
 

 

 

© Copyright Notice 

 

All rights reserved. No part of this publication may be 

reproduced, distributed, or transmitted in any form or 

by any means, including photocopying, recording, or 

other electronic or mechanical methods, without the 

prior written permission of the publisher, except in the 

case of brief quotations embodied in critical reviews 

and certain other non-commercial uses permitted by 

copyright law. 



SMART: Shared Memory Based SDN Architecture to Resist DDoS
ATtacks

Sana Belguith1 a, Muhammad Rizwan Asghar2 b, Song Wang3, Karina Gomez3 and Giovanni
Russello2

1School of Computing, Science and Engineering, University of Salford, Manchester, UK
2Cyber Security Foundry, The University of Auckland, Auckland, New Zealand

2School of Engineering, RMIT University, Melbourne, Australia
s.belguith@salford.ac.uk,{r.asghar,g.russello}@auckland.ac.nz, {karina.gomez,song.wang }@rmit.edu.au

Keywords: SDN, Security, Shared Memory, Tuple Spaces, DDoS, Availability, OpenFlow.

Abstract: Software-Defined Networking (SDN) is a virtualised yet promising technology that is gaining attention from
both academia and industry. On the one hand, the use of a centralised SDN controller provides dynamic
configuration and management in an efficient manner; but on the other hand, it raises several concerns mainly
related to scalability and availability. Unfortunately, a centralised SDN controller may be a Single Point Of
Failure (SPOF), thus making SDN architectures vulnerable to Distributed Denial of Service (DDoS) attacks.
In this paper, we design SMART, a scalable SDN architecture that aims at reducing the risk imposed by the
centralised aspects in typical SDN deployments. SMART supports a decentralised control plane where the
coordination between switches and controllers is provided using Tuple Spaces. SMART ensures a dynamic
mapping between SDN switches and controllers without any need to execute complex migration techniques
required in typical load balancing approaches.

1 INTRODUCTION

Software-Defined Networking (SDN) is a virtu-
alised yet promising technology that is gaining atten-
tion from both academia and industry. The SDN ar-
chitecture provides a clear separation between a data
plane and a control plane. The former one is for for-
warding traffic and the latter one deals with routing
decisions made by SDN switches. In SDN, a cen-
tralised control plane is responsible for giving direc-
tions to the data plane (Scott-Hayward et al., 2016).
A control plane is formed by one or more SDN con-
trollers; whereas, SDN switches constitute a data
plane. An SDN controller is a powerful tool and is
considered the brain of an SDN network.

In SDN, a controller installs flow rules on SDN
switches. These rules allow SDN switches to han-
dle network flows. When a new flow, which does
not match any existing flow rules, is encountered, the
switch sends a packet-in message to the SDN con-
troller for receiving instructions on how to deal with
that traffic (cf. Fig. 1). The use of a centralised
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Figure 1: The SDN architecture illustrating a logical and
physical separation of both control and data planes, place-
ment of flow tables, and high-level interactions between an
SDN controller and SDN switches.

SDN controller enables configuration, management,
and optimisation of network resources dynamically
through SDN applications in an efficient manner, in-
dependent from the underlying network infrastruc-
ture.

Despite its benefits, the centralised nature of an
SDN controller raises several concerns mainly re-



lated to scalability and availability. Indeed, a cen-
tralised SDN controller may not be suitable for appli-
cations involving multi-domain and multi-technology
features, such as the architecture of Internet Service
Providers (ISPs) interconnecting each other, where
each ISP owns different types of equipment and tech-
nologies. Moreover, a centralised SDN controller
may be a Single Point Of Failure (SPOF), which
causes the vulnerability of SDN architectures to at-
tacks (Dixit et al., 2013; Scott-Hayward et al., 2016).
To mitigate these issues, there are proposals to use
logically centralised, but physically distributed SDN
controllers (Phemius et al., 2014) to avoid the SPOF
and to offer better network scalability. Although scal-
ability and availability of the SDN architecture can
be improved using distributed controllers, such an ap-
proach has one main drawback when it comes to link-
ing switches to controllers; actually, a switch is stati-
cally connected to a controller, which prevent the con-
trol plane from adapting traffic load variations. To
address this drawback, a naive solution is to over-
provision controllers in order to deal with the ex-
pected peak load (Dixit et al., 2013). However, this
solution is inefficient due to its high cost and energy
consumption.

A key limitation of SDN is its vulnerability to Dis-
tributed Denial of Service (DDoS) attacks (Bhushan
and Gupta, 2019). Indeed, there is a paradoxical rela-
tionship between SDN and DDoS attacks. On the one
hand, the separation of the control and data planes
results in an easier detection and optimised defence
against DDoS attacks. On the other hand, the cen-
tralisation of the control plane introduces new DDoS
threats as the control plane may be a target of these
attacks (Yan and Yu, 2015). In DDoS attacks, an
attacker could generate data packets for which SDN
switches might have no flow rule, thus forcing them
to forward those packets to the SDN controller. By
sending a large number of new data packets, SDN
could be flooded, thus resulting in a DDoS attack (cf.
Fig. 2). Basically, these are table-miss packets that
will trigger massive packet-in messages from SDN
switches to the controller, that is incurring an exces-
sive consumption of the bandwidth, CPU resources,
and memory in the control plane as well as the data
plane.

A promising approach could be to balance load
dynamically among distributed controllers to handle
table miss-packets in normal use as well as during
flooding attacks. This requires the introduction of a
load balancer to efficiently distribute the control plane
requests among different controllers. Moreover, dedi-
cated switch migration algorithms have to be executed
to map switches to controllers while performing the
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Figure 2: An illustration of DoS attacks on SDN: An at-
tacker generates table-miss packets and forwards them to
the SDN controller. By sending a large number of new data
packets, an SDN controller could be flooded.

load balance strategy.
A more logical solution would be to use a co-

ordination layer between switches and controllers to
handle the control plane requests and ensure dynamic
mapping between SDN switches and controllers. To
this end, we introduce the use of Tuple Spaces as
a decoupling mechanism for coordinating the com-
munication between SDN switches and controllers.
Tuple spaces were introduced as part of the LINDA
language in (Gelernter, 1985) for building paral-
lel/distributed applications. Tuple spaces are basi-
cally shared memory objects that provide a simple
API to store and retrieve ordered sets of data, called
Tuples. Using tuple spaces as a coordination layer en-
ables the decoupling of the communication between
SDN switches and controllers in space and time: in
space as SDN controllers and switches are not stati-
cally bound to each other; in time as SDN switches
and controllers are not required to be online at the
same time to transfer data. Through this decoupling,
it is possible to balance requests across all the active
available controllers. Moreover, one can dynamically
activate new controllers when there is a traffic peak.

In this paper, we present SMART, a Shared
Memory based SDN Architecture to Resist DDoS
aTtacks. SMART leverages a decentralised con-
trol plane where tuple spaces are used to coordinate
the communication between SDN switches and con-
trollers. In SMART, SDN switches can execute opera-
tions to store packet-in requests as tuples as well as to
retrieve flow rules. SDN controllers consume packet-
in tuples inserted by switches, generate related flow
rules and put them back in the tuple space.

Our proposed architecture is multi-fold. First,
SMART is based on using a distributed control plane
involving several controllers, which makes the net-
work more scalable. Second, thanks to the use of
tuple space, SMART ensures a dynamic mapping be-
tween switches and controllers. Unlike other decen-



tralised SDN networks, SMART allows a switch to
communicate in a decoupled manner with controllers
through tuple space instead of being statically mapped
to a master controller. Third, through this decou-
pling, we provide a smooth load balance among con-
trollers, which can be useful to defeat DDoS attacks
as the traffic may be efficiently distributed among
controllers without offloading any node. Last but
not least, tuple space can detect excessive accesses
from switches during DDoS attacks that could trigger
a mitigation strategy. For instance, when an attack
is detected, packet-in requests are detoured to a data
plane cache. This module is used to store the table-
miss packets received during DDoS attacks, which
are filtered to distinguish benign ones and then move
them to tuple space to be addressed by the controllers.
Therefore, this technique maintains system availabil-
ity during a flooding attack.

The remainder of this paper is organised as fol-
lows. Section 2 reviews related work. In Section 3,
we describe research challenges to be addressed by
the solution. Section 4 provides background infor-
mation on tuple spaces and their features relevant to
SDN. Section 5 gives an overview of SMART as well
as its building blocks. In Section 6, we provide solu-
tion details before concluding in Section 7.

2 RELATED WORK

SDN architectures have been widely studied in
the literature to enhance their scalability and secu-
rity against attacks. In the following, we first re-
view the literature covering load balancing solutions
for SDN. Then, we discuss existing DDoS mitigation
techniques.

2.1 Load Balancing for Distributed
SDN

Several research works have proposed load balance
algorithms for SDN architectures. Obviously, load
balance solutions in SDN can be categorised into two
types: centralised and decentralised algorithms.

To ensure dynamic load balance on distributed
SDN networks, ElastiCon (Dixit et al., 2013) has been
designed so that the workload is dynamically bal-
anced to enable the controllers to perform at a pre-
specified load window. When the aggregate over-
head changes over time, the system dynamically adds
or removes controllers from the controllers cluster as
needed.

COLBAS (Selvi et al., 2016) is a controller load
balancing scheme for hierarchical networks that relies

on controller cooperation via cross-controller com-
munication. COLBAS assigns one of the controllers
as a super controller that can flexibly manage flow re-
quests handled by each controller. This super con-
troller is located at the network node closest to the ge-
ographical centre of the topology. All controllers pub-
lish their own load information periodically through a
cross-controller communication system. When traf-
fic conditions change, the super controller reassigns
different flow setups to proper controllers and installs
allocation rules on switches for load balancing. Bal-
Con (Cello et al., 2017) has been designed to improve
load balance between controllers by implementing a
dedicated switch migration algorithm. This solution
relies on measuring the load of each controller. Once
a controller’s load reaches a pre-fixed threshold, it is
considered as overloaded and a set of switches are
chosen to be migrated into another controller.
Centralised load balancing solutions rely on the use
of a centralised node whose performance is limited
by memory, CPU computation, and network band-
width. Besides, a centralised node should collect all
the controllers’ overheads in the network, which re-
quires exchanging data with them frequently. More-
over, if the central node collapses, the whole load bal-
ancing strategy is down. To this end, decentralised
load balance solutions have introduced (Zhou et al.,
2014; Ammar et al., 2017). DALB is a distributed
load balance architecture (Zhou et al., 2014) running
as a module of an SDN controller to enable load esti-
mation. This algorithm avoids the single point of fail-
ure problem, thus providing scalability and availabil-
ity. The controller periodically collects its own load
information. Then, it checks whether the load is be-
yond the threshold. If the load exceeds the threshold,
the controller gathers other controllers’ load informa-
tion. After aggregating all load information from the
controller cluster, the high load controller makes a mi-
gration decision and selects which switch will be mi-
grated to a low load controller.
Although distributed load balance approaches ensure
an efficient flow distribution among the controllers’
pool, SDN architectures remain an attractive target
for DDoS attacks. Indeed, an SDN controller usually
chooses an alternative route between entry point and
end point only if the first current route is not avail-
able, which ensure network reliability. Nevertheless,
during DDoS attacks, this strategy is inefficient as at-
tack traffic will be redirected through a different route.
Thus, there is a high probability that the new route
will be overloaded as well.



2.2 Solutions against (D)DoS Attacks on
SDN

Several solutions have been proposed to mitigate
DDoS attacks in SDNs (Shin et al., 2013; Chen et al.,
2016; Wang et al., 2015). AVANT-GUARD (Shin
et al., 2013) has been introduced to countermea-
sure DDoS attacks impacts on SDN networks. First,
AVANT-GUARD extends SDN data plane using a
connection mitigation feature that reduces interaction
between data plane and control plane. This added
feature drops failed TCP sessions at the data plane
prior to any notification to the control plane. Second,
AVANT-GUARD relies on actuating triggers which
enable the data plane to asynchronously report net-
work status and payload information to the control
plane. Nevertheless, this solution only defeats TCP-
based flooding attacks but does not resist other kinds
of attacks such as UDP and ICMP. Moreover, the au-
thors do not propose any mechanism to handle pack-
ets during the attack. SDNShield (Chen et al., 2016)
incorporates two defence lines to mitigate DDoS at-
tacks on SDN. This solution is based on filtering in-
coming flows to identify the legitimate ones to be
routed directly to their destinations. SDNShield re-
lies on the use of a network of a specialised clus-
ter of virtual machines to double-check the rejected
packets. To mitigate flooding attacks, Shang et al.
(Shang et al., 2017) have proposed four functional
modules (including attack detection, table-miss engi-
neering, packet filter, and flow rule management) to
extend the SDN architecture in order to mitigate DoS
attacks. This solution mainly applies a packet migra-
tion mechanism to handle table-miss packets on sat-
urated switches. Obviously, missed packets are de-
toured to the attacked switches neighbours to be sent
later to the controller. In (Wang et al., 2018), the au-
thors introduced a set of triggers to resist DoS attacks
in SDN. The proposed solution, called SECOD, ex-
ecutes several functions to monitor and detect exces-
sive packet-in requests and launches a DoS mitiga-
tion mechanism. Recently, Alshra et al. (Alshra’a
and Seitz, 2019) have designed a hardware solution
to stop injection attacks. Indeed, this solution intro-
duces a new hardware component called INSPEC-
TOR, which is mainly responsible for verifying the
authentication of packet-in messages that access the
network before forwarding them to the data and con-
trol planes. This mechanism stops malicious packet-
in messages from being processed and reduces the
risks of DoS attacks.

Although these solutions ensure efficient detec-
tion and mitigation of DDoS attacks, they do not con-
sider the scalability issue. Thus, the system may be

overloaded without a capability to be adapted to traf-
fic variation in normal use or even during DDoS at-
tacks. Moreover, they incur complex migration tech-
niques to change switch mapping to controllers.

In this paper, SMART relies on a distributed
control plane to mitigate SPOF risks while deploy-
ing novel load balancing techniques based on Tuple
spaces. This enables a dynamic load balance among
distributed controllers to handle table miss-packets in
normal use as well as during flooding attacks, without
executing complex migration algorithms.

3 RESEARCH CHALLENGES

In this paper, we address the following research
challenges:

• R1 Scalability: Expand/shrink the resources pool
by dynamically adding/removing controllers to be
adapted to traffic load variations with simple plug
and play approach.

• R2 Automatic/Efficient Switch Migration: En-
sure dynamic mapping between SDN switches
and controllers to provide elasticity and efficiency
of the system during traffic load variations.

• R3 Availability: Detect and prevent DDoS at-
tacks to guarantee the availability of both control
and data planes during DDoS attacks.

• R4 Flexibility: Be able to handle attacks for
different protocols (e.g., TCP-based attacks and
UDP-based attacks), i.e., design a solution that
works with all kinds of attack traffic protocols.

• R5 Reliability: Efficiently deal with table-miss
packets during the DDoS attack without losing be-
nign traffic.

In the following sections, we will describe how
SMART tackles these research challenges.

4 AN OVERVIEW OF TUPLE
SPACES

In this section, we start by presenting some back-
ground information about tuple spaces. Then, we de-
tail GSpace, the tuple space middleware we aim to use
in our solution.

4.1 Tuple Space

A tuple space can be considered as a shared mem-
ory object allowing different processes to execute op-



erations to store and retrieve ordered data sets (Car-
riero Jr, 1987). A tuple is an ordered sequence of
fields where a field that contains a value is said to
be defined. A tuple is called entry or tuple t if all
its fields are defined while a tuple is called a template
t̃ if at least one of its fields does not have a defined
value. Templates are tuples used to retrieve tuples
from the tuple space, i.e., a template and a tuple match
if and only if they have the same number of fields and
all the values and types of the defined fields in t̃ are
identical to the values and types of the corresponding
fields in t (Floriano et al., 2017). Three basic opera-
tions are executed to store and retrieve data in tuple
spaces: out(t) used to store tuple t in the space; in(t̃)
that reads and removes a tuple t that matches t̃; rd(t̃)
that accesses a tuple t without removing it from the
space. in(t̃) and rd(t̃) are known as blocking opera-
tions: if no tuple t matches the template t̃, the process
is blocked until it gets a matching one.

4.2 Bridging Gap between SDN and
Tuple Space

A tuple space is similar to a persistent storage mem-
ory: tuples can be stored in until they are retrieved by
a process. A process that creates a tuple is called a
producer while a consumer is a process that retrieves
the stored tuples. A process could be both a consumer
and producer. The communication between the pro-
ducer and consumer is decoupled in space because
any process can store a tuple which can be read by any
other process without the need to know the exact lo-
cation of the process producing the tuple. In addition,
it is decoupled in time as the tuple can be retrieved
by any process at any time. These features might be
useful in SDN architecture to allow switches to store
packet-in and then retrieve related flow rules gener-
ated by controllers. Similarly, controllers have to read
and remove the packet-in from the tuple space, then
write flow rules to be retrieved by the switch. This
decoupling in the communication between switches
and controllers provides more dynamic and efficient
communication architecture.

Logically, a tuple space is a shared memory be-
cause the objects are shared between different pro-
cesses. However, the way in which tuple spaces are
implemented can be abstracted from its logical view.
In principle, a tuple space could be implemented as
a centralised repository. However, this would intro-
duce another SPOF. Recent implementations of tuple
spaces are built as distributed middleware where part
of the space is stored within each physical compo-
nents in the network. The main advantage here is
that it does not need any extra hardware as it can

be distributed over the switches and controllers in an
efficient way. Each middleware component may be
applied to audit the accesses performed by the local
process. In this way, it becomes easier to measure
switches’ accesses to the tuple space and detect any
out of the norm access frequency which could indi-
cate a flooding attack.

Finally, most of tuple space implementations
(Russello et al., 2004a; Hari, 2012) provide dynamic
load balancing features. When a node is overloaded
with tuples, the system automatically balances the
load by shifting the tuples to other nodes. This fea-
ture is extremely useful to ensure efficient load bal-
ance among distributed controllers without requiring
any dedicated algorithms.

4.3 GSpace Middleware

In our proposed solution, we use GSpace which is an
adaptive middleware based on the distributed shared
data space model. In GSpace middleware, a number
of GSpace kernels are installed on several networked
nodes. Each kernel enables the storage of tuples lo-
cally besides establishing communications with other
kernels located in other nodes. GSpace kernels col-
laborate together to guarantee a unified view of the
shared data space to the components of the applica-
tion. Therefore, from the point of view of the appli-
cation, the shared data space is viewed as an only one
combined logic layer despite of being shared across
several nodes. Internally, each GSpace kernel is or-
ganised as follows.

• The System Boot Module is responsible for ini-
tiating all the other modules of GSpace kernel.
Subsequently, it advertises its presence to other
GSpace nodes in order to establish communica-
tion channels and join a GSpace group.

• The Controller provides the in, out and rd oper-
ations to be used by the GSpace nodes.

• The Dynamic Invocation Handler (DIH) deter-
mines which distribution policy to apply based on
the type and content of the tuple. When a node
executes a GSpace operation, DIH checks a distri-
bution policy descriptor to determine which dis-
tribution policy to apply. Once the policy has
been identified, DIH invokes a distribution man-
ager that implements the applicable policy.

• The Distribution Managers are responsible for
enforcing distribution policies. For each distri-
bution policy supported by the system there is a
specific distribution manager. The manager may
impose that tuples are sent to or requested from



GSpace kernels on other nodes with respect to the
executed distribution policy.

• The Data Space Slice provides local storage for
tuples together with the associative method for
retrieving them. In addition, a Memory Sensor
module associated with this module calculates the
memory used to store tuples on each kernel.

• The Communication Module provides facilities
for sending or retrieving tuples to and from other
GSpace kernels.

• The Connection Manager is responsible for
keeping track of information about network loca-
tions of other GSpace nodes that can be used by
distribution managers.

• The Logger audits the executed operations on the
local kernel. Upon receiving a space operation re-
quest, the Logger is informed and then it keeps
records of all the operations executed for each tu-
ple type. If the number of operations for a par-
ticular tuple type reaches a prefixed threshold, the
Logger informs its local Adaptation Module.

• The Adaptation Module (AM) makes the deci-
sion on starting the different phases of the adap-
tation mechanism. The adaptation mechanism en-
ables the selection of the most optimised distri-
bution policy for a specific tuple type during run-
time.

More details about GSpace functionalities can be
found in (Russello et al., 2004a; Russello et al.,
2004b).

5 SYSTEM DESIGN

To address the security challenges discussed in
section 3, we introduce SMART as an extension of the
SDN architecture to defeat DDoS attacks. In this sec-
tion, we begin by introducing a general overview of
the proposed SDN architecture 5.1. Then, we present
SMART building blocks in Section 5.2.

5.1 SMART General Overview

In this paper, we present SMART, a scalable and se-
cure SDN architecture (see Fig. 4). SMART ex-
tends the SDN basic architecture to defeat DDoS at-
tacks based on a novel use of the tuple space con-
cept. In SMART, switches are not directly con-
nected to a master controller, however they store their
packet-in requests in the tuple space as tuples. A
switch creates a tuple containing its identifier and the

packet-in request and stores it in the tuple space us-
ing out(Sid ,Packet− in). Controllers can read stored
tuples in the space tuple by issuing in(∗,Packet −
in) (‘*’ denotes an undefined field, called wildcard).
Therefore, a controller can get any packet-in request
stored and process it regardless of the switch that
stores it. Afterwards, the controller generates a tu-
ple of the related flow table entry out(Sid ,Flowtable)
using the same switch identifier Sid to ensure that it
is retrieved by the right switch. This latter issues an
in(Sid ,∗) operation to retrieve the flow table generated
as an answer to its packet-in request. The in operation
ensures that the switch waits until the flow table rule
is stored by the controller to get it.

Beyond ensuring efficient packet-in management,
SMART allows early detection of denial of service
attacks. Indeed, switches’ accesses to the tuple space
are audited to detect any flooding attacks produced by
a compromised switch. When an attack is detected,
packet-in requests are detoured to a data plane cache.
This module is used to store the table-miss packets
received during DDoS attacks which are filtered to
distinguish benign ones and then move them to the
tuple space to be addressed by the controllers. This
technique maintains the system availability during a
flooding attack.

5.2 SMART Building Blocks

We first assume that an initialisation phase has been
executed to grant access to the tuple space by differ-
ent controllers and switches in the network. SMART
components are detailed as follows:

• Space Tuple Access: A switch receiving a table-
miss packet generates a packet-in request and
stores it in the space tuple by executing an out
operation; out(Sid ,Packet − in). The switch in-
cludes its identifier Sid in the out operation in or-
der to retrieve later the flow table generated by
a controller for its packet-in request. Then, the
switch may execute an in(Sid ,∗) operation to seek
the flow table related to its stored packet-in re-
quest. The in operation blocks the switch until
the expected flow table is stored by a controller to
access and remove it from the tuple space. On
the other side, controllers store (∗,Packet − in)
tuple using in operation. By this, a controller
is blocked and waits for any packet-in request to
be stored without any restriction on the source of
the request, i.e., the switch that has generated the
request. A controller accesses and removes the
packet-in request, processes it and then stores the
generated flow table using the switch identifier
out(Sid ,Flowtable). Therefore, controllers dy-
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Figure 3: Deployment of GSpace components in the control and data planes of SDN. A typical setup consists of several
GSpace kernels instantiated inside all SDN controllers and switches. Each kernel provides facilities for storing tuples locally,
and for discovering and communicating with other kernels. GSpace kernels collaborate with each other to provide to the
application components a unified view of the tuple space.

namically access and process packet-in requests.
This ensures an efficient and smooth communi-
cation between controllers and switches without
any need to execute sophisticated switch migra-
tion mechanisms. In addition, the space tuple
ensures an efficient load balancing among con-
trollers. For instance, if a controller is filled, tu-
ples are dynamically shifted to others.

• Shared Memory Monitoring: As the tuple space
limits switches to store only one tuple by using
out primitive at a time, it is easy to count the num-
ber of tuples stored by each switch and detect if
a switch exceeds a threshold of packet-in. There-
fore, a flooding attack can be detected on time and
a defence mechanism is executed.

• Scalability Module: As the tuple space manages
the load balance among controllers, it can detect
if the controllers cluster is not adapted to the net-
work traffic. Consequently, a scalability mod-
ule can be executed to add new controllers to the
cluster. Obviously, thanks to the load balancing
feature offered by the space tuple, tuples will be
shifted to this new controller. For ease of presen-
tation, we assume that there is a number of con-
trollers dedicated to be added to each cluster.

• DDoS Detection: When the tuple space detects
an excessive number of stored packet-in requests

by the same switch, it is considered as a malicious
switch launching a flooding attack. Hence, a flow
entry is generated to make the switch drops all
mis-matched packets. If the switch continues to
send requests, then it is considered as an adver-
sary and the function Switch Defence is executed.
Otherwise, after executing the received flow entry
by the switches, the source of the compromised
packets is identified. For instance, if it is a host
machine then the Host Defence module is acti-
vated. Meanwhile, if the malicious packets source
is another switch, then this detected switch is con-
sidered as malicious and the current switch is al-
lowed to access the tuple space again.

• Switch Defence: To mitigate DDoS attacks, the
compromised switch is prohibited from access-
ing the shared memory. Obviously, the switch
stores packet-in requests on the tuple space us-
ing its identifier Sid . Therefore, to block a mali-
cious switch, the tuple space routes all out opera-
tions containing the switch’s identifier to the data
plane cache. During the DDoS attacks, most of
traffic will be transmitted to the data plane cache
instead of flooding the controllers to be filtered by
the Packet Filter module. However, a switch may
forward packet-in requests received from another
switch to the tuple space. A compromised switch
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operation to keep waiting for the flow table generated by a controller. Controllers can read stored tuples in the space tuple
by issuing in(∗,Packet − in). The controller generates instructions for the packet-in request using out(Sid ,Flowtable) and
including the switch identifier Sid to be retrieved by the right switch.

may use an honest switch to launch a DDoS at-
tack. In this case, when a switch is blocked the at-
tack will continue through another honest switch.
To defeat this kind of attacks, before blocking a
switch the DDoS Detection module first retrieves
the source of the attack, whether it is a switch or a
host machine.

• Packet Filter: This module uses traffic informa-
tion and monitoring rules to identify normal traf-
fic. If one packet-in request is regarded legal, it
will be moved to be processed by controllers.

• Host Defence: This module aims to identify the
sources of the DDoS attack when the switches are
not compromised. Then, all the packets coming
from this IP address are dropped.

6 SMART: TOWARD A SECURE
AND SCALABLE SDN
ARCHITECTURE

Basically, an SDN network consists of separat-
ing the control plane from the data plane. Therefore,
when a switch receives a packet which does not match
any entry in its flow table, it stores a packet-in request

on the control plane asking for instructions on how
to handle the received packet. The controller answers
by forwarding a flow rule to the switch. To make this
communication efficient and smooth, we introduce a
shared tuple space, GSpace, between the two network
layers. GSpace is a logically centralised shared mem-
ory but physically deployed inside all SDN nodes (see
Fig. 3). In our model, a GSpace kernel is imple-
mented inside all SDN controllers and SDN switches.
In the initialisation phase, the system boot module ad-
vertises its presence to all other GSpace nodes. Af-
terwards, it establishes a communication channel and
joins the GSpace group. The SDN controllers, first,
store an out operation over a template (∗,Packet− in)
to seek for packet-in requests registered by switches.

When a switch stores a tuple on the local GSpace
kernel using out(Sid ,Packet − in) operation, the Dy-
namic Invocation Handler (DIH) checks the content
and the type of the tuple and executes the required
distribution policy. DIH matches the tuple against the
stored templates and invokes the Distribution Man-
ager (DM) to execute the distribution policy. After-
wards, DM follows the distribution policy and dic-
tates to which SDN controller node the packet-in tuple
needs to be forwarded. The communication between
the source distribution manager and the destination
distributed manager is done through the communica-



tion module. For each stored tuple in the GSpace
kernel, the data space module measures the amount
of memory that is used for storing tuples on each
kernel. This measurement is done on the switches’
kernels as well as on the controllers’ kernels. The
switch stores an out(Sid ,∗) on its local kernel to keep
waiting for the instruction generated by a controller.
Following the packet-in processing by the SDN con-
troller, it stores an out(Sid ,Flowtable) on its local
GSpace kernel. Afterwards, the dynamic invocation
handler matches the stored tuple with the templates
already registered by the switches (out(Sid ,∗)). Once
a matching tuple is found, DIH orders the distribution
manager to execute the related distributed policy in
order to forward the flow table rule to the switch.

In each GSpace kernel deployed on SDN con-
trollers and switches, the memory sensor module lo-
cated in the data space module measures the tuple
stored locally by each node. For switch kernels, we
set a threshold for out(Sid ,Packet− in) operations. In-
deed, measuring out operations executed is used to
detect excessive accesses to the control plane by each
switch. If this threshold is reached, the logger mod-
ule considers the switch as malicious and notifies the
DDoS Detection module to be activated. For instance,
this module invokes the dynamic invocation handler
on the SDN controllers’ kernels side to insert a drop
flow instruction by storing an out(Sid ,DropFlow).
The switch which is already waiting for instructions
is notified of the generation of the flow rule. Then, it
processes the received flow rule.

Using information received from the memory sen-
sor module, the DDoS Detection module checks
whether the switch has stopped writing in its local
GSpace kernel or not. In this scenario, there are two
cases to be considered. On the one hand, if the switch
has installed the flow rule and executed it carefully,
then the DDoS Detection module activates the host
defence module to find out the source of the attack.
Once the IP address of the host machine is identi-
fied, the host defence module orders a dynamic in-
vocation handler on the SDN controllers’ kernels to
generate a new flow rule to invoke the switch to con-
tinue storing tuples on its kernel while dropping all
packets received from the identified IP address. In the
case that the identified IP address belongs to a switch
in the GSpace network, the DDoS Detection module
activates the switch defence module explained in the
following. On the other hand, if the switch ignores
the flow rule generated by an SDN controller to drop
all mis-table packets and continues storing tuple on
its GSpace kernel, the DDoS Detection module con-
siders the switch as compromised. Therefore, it or-
ders the DIH to stop processing the generated tuples

and invokes the distribution manager to execute a spe-
cific distribution policy aiming that these tuples are
routed to the data plane cache module. Afterwards,
the packet filter module processes the packet-in re-
quests and moves the benign ones to the controllers
to process them. In this paper, we apply the packet
filter module concept in the same way as introduced
in (Shang et al., 2017).

In the GSpace kernels deployed on SDN con-
trollers, the memory sensor module measures tuples
stored locally by each node. A threshold is set to
monitor the SDN controllers overhead. If this thresh-
old is reached, the logger module notifies the Adapta-
tion Module (AM) to select the best data distribution
policy to be adopted. In other words, a new policy
consisting of shifting tuples to other SDN controllers’
kernels is executed. In the case where the AM re-
ceives requests from all the loggers over the GSpace
network, it activates the scalability module. This lat-
ter proceeds by adding a new controller to the clus-
ter. While joining the cluster, the GSpace kernel de-
ployed in the new controller advertises its presence to
all other GSpace nodes using the system boot module.
Afterwards, the adaptation module selects a particu-
lar distribution policy aiming at shifting tuples to the
added controller. Therefore, an efficient load balance
among controllers is achieved.

7 CONCLUSION

Although the popularity of SDN is increasing, it
is still facing several challenges related to scalabil-
ity and availability. In this paper, we have presented
SMART, a shared memory based architecture to resist
DDoS attacks. Our proposed solution combines tu-
ple spaces and decentralised SDN control plane. In-
deed, using a dedicated tuple space, SDN switches
may store their packet-in requests, which can be ac-
cessed by SDN controllers in a dynamic way. After
processing the packet-in requests, the controller stores
the related flow rule as a tuple in the tuple space which
is retrieved by the switch. In addition to the dynamic
mapping between switches and controllers, the tuple
space can measure the number of packet-in requests
stored by a switch in order to detect any malicious ac-
tivity that triggers a mitigation strategy. Furthermore,
the controller overheads are monitored at runtime to
ensure an efficient load balance among the network
nodes as well as executing a scalability process to add
new controllers when needed. In the future, we aim at
implementing a prototype of SMART and measuring
its performance in deployment scenarios.
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