarded to Ni+1 since EOν is not cached in Ni. Whether
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the re-encrypted EOµ will match ERν on Ni+1 is unknown
to Ni. Ni may keep the stale EOµ, but it can not check if it
matches ERν since our scheme achieves forward privacy. So
Ni is unable to infer the relationship between ERµ and ERν
in this case.

In the last case (where EOν is cached in Ni but EOµ is
not), if EOν is already cached in Ni when processing ERµ,
Ni could learn if ERµ and ERν are different requests since
EOν matches EOν but does not match EOµ. However, if
EOν is migrated to Ni later after executing ERµ, it is difficult
to tell if ERν is same to ERµ or not, since our system
achieves backward privacy and Ni can not repeat ERµ over
ERν .

In summary, only in some special cases, Ni could learn if
ERµ and ERν are different. However, it can never learn if
ERµ and ERν are the same request.

Note that even if a malicious node actively injects an object
into the system, it can only infer the content of one request.
Once there is a hit, the injected object will be re-encrypted
and migrated to other nodes, and then whether it will match
other requests is unknown to the malicious node.

Object Popularity Privacy. Considering Ni could only see
a 1-time match for each encrypted object, it can only try to
infer the popularity information by checking if the returned
encrypted objects have the same content or not. Unfortunately,
due to the nonces, EOµ and EOν are semantically secure,
and Ni is unable to tell if EOµ and EOν are generated from
the same object or not. In Ni, only the objects in the same
partition are encrypted with the same nonce. However, if both
EOµ and EOν are found in Ni, they should be located in
different partitions. Otherwise, after EOµ is found, EOν will
also be re-encrypted and migrated to Ni+1, which contradicts
our assumption.
Ni could check if EOµ and EOν are the same or not

only by observing if they match the same request or not.
As mentioned above, due to both forward and backward
privacy, Ni could learn if EOµ and EOν are different objects
when EOν is already cached by Ni and EOµ matches ERµ.
However, in all cases, Ni can not tell whether EOµ and EOν
are the same.

Theorem 1. When W > 1, in our system, each node can only
see a 1-time match for each object.

Proof. Based on the description in Section V, the node Ni
only communicates with Ni−2, Ni−1, Ni+1, and Ni+2. Ni
can only try to infer how many times the object has been
requested based on the objects and nonce pairs migrated from
or to these nodes, since only the matched partition should be
migrated. However, from the messages get from other nodes,
Ni is unable to infer the popularity of objects. In the following,
we analyse the communication between Ni and the other four
nodes one by one.

Recall the protocol described in Section V, (i) when there is
a match inNi−2,Ni will get a pair of nonce fromNi−2, which
is used to re-encrypt the matched partition, say Ppid1 . (ii) when
there is a match in Ni−1, Ni will get the re-encrypted matched
partition, say Ppid2 , from Ni−1. (iii) When there is a match in

Ni, Ni could learn which object in the matched partition, say
Ppid3 , has been requested. Moreover, Ppid3 will be migrated to
Ni+1, and the nonce pair used to re-encrypt Ppid3 is sentNi+2.
In the first two cases, Ni could only know there is a match
happened in Ppid1 and Ppid2 , but it can not learn which objects
in these two partitions were requested. After the searching on
Ni, what will happen on Ppid3 is unknown to Ni, since it has
been migrated to Ni+1. Therefore, Ni could only see a 1-time
match for each object, and only when pid1 = pid2 = pid3 and
the partition size is 1, Ni could see a 3-time match. Therefore,
when the partition size is 1, we should ensure N > 3 and Ni,
Ni+1, Ni+2, Ni+3 are provided by different CDN providers.
However, when setting a big partition size, we just need to
ensure N ≥ 3 and any two adjacent nodes are provided by
different CDN providers.

B. Forward and Backward Privacy

As mentioned in Section III-B, we assume the CDN node
only honestly follows the specified protocol, but it could
snapshot stale objects and requests, and try to execute stale
requests over newly added objects or execute new requests
over stale objects in private. To protect popularity of objects
and user preferences, it is necessary to ensure that the CDN
node can not check if stale objects match new requests or not
or if newly added objects match stale requests or not. The
formal definition for forward and backward privacy is given
below:

Definition 3. (Forward and Backward Privacy) Assume EOt
and EOτ are the objects matching ERt and ERτ , respec-
tively, where τ < t (i.e.,ERτ is processed after ERt).
Moreover, assume EOτ is uploaded to Ni after executing
ERt. We say forward and backward privacy is achieved if
Ni can not tell whether EOt matches ERτ or whether ERt
matches EOτ , respectively, with the probability greater than
1
2 + σ(λ), where σ(λ) is a negligible function.

Theorem 2. If all the nonces are sampled randomly, and if
any two CDN providers do not collude together, our system
achieves both forward and backward privacy.

Proof. Formally, assume

EOt =〈Hk(namet)⊕ nt, fk(payloadt)⊕ ηt〉
EOτ =〈Hk(nameτ )⊕ nτ , fk(payloadτ )⊕ ητ 〉
ERt =Hk(namet)⊕ αt
ERτ =Hk(nameτ )⊕ ατ

According to the scheme, once EOt is found for ERt, it
will be re-encrypted into EO′t = Hk(namet) ⊕ nt ⊕ n′ and
migrated to Ni+1, and the new nonce n′ is sent to Ni+2.
After receiving EO′t, Ni+1 removes nt from EO′t and its NS.
When executing ERτ , Ni gets ENS from Ni+1, and then
it can check which object matches ERτ . However, Ni never
gets h(n′ ⊕ ατ ) or h(nt ⊕ ατ ). Furthermore, because of the
one-time pad encryption with the nonce, it can not tell if

Hk(namet)⊕ nt
?
= Hk(nameτ )⊕ ατ
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or
Hk(namet)⊕ n′

?
= Hk(nameτ )⊕ ατ

indicating forward privacy is achieved.
Similarly, when EOτ migrates to Ni, Ni can not check if

it matches ERt or ER′t, since Ni never gets h(αt ⊕ nτ ) or
h(αt ⊕ α′ ⊕ nτ ), meaning backward privacy is achieved.

C. Collusion Attacks

In our system, if Ni colludes with Ni+1, they can remove
the nonces from encrypted requests and objects with XOR
operation. Although they can not recover the plaintext of the
object without the secret key k, they can partially learn the
object popularity and user preferences. Furthermore, if they
collude with a malicious user, all the cached objects can be
decrypted. To resist these attacks, we give two countermea-
sures as follows.

One possible solution is to hide the CDN providers from
each other, and employ a trusted proxy in each cluster to
manage the communication between any two different nodes.
Specifically, each CDN node only communicates with the
proxy, and the proxy forwards the message to other nodes.
Another possible solution is to encrypt both the name and
payload with two nonces. Formally, the encrypted object
would be EO = 〈Hk(name)⊕n1⊕n2, fk(payload)⊕η1⊕η2〉.
The nonces 〈n1, η1〉 and 〈n2, η2〉 will be stored in Ni+1 and
Ni+2, respectively. Similarly, users also encrypt the request
with two nonces, i.e., ER = Hk(name) ⊕ α1 ⊕ α2. α1 is
sent to Ni+1 for encrypting 〈n1, η1〉, and α2 is sent to Ni+2

for encrypting 〈n2, η2〉. In this case, Ni needs the assistance
of Ni+1 and Ni+2 to process a request. Due to the nonces
stored on the third CDN provider, the collusion between any
two CDN providers could learn nothing.

Moreover, if the revoked or malicious users collude with
one or more CDN nodes, they could access unauthorised
objects. In our system, all the cached objects are encrypted
with the secret key and nonces. Only when the colluded
entities have both of them, they can recover the content of
those objects. If the user colludes only with one node, she
can recover a partition of objects. Specifically, after getting
the requested object, the user also gets the nonce to decrypt
the payload, which is also used to encrypt other objects in the
same partition. If the CDN provider sends the partition to the
user, she is able to recover all the objects in this partition.
This issue can be solved by setting the partition size as low as
possible (say 1), but with a performance tradeoff. In contrast,
if the user colludes with both Ni and Ni+1, she can recover
all the objects cached in Ni. To resist this collusion attack,
ABE [33], [34] schemes can be integrated into our system to
protect the object payload.

VII. COMPUTATION COMPLEXITY ANALYSIS

In this part, we empirically analyse the costs associated with
each component. Let λ and ρ be the bit lengths of object
name and payload, respectively. We use Hλ, Xλ and Cλ to
represent the computation overhead of hashing, XORing and
comparing λ bits data. Moreover, f−1ρ represents the compu-
tation overhead of decrypting a ρ-bit object. The computation

and communication overheads on each component are shown
in Table III.

A. Encryption and Decryption

To issue a request, as illustrated in Algorithm 1 (see Section
V), the user just needs to perform a hash and an XOR to
encrypt the request, and sends the encrypted request (λ bits)
and nonce (λ bits) to the CDN cluster.

Once the requested object (ρ bits) and the corresponding
nonce η (ρ bits) are received, the user could recover it by
performing an XOR and f−1 operations.

Hence, the overall computation overhead on the user side
is: Hλ + Xλ + Xρ + f−1ρ . Moreover, the user needs to send
2λ-bits data to CDN nodes, and get 2ρ bits payload and nonce
from the CDN.

B. Nonce Blinding

To assist the search operation on Ni, Ni−1 needs to provide
the blinded nonce for each partition by running the Nonce-
blind component. Assume P is the number of partitions stored
Ni. From Algorithm 2, we can infer that the computation
overhead of this component is: P (Hλ + Xλ). That is, each
nonce n is XORed with another nonce α and hashed.

Moreover, the blinded nonce (|H| bits) for each partition
should be sent to Ni. Therefore, the communication overhead
is P |H| bits, where |H| represents the output size of the hash
function.

C. Search

Recall that each partition contains W objects. When there
are P partitions, PW objects are stored on Ni. To check if an
object is the requested one, a hash and a comparison operation
should be performed. Currently, we only support linear search,
but once the requested object is found, the search will stop.
In the worst case, i.e., the requested object is not cached or is
the last one, the search computation overhead is PW (Hλ +
Xλ + Cλ).

When there is a hit, the matched object (ρ bits) will be
sent to the user. Moreover, the matched partition should be
re-randomised with a new nonce pair and migrated to the next
node. That is, one more XOR operation should be performed
over each object in the matched partition. Meanwhile, the
re-randomised partition (W (ρ + λ) bits) and the new nonce
pair ((ρ+ λ) bits) should be sent to Ni+1 and Ni+2, respec-
tively. Then, the overall computation overhead on the search
component is PW (Hλ + Xλ + Cλ) +W (Xλ + Xρ), and the
communication overhead is (W + 1)λ+ (W + 2)ρ bits.

On the contrary, if the requested object is not found,
the request (λ bits) will be XORed with a new nonce and
forwarded to the next node. Meanwhile, the new nonce (λ bits)
is sent to Ni+2. In this case, the overall computation overhead
on the search component is: PW (Hλ + Xλ + Cλ) + Xλ, and
the communication overhead is 2λ bits.

Note that, if the request is from a node, rather than the user,
one more XOR operation is performed over the request (Line
2, Algorithm 3).
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TABLE III: The computation and communication overhead on each component.

Operation Computation Communication
Encryption Hλ + Xλ 2λ bits
Nonce-blind P (Hλ + Xλ) P |H| bits
Search (found) PW (Hλ + Xλ + Cλ) +W (Xλ + Xρ) (W + 1)λ+ (W + 2)ρ bits
Search (not found) PW (Hλ + Xλ + Cλ) + Xλ 2λ bits
Post-search W (Xλ + Xρ) ρ bits
Search-on-CP (found) TCλ + Xλ + Xρ 2λ+ 3ρ bits
Search-on-CP (not found) TCλ 0

Decryption Xρ + f−1
ρ 0

λ and ρ are the bit length of object name and payload, respectively. P is the number of partitions in the node, i.e., PW objects are stored on the node. T is the total number
objects stored on the CP. Hλ, Xλ, and Cλ represent the computation overhead of hashing, XORing, and comparing λ bits data, respectively. Moreover, f−1

ρ stands for the
computation overhead of decrypting a ρ-bit object.

D. Post Searching

In Post-search, as shown in Algorithm 4, the main operation
is to remove the old nonce from each object in the migrated
partition. Thus, the computation overhead on this component
is: W (Xλ + Xρ).

At the same time, the nonce η (ρ bits) of the matched
partition should be sent to the user for decryption.

E. Search on the CP

Assume T is the number of objects stored on the CP. The
search operation on the CP is also linear. Since the encrypted
object is deterministic, the CP just needs to compare if the
encrypted request equal to the encrypted names, and before
that the CP also removes the nonces from the request with an
XOR operation. As done in CDN node, the CP will stop the
search once the requested object is found. In the worst case,
the search overhead on the CP is: TCλ.

Once the requested object is found, it will be returned to
the user. Meanwhile, its name and payload will be XORed
with a pair of nonces and sent to the CDN. In this case,
the computation overhead is: TCλ + Xλ + Xρ, and the
communication overhead is 2λ+3ρ no matter if the nonce pair
is new or get from the CDN. Otherwise, no XOR operation
and communication are required.

VIII. PERFORMANCE ANALYSIS

A. Experiment Setup

We implemented the scheme in C using MIRACL 7.0 library
for cryptographic primitives. The payload of each object was
1024 bytes and encrypted using AES-CBC. The name of each
object was 64 bytes and hashed using SHA-256, and the
encrypted nonce was hashed with SHA-128. The performance
was evaluated on a Sandy Bridge based cluster containing 236
nodes, where each node contains two Intel E5-2680 2.7GHz
processors with 128GB of RAM. In the test, each CDN node
was deployed on a separate node in the cluster. The network
bandwidth between nodes was simulated with 7 Mbps, which
is the latest global Internet average connection speed reported
by Akamai [35]. Meanwhile, we simulated the round trip
network latency between the node and the CP as 0.3 second
(s), which is the largest measured value between Australia
and UK reported by Verizon [36]. Considering the user and
the CDN cluster are generally located in the same region, the
latency between the user and CDN node is assumed to be 33

milliseconds (ms), which is the global average network latency
in the US measured by AT&T [37].

In the experiments, the CP owns 1,000,001 different objects
in total, and the encrypted replicas of the first 1 million are
distributed to these nodes uniformly. There is only one replica
cached in the CDN cluster for each object. According to
the cached location of the requested object, we tested the
performance of the system in three different cases: best, worst,
and average. The best case means the first object stored in
the selected node is the requested one. In the average case,
100 random requests were generated and the requested objects
were cached in the CDN cluster uniformly. In the worst case,
the requested object was not cached in the CDN cluster, but
was the last object stored on the CP. Moreover, according
to the realistic distribution of the nodes provided by existing
CDN enterprises all over the world [38], the number of nodes
currently deployed in each country ranges from 1 to 47. In
the following, all the data points in the graphs were averaged
over 100 trials.

B. End-to-end Latency on the User

Our objective is to protect the objects cached by the CDN
and to preserve user privacy while ensuring system usability.
As for system usability, we should, first of all, ensure that the
user should get the requested object in a reasonable time. So,
we first tested the end-to-end latency on the user side. By the
end-to-end latency, we mean the time spent by the user to get
the requested object, including the request encryption time,
the search time on nodes and/or the CP, and network latency
between any two involved entities.

Figure 6 presents the effect on end-to-end latency in three
(best, worst and average) cases when changing the size of
each partition and the number of nodes deployed in the CDN
cluster. Recall that a partition represents a group of objects that
use the same nonce pair. In the best case (see Figure 6(a)), it is
clear that the end-to-end latency goes down linearly with the
increase in partition size. In our experimentation, we assume
the selected node is Ni. Although in the best case only one
object is searched in Ni, as described in Section V, Ni+1

has to encrypt the nonces stored in its NS and send them to
Ni. That is, in the best case, the time is mainly consumed by
Nonce-blind and transmission. Recall that Ni+1 stores a pair
of nonces for each partition stored in Ni. When the number of
objects cached in Ni is fixed, the bigger size of each partition
means the fewer nonces should be stored in Ni+1, and the
fewer nonces should be encrypted and sent to Ni. That is why,
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Fig. 6: End-to-end latency on users.

the end-to-end latency becomes lower when the partition size
gets bigger. Similarly, the end-to-end latency also decreases
with the increase in the number of nodes when both the total
number of objects owned by the CP and the partition size
are fixed. This is because the more nodes we have, the fewer
objects and nonces will be cached in each node, and the fewer
nonces should be encrypted and transferred.

In contrast, in the worst case (see Figure 6(b)), all the nodes
in the CDN cluster and the CP searched their storage one by
one, meaning 2,000,001 objects were searched. So, the end-
to-end latency in this case is much higher than that of the
best case. From Figure 6(b), we can see that the end-to-end
latency drops down significantly when changing the partition
size from 1 to 10; however, there is no obvious decline when
reducing the partition size further. That is because the partition
size only affects the number of nonces that are encrypted and
transferred, but it does not affect the number of objects that are
searched. No matter what the partition size is, the number of
objects that should be searched is always 2, 000, 001. When the
partition size ≥ 10, the time is mainly consumed by the search
operation, rather than the nonce encryption and transmission.
Another thing we can notice from the worst case is that the
latency increases slightly when an increase in the number of
nodes. The reason is after searching on Ni, the request has to
be re-encrypted before forwarding to Ni+1, and more nodes
means more request re-encryptions should be performed.

The best and worst cases are two extreme situations. In
general, the end-to-end latency is in between the two cases, as
shown in the average case as shown in Figure 6(c). It is also
affected by the partition size. However, when the partition size
≥ 10, the latency is more likely to be affected by the cached
location of the requested objects. On average, users can get
the requested object in less than 0.75 s.

C. System Throughput

Generally, the CDN nodes are accessed daily by thousands
of users. So, its throughput should be as high as possible.
In our scheme, after sending the matched object to the user,
the matched partition has to be re-encrypted and migrated to
Ni+1. Although this operation does not affect the end-to-end
latency on users, it affects the throughput of the system since
Ni can not process other requests until the matched partition
has been migrated. In this test, we first measured the request
process time, the time it takes to completely process a request,

which also includes the time for re-encrypting and migrating
the matched partition.

Figure 7 shows the effect on request process time when
we vary the size of the partition and the number of nodes in
the CDN cluster. From this graph, we can notice that and the
system shows the best performance when the partition size is
in between 10 and 100. However, when the partition size >
100, the request processing time almost rises linearly with the
increase of the partition size. That is because the partition
size is proportional to the time spent on Nonce-blind and
transmission, but inversely proportional to the time spent on
object re-encryption and migration. In other words, the bigger
the partition size is, the fewer nonces should be blinded and
sent to Ni+1, but the more objects should be re-encrypted and
migrated to Ni+1 after the search operation.

Using the request processing time, we computed the
throughput of the system. To do so, we measured the time
spent on executing 3200 requests and then calculated how
many requests it can process per second. Note that the nodes
in the CDN cluster are separate machines and could process
requests in parallel. Even when Ni+1 is encrypting the nonces
stored in its NS for Ni, it can search over its CS store
for another request simultaneously, since both operations are
performed over two separate datasets. Therefore, as shown
in Figure 8, the throughput increases with an increase in the
number of nodes. Furthermore, when the partition size is in
between 10 and 100, the throughput reaches the peak in all the
cases. When there are 32 nodes in the CDN cluster, it could
process around 500, 15, and 90 requests in the best, worst,
and average case, respectively. The throughput in the average
case will get better by caching more replicas of the objects.

D. Performance Gain using TTL

In this part, we show how the performance of the system
can be improved by loading more replicas to the CDN cluster
for the most popular objects. Moreover, we regard the time
of getting the objects in plaintext from the CP directly as a
baseline (which includes the round trip latency between the
user and the CP, and the search time on the CP), and compare
it with our scheme.

As mentioned before, more replicas for the popular objects
can be adaptively loaded by setting a request TTL value. In
this test, we fixed the number of nodes to 32 and the partition
size to 10, changed the TTL value from N/32 to N/2, and
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Fig. 7: The complete request processing time.
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Fig. 8: The throughput of a CDN cluster.
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Fig. 9: The performance of the system in average case with
different TTL values.

measured end-to-end latency, the request process time and
throughput of the system. Moreover, the requested object was
the last one in the TTL-th node. In Figure 9, it is clear that
both the end-to-end latency and request process time rise with
the increase of the TTL value. Specifically, when TTL <= 8,
the performance of the system in the average case is better
than getting the object from the remote CP directly.

E. Breakdown of the Latency

To better illustrate the overhead on each entity, in Figure 10,
we disassembled the processing time into the time spent on the
user (encryption time and decryption time), the CDN cluster
(nonce blinded time, search time and partition re-encryption
time) and the CP (search time), and network latency. In this
experiment, we set the number of nodes to 32 and the partition
size to 100, and tested the latency when the requested object is
the last one stored in the 1st, 2nd, 4th, 8th, 16th, 32nd nodes
and the CP.
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Fig. 10: The breakdown of end-to-end latency.

When the payload size is 1024 bytes, the request encryption
and payload decryption only take 0.0027 s in total. Comparing
with the latency on other entities, as shown in Figure 10, the
latency on the user side is almost negligible. Moreover, the
search operation performed on the CP is also significantly
more efficient than the CDN cluster. It only takes around
0.025 s when searching over 1,000,001 pre-encrypted objects.
The main overhead is outsourced to the CDN cluster, and it
increases with the number of searched objects. With a proper
partition size, the network latency among nodes can also be
controlled at an acceptable level, which is around 0.25 s in
the worst case. Note that the network latency can be reduced
a lot by sending a much smaller seed, rather than the blinded
nonces.

F. The Performances with Different Payload Sizes

In the tests above, the payload size was set to 1024K. We
also tested the performance of the system with larger payloads.
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TABLE IV: The times of encrypting, re-encrypting, decrypting
and delivering an object.

Payload
size

Encryption
time (ms)

Re-encryption
time (ms)

Decryption
time (ms)

Transmission
time (s)

1K 0.0037 0.0029 2.70 0.0011
128K 0.385 0.338 3.09 0.142
256K 0.813 0.675 3.49 0.285
512K 1.54 1.39 4.29 0.571
1M 3.08 2.73 6.02 1.143

In our system, the payload size affects the performance of
encryption on CPs, decryption on users, re-encryption on
nodes, and the communication between nodes during the
migration. In Table IV, we show the performance of these
operations with different payload sizes. When the payload is
1 M, the object can be encrypted in 3 ms, re-encrypted in 2.73
ms, decrypted in 6 ms, and delivered in 1.14 s.

IX. DISCUSSION

To hide the size of object payload, we could also divide
the objects into smaller blocks, and upload them to different
nodes. Each block should be of the same size. Moreover, the
name of each block should be the object name appended with
a serial number indicating its order. When the user requests an
object, the user client can automatically retrieve serial numbers
that could be included in the request. Furthermore, the requests
with different serial numbers will be sent to different nodes.
Because of the encryption, the node can not learn if the
requests are for the blocks belonging to the same object or
not. This way, the size of each object is concealed from CDN
nodes.

To achieve a high cache hit rate, we could upload more
replicas of the most popular and recently requested objects
in the CDN cluster. However, to save storage, the replicas
of outdated and unpopular objects should be removed peri-
odically. In traditional CDN systems, there is an accounting
component to provide the popularity information to the CPs.
In our system, the popularity of objects is hidden from the
CDN providers. We also give one possible method for the CP
to manage outsourced replicas. Roughly, the CP could add a
blinded counter, i.e., a random integer, to each object and let
the node increase it by one once it matches a request. Because
of the migration and re-encryption, the original value of the
counter is unknown to CDN nodes. However, it is recorded
by the CP. The CP could also encrypt the counter with a
fully homomorphic encryption primitive. So, after a period
of time, the CP could send a request to the CDN and ask it
to return counters of all the replicas of the requested object.
Ultimately, the CP could learn how many times an object has
been requested during a certain time period. Based on this
information, the CP could decide which of them should be
removed.

In our system, as shown in Section VIII, with proper TTL
value and partition size on the CDNs, retrieving the objects
from the CDNs is faster then getting it from the remote
CP directly. In addition, the latency can be reduced further
by combining with sub-linear index structures, such as B-
tree, which will be investigated as our future work. The
performance of our system is worse than that of traditional

CDNs because it is performing more operations for getting
the requested object, and this has been evidenced by similar
proposals, such as [3]–[5], [30], [39]. However, our system
ensures the confidentiality of objects and preserves user pri-
vacy, whereas traditional CDNs do not do so. There is always
a tradeoff between performance and security. Moreover, we
would like to stress that there are many other benefits of using
CDN in addition to low latency, such as reducing the load on
the CP and resistant DoS and DDoS attacks. Although our
system increases the latency on the user, it maintains all the
other benefits of CDN services.

X. RELATED WORK

In the literature, many approaches have been proposed to
address different security issues in CDNs.

In [3], Edmundson et al. aim at solving the same security
issues as we discuss in this work. They design and implement
a system, called OCDN, that allows clients to retrieve web
objects from one or more CDNs, while preventing the CDNs
from learning the content of the cached objects and user
requests. OCDN also breaks the link between users and the
requested objects by forwarding the request through a set of
proxies (user peers) such that which user makes the original
request is unknown to the CDN. To hide the popularity of
objects, they propose to use multiple CDNs to distribute the
same content ensuring that no single CDN has access to the
relative popularity distribution of all objects. Unfortunately,
they fail to hide the request pattern from the CDNs, since
the user request and object identifier are obfuscated using
the deterministic Hash-based Message Authentication Code
(HMAC). Moreover, each CDN could also learn which objects
are the most popular ones among the accepted requests.

In [4], Leguay et al. also propose a security protocol that
enables caching of encrypted content on untrusted CDN nodes.
In their work, the CP encrypts objects and associates them
with reusable pseudo-identifiers in order to enable the CDN
node to return requested objects to the users. Unfortunately,
the request pattern and the popularity distribution of objects
are still revealed to CDN nodes.

In [39], Yao et al. consider the scenario where CDN nodes
are authorised to perform modification on cached objects, e.g.,,
transform a video to reduce its resolution. They propose a role-
based model where CDN nodes can be authorised to transform
objects while maintaining the integrity and confidentiality of
objects in CDNs. That is, CDN nodes could securely adapt
or transcode encrypted objects without requiring decryption,
and users could check if they perform the operation properly.
Their approach enhances the flexibility and scalability of data
processing on CDNs.

In [5], Xiong et al. design a scheme that ensures end-
to-end confidentiality of the object by encrypting the object
using symmetric encryption. It also provides flexible access
control policies for multi-user by combining proxy-based
re-encryption with secret sharing and broadcast revocation
mechanisms. As a result, the users can be revoked without
generating a new key and re-encrypting the objects cached in
CDN nodes.
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In [30], Levy et al. introduce an architecture, called Stickler,
that guarantees end-to-end integrity of the object in the face
of malicious CDNs. In Stickler, the CP signs the object with
its private key before uploading to CDNs, and provides a
JavaScript-based boot loader for users. With the boot loader,
users can download the requested objects from CDN and check
the integrity of them without any modification in the browser.

As done in the CDN, the content-oriented networks, such
as CCN [10] and NDN [11], also cache objects in routers or
edge nodes and allow the users to access the objects from
the nearest cache nodes. In the literature, several works have
investigated the approaches to ensure the confidentiality of
objects and preserve the privacy of users in content-oriented
networks. Zhang et al. [16] propose an identity-based signature
and encryption mechanism for integrity and trust verification
and confidentiality protection of data in the content-oriented
network. More recently, Hamdane et al. [14] propose a hierar-
chical identity-based cryptographic naming scheme to control
the access to the objects in NDN.

Many other works focus on protecting the user privacy from
malicious users. For instance, Baugher et al. [12] and Wong
et al. [13] suggest to protect the requests and object identifiers
with cryptographic hash functions. Acs et al. [40] investigate
the timing and cache probing attacks in CCD/NDN, where
attackers can learn if the requested object has been requested
by other users by detecting the return time. Furthermore, if the
attacker targets a specific victim, it can identify the content of
the victim’s requests [41]. To resist these attacks, Acs et al.
propose to set a popularity threshold t and ask the routers to
maintain the times being requested for each sensitive object,
and the router replies the first t requests with random delay.
In [42]–[44], researchers propose similar approaches. Unfor-
tunately, these methods leak users preferences the popularity
of objects to the untrusted nodes.

XI. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we identified the limitations of traditional
CDN systems and presented a multi-CDN system for pro-
tecting outsourced objects and users privacy. Our scheme
not only protects the content of the objects and requests
from CDN providers, but also protects user preferences and
the popularity of objects. Meanwhile, our scheme offers a
flexible key management method where revoking users does
not require regeneration of keys and re-encryption of the
objects. Moreover, when the requested object is not cached
in CDNs, the CP can efficiently search over its local storage
as without decrypting the request or storing encrypted objects.
We also give the solution to improve the cache hit rate without
revealing sensitive information to CDN providers.

The main idea in this work is combining SE with the multi-
CDN system. Basically, the content of objects and requests are
protected by SE, and the object popularity and user preference
are hidden by re-randomising and migrating objects between
CDN nodes after each request. Due to the usage of nonces, re-
randomising objects can be performed efficiently. Moreover,
both forward and backward privacy are achieved. We have
implemented a prototype of the system and show its practical
efficiency.

As for future work, we will design a sub-linear structure to
further improve the search efficiency. We also plan to optimise
the communication overhead between CDN nodes without
sacrificing much security guarantees. Moreover, we will in-
vestigate more sophisticated methods to solve the collusion
attacks in our system.
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