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Abstract

Driven by the growing data transfer needs, industry and research institutions are deploying 100 Gb/s networks. As such high-speed
networks become prevalent, these also introduce significant technical challenges. In particular, an Intrusion Detection System (IDS)
cannot process network activities at such a high rate when monitoring large and diverse traffic volumes, thus resulting in packet
drops. Unfortunately, the high packet drop rate has a significant impact on detection accuracy. In this work, we investigate two
popular open-source IDSs: Snort and Suricata along with their comparative performance benchmarks to better understand drop
rates and detection accuracy in 100 Gb/s networks. More specifically, we study vital factors (including system resource usage,
packet processing speed, packet drop rate, and detection accuracy) that limit the applicability of IDSs to high-speed networks.
Furthermore, we provide a comprehensive analysis to show the performance impact on IDSs by using different configurations,
traffic volumes and different flows. Finally, we identify challenges of using open-source IDSs in high-speed networks and provide
suggestions to help network administrators to address identified issues and give some recommendations for developing new IDSs
that can be used for high-speed networks.

1. Introduction

Intrusion Detection Systems (IDSs) have played a signifi-
cant role in detecting malicious activities in a network and the
hosts connected to it. IDSs such as Snort, Bro, and Suricata,
are used for identifying potential attacks on today’s networks;
however, there are performance limitations of IDSs with cur-
rently available high-speed networks. There have been several
studies [1, 2, 3, 4] that focus on two main aspects of IDS per-
formance: the first one is to find and reduce factors that affect
IDS performance; the other one is to improve the overall IDS
performance.

Some studies [1, 2, 3] find that IDS performance can be in-
fluenced by various factors such as IDS configuration, the num-
ber of network flows1, and flow durations. For instance, Salah
et al. [1] and Alhomouda et al. [2] discovered that different
Operating Systems (OSs) and platforms could impact IDS per-
formance. Salah et al. [1] found that Snort performs better in
the Linux environment for handling 1 Gb/s traffic. Alhomouda
et al. [2] measured the performance while using Suricata on
FreeBSD for monitoring unauthorised activities with a revvast
volume of background traffic. Hu et al. [3] explored that IDS
performance can be affected by different flows with different
durations.
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1A network flow (a.k.a. flow hereafter) is a group of packets having the
same (i) source and destination IP addresses, (ii) port numbers, and (iii) the
protocol.

Both Snort and Suricata use a regular expression to match
attacker’s patterns in network traffic. However, with the large
traffic volume, matching packet’s data using regular expres-
sions consumes a significant amount of system resources and
becomes performance bottleneck during the packet detection
procedure. Antonatos et al. [5] discovered that in Snort, string
pattern matching consumes 40-70% of the total processing time.
For this reason, some existing studies [6, 7, 8] suggest improv-
ing the regular expression matching architecture in order to im-
prove IDS performance. Yang et al. [7] proposed a novel De-
terministic Finite Automata (DFA) accelerated architecture that
improves the throughput of DFA while managing memory ef-
ficiently. Their solution leverages three Field Programmable
Gate Arrays (FPGA)-based algorithms: Simple State Merge
Tree (SSMT), Distribute Data in Round-Robin(DDRR), and Multi-
path Speculation, which make the serial DFA matching can be
parallelised and pipelined. They tested this architecture in dif-
ferent production environments. Their results show that this
new design improves the processing speed by 108 times.

Hu et al. [3] highlighted the challenges of using the default
IDS packet capturing mechanism and packet detection mecha-
nism in a high-speed network. For instance, they observed less
than 10% packet drop rate when they used a default IDS config-
uration for a 1 Gb/s single flow test network. However, the de-
fault configuration gives an abysmal performance (80% packet
drop rate, 99% CPU usage) when processing multiple flows on
a 2 Gb/s network. After modifying the packet capturing mech-
anism and the packet detection mechanism, their result shows
a significant improvement. The packet drop rate reduced to 1%
and the CPU usage to 11.5%. Campbell and Lee [4] introduced
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a hardware-based solution to reduce the packet detection vol-
ume for each IDS instance. Their solution is a hybrid approach
that uses a set of Bro police scripts on a load-balancing de-
vice to interact with the Bro instances using predefined Appli-
cation Programming Interfaces (APIs). Their solution reduced
the packet detection volume for each IDS instance, while main-
taining IDS accuracy at the high-level of effectiveness.

By reviewing existing studies [7, 3, 4, 2], we discovered that
CPU usage, memory usage, and packet drop rates of an IDS
could be affected by different environments, i.e., packet detec-
tion mechanisms, packet capturing mechanisms, the number of
flows, and hardware specifications. Many studies [7, 3, 4, 9]
have been conducted to improve IDS performance on high-
speed networks. However, existing studies focus on investigat-
ing IDS performance under 20 Gb/s networks or using driver-
dependent module such as PF_Ring [10]. We found that the
performance of open-source IDS under 100 Gb/s throughput
seems not to have received much attention in the literature.

The objective of this study is to understand the feasibility
of popular open-source IDSs, including Snort and Suricata, in
a 100 GB/s network without relying on a new packet captur-
ing mechanism or updating the existing hardware. We would
like to highlight the challenges of these IDSs in modern high-
speed networks and propose optimisations to improve their per-
formance. We list our research questions to fulfil the objective.

There are emerging research questions: do we need a pow-
erful server to run the open-source IDS tool for handling a
high-speed throughput? How much memory and how many
CPU cores required to support a high-performance IDS? What
is the main challenge for running IDS instances and other ap-
plications in parallel? Answering these questions provides per-
formance baseline of the IDSs with different packet capturing
mechanisms in a high-speed network. We also suggest optimi-
sations for IDSs to maximise their performance in high-speed
networks. For example, running IDSs with 60 Gb/s traffic re-
quires a CPU with at least 12 cores to distribute the load from
the IDSs and Network Interface Card (NIC). If an IDS system
does not have enough resources, it may lead the system over-
load and cause an IDS to miss malicious activities [3]. Also, we
need to understand the challenges of using both IDSs in high-
speed networks, such as whether two common packet captur-
ing mechanisms are able to handle 100 GB/s traffic without any
missing any packets. Schaelicke et al. [11] and Ptacek et al.
[12] reported that even a limited packet loss is critical to the
accuracy of IDSs. Further, we would like to investigate the cur-
rent mechanisms used by the existing IDSs, whether the current
packet capturing mechanisms and packet detection mechanisms
can still maintain high efficiency and low packet drop rates un-
der more complex network flows. Besides, both Snort and Suri-
cata have released new versions with some performance im-
provements, so we want to assess if these new versions of IDSs
could be used directly under high-speed network traffic without
any configuration changes.

Research Contributions. In this article, we evaluated the fea-
sibility of using IDS with 100 Gb/s traffic, highlighted the main
challenge of running IDSs in the high-speed networks, as well

as proposed possible solutions. More importantly, we found
that many factors affect IDS performance and packet drop rates
in the high-speed network, such as different traffic volumes,
different flow types and system resource allocation. We sum-
marise our research contributions as follows.

• We assess the performance and accuracy of two open-
source IDSs under different network throughputs. Our
results show that it is not possible to handle 100 Gb/s
traffic using both IDSs with the existing packet capturing
mechanisms, including Libpcap and AF_PACKET. We
noticed the CPU bottleneck with a default configuration
of the IDSs, causing to drop 99.9% packets when an in-
coming throughput reaches to 40 Gb/s. We found that
AF_Packet improved the limitation to 60 Gb/s, but both
IDSs started to drop packets above 60 Gb/s. We also dis-
covered that we can capture 100 Gb/s with eXpress Data
Path (XDP) in Suricata but with a single detection rule;
however, it is not possible to detect any malicious activity
with just a single rule.

• We observed that not only a larger volume of traffic af-
fects the performance of IDSs, but also the complexities
of the multiple flows impact both performance and accu-
racy. For instance, Snort 3.0 adopts the multithreaded ar-
chitecture, which improves CPU usage and reduces packet
drop rates compared to the previous experimental results
[3]. However, when dealing with a large volume of mul-
tiple flows, Snort 3.0 and Suricata 4.1 will suffer from
performance degradation. As a result, the CPU usage
reaches 99% and the packet drop rate becomes as high as
99.9% when handling 33000 multiple flows per second.
As expected, the accuracy of malicious flow detection de-
creases as the packet drop increases.

• Both Snort 3.0 and Suricata 4.1 have improved resource
utilisation compared to their previous versions (including
Snort 2.8 and Suricata 3.1.4) two years ago [3]. For ex-
ample, Snort 3.0 adopted the multithreaded architecture,
which optimises CPU usage and reduces packet drop rates
compared to the previous results from Snort 2.8 [3]. Nev-
ertheless, when dealing with a larger volume of multiple
flows, Snort 3.0 and Suricata 4.1 suffered from compet-
ing for the system resources with other applications. The
major challenge we found in our experiment is to bal-
ance resource allocation among IDS instances, Ipref3 in-
stances, and Soft Interrupt Request(IRQ) instances. Even
though we specified different cores for handling SoftIRQ,
IDSs, and Ipref3 processes, we found CPU usage from
handling SoftIRQ caused to drop packets in Snort and
Suricata. When the CPU cannot handle SoftIRQ from
the NIC, both IDSs began to drop packets.

The rest of this article is organised as follows. We provide
a brief overview of two popular IDSs in Section 2. Section 3
describes our methodology, testing environment, and use case
scenarios. In Section 4, we discuss experimental results with
different IDS configurations. Section 5 shows the significant
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impacts of using existing IDS configurations in high-speed net-
works. We also provide some solutions to improve IDS perfor-
mance. Section 6 concludes this article, provides some recom-
mendations for practitioners, and highlights research directions
for future work.

2. Open-source Intrusion Detection Tools

In this section, we discuss two open-source IDS tools: Snort
and Suricata. Both tools are widely deployed by many organi-
sations [13] to protect their networks. We begin with the de-
sign goals and then describe the architectures of both Snort
and Suricata. It will help us understand why both tools per-
form differently even though both implement a multithreaded
architecture. The other architectural components of an IDS in-
cluding the packet capturing mechanisms and the packet detec-
tion mechanisms will be covered later. The previous studies
[3, 1, 2] mentioned that different packet capturing mechanisms
and packet detection mechanisms can affect IDS performance.
Our goal is to understand these technologies in detail, then test
each of them with suitable configurations in different network
environments.

2.1. Snort

Snort is an open-source signature-based detection tool that
offers both network intrusion detection and mitigation; it comes
with a set of relevant rules and features that detect potential at-
tacks and probes in order to discover security holes. The key
idea of Snort’s design is to make the open-source IDS flexi-
ble enough to configure and deploy in different networks. Un-
like some commercial network-based intrusion detection tools
(such as Cisco Secure IDS, CyberSafe Centrax, and Network
Ice Blackice Defender), Snort allows network administrators to
add customised signatures into the existing rule base. Once a
new signature is created and enabled, Snort will immediately
apply the signature to its intrusion detection process. Snort also
supports passive traps to detect malicious traffic headed to ports
that are not configured with any services in the network. In gen-
eral, network administrators are aware of which services are
available on their network. Therefore, they can specify Snort
rules to watch for traffic that tries to interact with non-existent
services. If any incoming packets attempt to call unused ports
or services, an alert will be generated and logged. For instance,
if a network is not using the File Transfer Protocol (FTP) ser-
vice, network administrators can configure a Snort rule to raise
an ‘FTP Probe’ alert if they detect that the packet intends to
connect to port 21.

2.2. Suricata

Suricata is another open-source IDS, which aims at improv-
ing the protocol identification and introducing the script-based
detection. For the protocol identification, Suricata allows net-
work administrators to define either the protocol type or the
particular port in the rule file. Also, Suricata provides a larger
number of keywords that can be used for matching with pro-
tocol fields. The pattern matching mechanism in Snort only

tests the relevant rules for each incoming packet; there is no
obvious way to check for pattern relationships among the pack-
ets within a flow. In order to check for pattern relationships,
network administrators need to manually compare the previous
information with the current content, which is not possible us-
ing the pattern matching mechanism. Instead of using pattern
matching, Suricata introduces script-based detection and well-
designed data structures for parsing and logging flow informa-
tion for further investigation.

2.3. Design Architecture of an IDS

Packet capture

Packet decoder

Preprocessor

Detection engine

Core 1

Detection engine

Core 2

Detection engine

Core n

Output

.….

Figure 1: The IDS dataflow is composed of five components including packet
capture, packet decoder, preprocessor, detection engine, and the output. The
packet capture component is responsible for capturing packets from the network
interfaces. The packet decoder analyses the Ethernet header to classify whether
the packet is an IPv4 packet or IPv6 and decodes 5-tuple information from the
IP and transport layer header. After decoding, the preprocessor may defragment
packets and assemble TCP data from multiple packets in the same flows. The
core part of IDS is in the detection engine. An IDS runs multiple threads to read
packets from the preprocessor and match them against configured rules. Once
a match is found, the detection engine notifies the logging and alerting system
based on the behaviour defined in the rules. Finally, the system will output the
alert or log accordingly.

In the previous section, we discussed Snort and Suricata
with their primary design goals. For instance, Snort is a basic
signature-based IDS and can be used as a light IDS for solutions
that do not require much customisation. Whereas, Suricata is
designed for more flexible detection solutions to allow network
administrators to customise the script-based detection.

In this section, we will explain how Snort and Suricata de-
tects an attack. Figure 1 illustrates an example of how Suricata
and Snort process incoming traffic with multithread detection
processors. First, IDSs collect packets using a packet acqui-
sition module (libpcap by default) and pass the captured the
packets on to the decoder layer. The decoder layer decodes raw
packets based on the protocol types and passes on to the prepro-
cessor. The preprocessor will defragment packets, reassemble
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TCP flows, and track TCP or UDP sessions. If any anomaly is
detected, the decoder component raises an alert before the de-
tection engine processes the packet. The detection engine is a
core component in an IDS; it is designed to access the packet
contents and identify any malicious behaviour that matches the
detection rules. In the multithreaded mode, network adminis-
trators can configure a number of threads to use and which cores
to use to run those threads. In this case, each thread acts as a
detection engine that processes multiple packets in parallel. If
any malicious behaviour is detected, the IDSs notify the net-
work administrator by raising an alert or drop the packet and
log alert for the output module.

2.4. Packet Capturing Mechanisms

IDSs need to capture packets from the NIC to forward them
to the preprocessor and the main detection engine. Both Snort
and Suricata depend on external packet capturing libraries in-
cluding Libpcap and AF_PACKET. By default, Suricata and
Snort use Libpcap as a default packet capturing mechanism.

Libpcap. Libpcap is a hardware-independent open-source li-
brary that allows network administrators to capture packets from
a NIC. The NIC driver grabs the packets and sends them to the
protocol stack. The OS network protocol stack analyses the
packet and allocates packets to the relevant application. Libp-
cap is located at the boundary of the kernel space where it can
monitor both incoming and outgoing packets from the NIC. The
packet capturing procedure includes three steps:

• Device Initialisation. Libpcap allows network adminis-
trators to call its pcaplookupdev() function to list all net-
work devices, it then uses getifaddrs() to get their IP ad-
dresses and related information. All such network de-
vices are saved in the pcapif list.

• Berkeley Packet Filter (BPF) [14]. This provides a filter
function for the sniffer so that it can forward only specific
packets. The BPF is applied after the driver receives the
packets from the network interface.

• Packet Processing Loop. Snort calls the pcapdispatch()
function from the libpcap library to read packets from the
NIC. Snort then uses a PcapProcessPacket() function to
process each captured packet based on different protocol
types. The packet decoder passes decoded packets to the
preprocessor module for further investigation.

AF_PACKET. AF_PACKET [15] is the Linux native network
socket. Similar to libpcap, AF_PACKET enables network ad-
ministrators to configure a memory buffer for captured packets.
This means that the memory allocated for the buffer is shared
with the capture process, so instead of the kernel sending pack-
ets to the capture process, the process can just read the packets
from their original memory address. This method saves time
and CPU resources.

PF_RING. PF_RING [16] is another high-performance Linux
kernel module that optimises load balancing through the ring

cluster design. In the packet capturing process, the application
copies packets from the NIC to the PF_RING circular buffer.
Then, the IDSs read the packets from this circular buffer. PF_RING
can distribute incoming packets to multiple rings and it allows
multiple applications to process packets simultaneously.

2.5. Packet Detection Mechanisms
Traditionally, an IDS inspects packets deeply by scanning

every byte of the packet; however, several improvements have
been proposed in the last two decades [17, 18, 19, 7]. By re-
viewing studies in the past [20, 17, 18, 19, 7], we found two
packet detection mechanisms that have been used most widely
in the current IDS tools.

2.5.1. Aho-Corasick Algorithm
Aho et al. [20] proposed a simple and efficient algorithm

in 1975 (used in existing IDS tools including Snort and Suri-
cata) that uses a default pattern searching algorithm. In this
approach, they use a pattern matching machine to represent a
predefined language as a set of strings; network administrators
can test whether an input string matches any set of the given
strings. The pattern state machine processes an input text string
and is composed of three functions: a [goto] function, a [fail-
ure] function, and an [output] function:

• A [goto] function constructs a goto graph; the goto graph
starts with a root node that represents a state, 1. Each in-
put keyword is entered into a subsequent node. A search
starts from state 1 and a path through the graph spells out
a keyword. If no failure is detected during the search, the
matched keyword will be passed to an output function.

• A [failure] function is triggered when the [goto] function
reports failure. For example, if a current input charac-
ter is not found in the current node or the sub-nodes on
the same path, the pattern matching machine will call the
[failure] function to search alternative paths for process-
ing the character.

• An [output] function merges duplicated output states into
a new output state.

2.5.2. Regular Expression Signatures
A regular expression mechanism is another signature-matching

algorithm; it uses character classes, unions, optional elements,
and closures to enhance a signature-based IDS flexibility. More-
over, it improves search efficiency by adding effective schemes
to perform pattern matching. A normal regular expression can
be represented by a finite state automaton. In [21], Hopcroft et
al. introduced two finite state automata: a Deterministic Finite
Automaton (DFA) and a Non-deterministic Finite Automaton
(NFA). The DFA takes input symbols and then the transition
function outputs a single next state. Instead of returning a sin-
gle next state, the NFA solution returns a set of states. Exist-
ing studies [17, 19, 7] show that NFAs are compact but slow;
whereas, DFAs are fast but may require more memory while
processing. In the last decade, most studies focused on making
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Table 1: The role, the model, and hardware specifications of each tested device.

Role Model CPU Memory NIC
Sender Dell PowerEdge R740XD 2 x Intel XEON Gold 6126 2.6 GHz, 12 cores per CPU 196 GB Mellanox ConnectX-5 100GE
Receiver Dell PowerEdge R740XD 2 x Intel XEON Gold 6126 2.6 GHz, 12 cores per CPU 196 GB Mellanox ConnectX-5 100GE
Switch Dell Z9100 MPC8541 2 GB Firebolt-3 ASIC

DFAs more efficient, such as [17], where Gong et al. reduced
the construction time, memory and matching time by using a
multi-dimensional finite automaton in the original DFA model.

3. Our Methodology

In this section, we describe our proposed methodology and
test environment. For our experiments, we use three different
methods to generate high throughput traffic. In the first experi-
ment, we verify the performance of IDSs under a controlled en-
vironment and use Iperf3 to generate multiple TCP flows with
a packet size of 1500 bytes. We measured the performance
of each IDS with increasing throughput from 10 Gb/s to 100
Gb/s to test their capability of handling packets in a 100 Gb/s
network. In the second experiment, we measure the detection
accuracy under high throughput traffic along with some mali-
cious traffic. To achieve our goal, we introduce Pytbull, which
is a flexible IDS and Intrusion Prevention System (IPS) testing
framework that covers a broader scope of attacks. We run Iperf3
and Pytbull at the same time to verify whether each IDS can de-
tect the attacks under a certain amount of background traffic. In
the third experiment, we assess the accuracy of each IDS with
real-world traffic. To this end, we use TRex to generate L4 to
L7 traffic based on their real-world traffic templates. We extend
the first and second experiments by testing each IDS and its
packet capturing mechanism with real-world background traf-
fic and some malicious traffic. To conduct our experiments, we
set up a 100 Gb/s testbed with three machines. Our testbed uses
two Dell PowerEdge R740XD servers: one as a sender and the
other as a receiver. Also, we use a Dell Z9100 as a switch con-
necting the two. The hardware detail is specified in Table 1.

3.1. First Experiment: Performance Checking

SwitchSender Receiver

100 Gb/s 100 Gb/s

Installed Ipref3 client Installed Ipref3 server, 
Snort, and Suricata

Figure 2: Two test machines were configured for our 100 Gb/s test environment.
A sender used Iperf3 to deliver large quantities of data. Two IDS tools were
installed on the receiver side to measure IDS performance while monitoring
100 Gb/s TCP flows with a longtime duration.

This experiment aims to evaluate the performance of Snort
and Suricata while processing a TCP flow throughput from 10
Gb/s to 100 Gb/s. As a result, the experiment was set up in
a controllable environment, and there is no background traffic

between two machines. The experiment consisted of a logical
network diagram as shown in Figure 2. Both IDSs installed on
a receiver server. We used Iperf3 to generate the TCP flow with
a packet size of 1500 bytes which is the most common Maxi-
mum Transmission Unit (MTU) size for the commodity Inter-
net. The test starts with a default configuration and rule set.
We used node_exporter with prometheus to monitor the CPU,
memory and network utilisation along with tcpdump to monitor
the packet drop rate. Our previous study [3] shows that differ-
ent packet capturing mechanisms and packet detection mech-
anisms can impact the CPU and memory usage as well as the
packet drop rate. Therefore, in our first experiment, we gener-
ated a single TCP flow for 1800 seconds and measure IDS per-
formance. Based on the result, we modify the packet capturing
mechanisms and the packet detection mechanisms to optimise
the performance. When we find the best combination of the
packet capturing mechanism and the packet detection mecha-
nism, we run the same test 10 times and take an average result.

3.2. Second Experiment: Accuracy Checking

SwitchSender Receiver

100 Gb/s 100 Gb/s

Installed Ipref3 
client, Pytbull

Installed Ipref3 server, 
Snort, and SuricataTroyanos, Spyware, and Virus 

traffic

Figure 3: Two test machines were configured for our 100 Gb/s test environment.
A sender used Iperf3 to deliver large quantities of data and Pytbull to generate
malicious packets in parallel. Two IDS tools were installed on the receiver side
to measure IDS performance as well as the accuracy while monitoring 100 Gb/s
TCP flows.

The second experiment is a stress test to investigate how
accurately the rule set of Snort or Suricata to classify the legit-
imate and malicious traffic under a 100 Gb/s TCP flows. We
set up two experiments to test the accuracy of Snort and Suri-
cata: (i) measuring the false positive rate, the true positive rate,
and the packet drop rate of both IDS tools with malicious traffic
and without any background traffic; and (ii) measuring the false
positive rate, the true positive rate, and the packet drop rate of
both IDS tools with combined legitimate and malicious traffic
at a fixed 100 Gb/s TCP flow. We used a default rule set from
both IDS tools and install Pytbull on the sender (see Figure 3).
We launched 7 test cases to assess if rules defined within the
default rule will detect these attacks. In this test, we analysed
detection accuracy of both Snort and Suricata while process-
ing the legitimate and malicious network traffic under a heavy
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load. If there is any packet drop in this experiment, we want to
investigate whether it affects the IDS detection accuracy or not.

3.3. Third Experiment: Checking Both Performance and Accu-
racy

SwitchSender Receiver

20 Gb/s 20 Gb/s

Installed Trex and 
Pytbull

Installed Snort, and 
Suricata

Troyanos, Spyware, and Virus 
traffic

Figure 4: A sender used Trex to generate different flows with different time
duration. The throughput is configured between 1 Gb/s to 20 Gb/s. Pytbull is
installed on the sender for checking IDS accuracy when we simulate different
throughput. An IDS is installed at the receiver side, it monitors all incoming
traffic.

In the first and second experiments, we built a testbed to
emulate network traffic in a controlled environment, such as
we set up the throughput, the network protocol and the number
of flows. In the third experiment, we tested both IDSs with a
real-world scenario, where we generated packets based on the
live capture from Trex2. Our aim is to analyse the feasibility
of real-time intrusion detection by processing traffic with dif-
ferent packet sizes or different protocols. However, our campus
network only has 2 Gb/s live traffic, which is not sufficient for
our experiment. So, we decided to use Trex to simulate the real
world scenarios, such as the flows contain different protocols,
each flow has a different ending time, and the throughput can
be adjusted based on our requirements. Similar to the previous
experiments, we run our IDS tools at the receiver side (see Fig-
ure 4), it takes all incoming traffic from the sender. The only
difference is that the receiver is not running the Ipref server in
this experiment; as a result, we have more cores to be allocated
to the IDS packet capturing process or the packet detection pro-
cess. Besides, we extend the second experiment by monitoring
flows that contain different protocols.

For each experiment, we measured the following: num-
ber of packets received, number of packets dropped, average
CPU usage, and memory usage. We have not considered hard
disk read or write usage because, in our tests, we were only
writing log information to the hard disk. We verified that the
disk operation cost was very low and that our Hard Disk Drive
(HDD) configuration was fast enough to handle these opera-
tions. Therefore, we decided that an analysis of the HDD usage
was not necessary.

4. Experiment Results

This section presents the results of our experiments described
in Section 3. In each experiment, we monitor performance
factors including CPU usage, memory usage, and packet drop

2https://trex-tgn.cisco.com

rates. We start with the default configuration to compare the
performance of Snort and Suricata using a single 10 Gb/s flow.
Next, we adjust the packet capturing mechanism and the packet
detection to measure the performance difference. For each ex-
periment, we run Snort and Suricata individually and repeat the
experiment multiple times. For our performance results, we
took an average of all the test runs.

Inspired by [22, 23], we collected our comparison data from
the IDS itself and the traffic generators, including IPerf3 and
TRex. Both IDSs provide data on actual attacks and statistic of
the traffic being analysed along with the packet drop rate. We
launched our test in a controllable environment to test Suricata
and Snort with the different packet capturing mechanisms under
different traffic. For each test, we also collected the amount of
ingress and egress of the network traffic as well as the CPU load
and memory usage of the machine the tests were running on.

IDS Performance Checking. We divide our first experiment
into two phases. First, we make a performance comparison be-
tween different versions of IDSs in a 10 Gb/s network. Then,
we put the newer version of IDSs under different throughput
and made a performance check against the default configura-
tion. Furthermore, we adjust the packet capturing and packet
detection mechanisms of the IDSs based on the packet drop
rates. Schaelicke et al. [11] discovered a linear relationship
between packet loss and precision loss in IDSs. The similar
result has been discovered by Ptacek et al. [12], where they
showed that attacks can bypass detection by overloading the
IDS, causing high drop rates and increasing the chances that a
successful intrusion remains undetected. Their results indicate
that any packet loss can directly degrade the effectiveness of
the IDS. In this work, we discard an IDS with a specific packet
capturing mechanism for the further experiment once it starts
losing packets.

The performance comparison results of different versions
of IDSs are shown in Figure 5. The results show that the newer
versions of Snort have improved their performance in terms of
the CPU and memory usage and the packet drop rate in terms
of resource consumption. We notice that Snort 3.0’s CPU us-
age was 11% lower than that of Snort 2.8, its memory usage
dropped from 2% to 0.1% while processing the same 10 Gb/s
TCP flow. Compare to Snort, Suricata’s changes are not sig-
nificant. Suricata 4.0 used 16 cores from the receiver server,
and each core consumed 10% CPU for processing 10 Gb/s traf-
fic. The collected performance data shows that Suricata 4.0’s
memory usage is less than that of Suricata 2.10 as illustrated in
Figure 5. Fortunately, the packet drop rate of Suricata 4.0 had
decreased from 5.9% to 0%.

For testing the performance of newer versions of IDSs in
high-speed networks, we used with Snort 3.0 and Suricata 4.0
with default configurations and generated one TCP flow with a
single 20 Gb/s flow and then two flows with 10 Gb/s throughput
for each.

From our results, we observe that a single 20 Gb/s flow
overloaded the receiver with too many interrupts. As a result,
IDSs dropped a lot of incoming traffic. To reduce the packet
drop caused by the interrupt, we used two 10 Gb/s flows and
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Figure 5: Comparing the performance of the different versions of IDSs: we set up a network environment with a 10 Gb/s TCP flow. The name of each title in the
table is defined based on the following naming convention: IDS name, version number, test environment, and the packet capturing mechanism. For instance, if we
test Snort 3.0 in a 10 Gb/s network to assess IDS performance using Libpcap then we call this test Snort3.0_10 Gb/s Libpcap.
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Figure 6: Performance comparison between the new version and old version of IDSs having 20 to 60 Gb/s TCP flows, 10 Gb/s per flow using different packet
capturing mechanisms: The left side of the y-axis shows CPU usage, and the right side indicates the packet drop rate. Overall, Snort 3.0 and Suricata 4.1 show a
high-performance result when AF_PACKET was used as a packet capturing mechanism. Memory utilisation throughout the experiments stays at 10%.
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used the Receiver-Side Scaling (RSS) to spread hardware in-
terrupt. We further increased the throughput by increasing the
number of 10 Gb/s flows.

We started the throughput from two 10 Gb/s flows and mea-
sured CPU, memory, and packet drop rate when using Libpcap
and AF_PACKET. We removed an IDS with a specific packet
capturing mechanism from further experiments when it starts
dropping packets because a small percentage of packet loss can
cause IDSs to lose track of the potential attacks [11]. We also
want to compare the absolute performance of each IDS with
different packet capturing mechanisms in terms of their capa-
bility of processing throughput without packet loss. When we
tested Suricata with three 10 Gb/s throughput, we discovered
that Libpcap had 1% drop rate and we removed the Suricata
with Libpcap from the experiments with more number of flows.
Fortunately, Suricata with AF_PACKET did not lose any packet
until the throughput reaches 60 Gb/s.

Based on Figure 6, we find that the Libpcap was not satis-
factory when the throughput is over 40 Gb/s. Therefore, we de-
cided to use AF_PACKET as the packet capturing mechanism
for Snort and Suricata to monitor the traffic over 40 Gb/s. Af-
ter applying AF_PACKET, Suricata’s average CPU increased
to 60% while monitoring 50 Gb/s traffic, and the packet drop
rate decreased to 0%. We use the same packet capturing mech-
anism in Snort 3.0, the CPU utilisation of Snort is higher than
Suricata 4.0 while processing traffic under 50 Gb/s throughput.
Snort’s CPU consumption was 94% along with 0% packet drop
rate. We tried up to 60 Gb/s because we observed some packets
being dropped. However, we discovered that Snort and Suricata
do not accurately reflect the packet drop rate from the network
layer aspect. For example, when we tested IDS performance
using the 60 Gb/s throughput, both Snort 3.0, and Suricata 4.0
showed that the packet drop rate was 0% with AF_PACKET.
After we deeply analysed how many packets were sent from the
sender, we found that the receiver side lost about 0.01% traffic.

All in all, our results statistically displayed the process with
TCP flows under different throughput and resource overheads.
It clearly shows that when the throughput starts to increase, an
IDS consumes more resources to maintain the low packet drop
rate.

Snort3.0_60 Gb/s AF_PACKET
Suricata4.1_60 Gb/s

AF_AF_PACKET

CPU usage 98% 65%

Memory usage 0.10% 0.10%

Drop rate 0.01% 0.01%
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0%

20%

40%

60%

80%

100%
Malicious traffic accuracy (%) with 6 TCP flows, 10 Gb/s each

P
e

rf
o

rm
an

ce
 u

ti
lis

at
io

n
 (

%
)

Figure 7: Evaluating the accuracy of both IDSs under 60 Gb/s throughput using
Pytbull to generate the same attacks for both Snort and Suricata.

IDS Accuracy Checking. In the second experiment, we ex-

plored how accurately Snort 3.0 and Suricata 4.0 can classify
the legitimate and malicious traffic under 60 Gb/s throughput.
We used Pytbull, an open-source IDS test framework to test spe-
cific attack scenarios. Each attack scenario assesses the default
rule set in Snort 3.0 and Suricata 4.0 and targets the relevant
alert. We ran both IDSs with the default rule set and configu-
rations. The attack detection rates of both IDSs are shown in
Figure 7. The difference between both IDSs is minimal. Suri-
cata detected all the malicious traffic using the default rule set;
whereas, Snort missed a few anomaly packets. This difference
suggests that Snort needs to add those missed rules to its default
rule set. Moreover, from the performance aspect, the second
experiment produced the same performance results as the first
experiment for processing 60 Gb/s traffic. This result shows
that the accuracy of IDSs is not affected when there is less than
15% of packet drops. Actually, IDSs can maintain a good bal-
ance between accuracy and performance with a simple network
environment.

IDS Performance and Accuracy Checking. The third ex-
periment focused on testing performance and accuracy while
processing multiple flows with different throughput. We used
Trex, an open-source traffic generator, which can be used to
generate Layer 4 (transport layer) to Layer 7 (application layer)
traffic based on preprocessing and replay the Libpcap file that
contains real traffic. We evaluated the performance of Snort
3.0 and Suricata 4.0 under different throughputs (20 Gb/s to
60 Gb/s). To this end, we used Trex to generate flows using
different packet sizes, different protocols, but with the same
flow duration. From our existing study [3], we showed there
is a performance bottleneck when processing a large number
of multiple flows using default configurations in Snort. So, we
would like to see if this performance issue has been addressed
by using the multithreaded architecture in Snort. We observed
that both Snort 3.0 and Suricata 4.0 show the CPU and memory
overheads along with high packet drop rates while processing
more than 33000 flows per second, where the flow duration was
40 milliseconds.

We started with the default configuration (the packet cap-
turing mechanism is Libpcap, and the packet detection is Aho-
Corasick (AC)) and observed that Suricata used 16 cores and
consumed 99% CPU per core. The same behaviour was found
in Snort 3.0; it consumed 100% of 16 cores to process the same
size of traffic. When Trex stopped sending traffic, we stopped
the Snort and Suricata instances manually, and we found that
the packet drop rate was close to 100% when Libpcap was used.
To understand whether IDS performance can be improved by
modifying the packet capturing mechanism and packet detec-
tion mechanism, we launched different experiments with dif-
ferent configurations. The best result from these experiments is
with AF_PACKET in Suricata. Our results show that the packet
drop rate of Suricata is down to 68% after using AF_PACKET.
As for Snort, no matter whichever combinations we choose,
Snort’s performance showed no difference.
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5. Discussion

First, we explain the limitations of existing IDSs, then we
discuss insights from the experiment. We found a large volume
of multiple small flows can impact the CPU and memory us-
age as well as lead to the higher packet drop rate. The packet
detection mechanisms require more memory to process traffic
with the predefined rule set in the high-speed network. The ex-
isting packet capturing mechanisms have a packet loss issue.
To sum up, IDS performance can be affected by the number of
multiple flows as well as the high throughput. As a result, sys-
tem resources are completely exhausted, and there is no way to
handle new requests. To address these problems, we provide
some possible solutions. First, we suggest a load balancing
mechanism, where multiple flows from a high-speed network
can be distributed to a collection of IDS instances, each one
processing 13000 flows (about 2 Gb/s network traffic) per sec-
ond. Second, we suggest using efficient regular expression al-
gorithms for reducing the cost of matching the packet payload
with the predefined rule set. Moreover, we highlight the im-
portance of enabling the Data Plane Development Kit (DPDK)
as a new capturing mechanism; we provide some data to prove
that DPDK can significantly increase traffic throughput while
incurring a lower performance cost in Section 5.1.

In our study, we did not consider Zeek3 due to the follow-
ing reasons. First, Zeek only supports Libpcap and PF_RING;
however, due to the limitation of our experimental environ-
ment, we do not have a PF_RING module installed on our test
servers. Second, from the previous studies [3, 24], we learned
that the multithreaded Suricata is better than a single-threaded
Snort while processing a larger volume of traffic. However,
with Snort3.0, a multithreading framework has been enabled.
Therefore, we want to compare Snort and Suricata’s perfor-
mance again and check if Snort’s performance improved with
multiple threads. Third, after we finished the experiment, we
found that Suricata released the latest version 4.1.4. In this ver-
sion, Suricata includes extended BSD Packet Filter (eBPF) and
XDP support. With this new feature, Suricata can directly exe-
cute in kernel context, before the kernel itself touches the packet
data, which enables the packet capture processing at the earli-
est possible point after a packet is received from the hardware.
Leblond [25] finds a decrease in the packet drop rate after en-
abling eBPF and XDP in Suricata 4.1.4. Their experiment re-
sults motivated us to use the new Suricata 4.1.4, and then repeat
our previous experiments. As we observed before, Suricata be-
gan to drop packets when there is no enough time for CPU cores
to process SoftIRQ from the NIC. By enabling eBPF and XDP
in Suricata 4.1.4, we can reach 79.4 Gb/s throughput, but at
the same time, we observe that Suricata dropped 0.81% of total
packets.

Inspired by [25], we increased the number of Suricata threads,
binding them to specific cores to avoid overloading cores han-
dling SoftIRQ from the NIC. As shown in Figure 8 and Figure
9, we found the performance of Suricata is CPU intensive. Fig-
ure 8 shows Suricata processed 100 Gb/s traffic when we only

3https://www.zeek.org
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Figure 8: Comparing Suricata’s CPU usage with SoftIRQ’s CPU usage when
enabling one detection rule from the Suricata configure file. Suricata can mon-
itor 100 Gb/s traffic with 0% drop rate, also the CPU of Suricata was stable at
60% while processing a single rule file. Each coloured line represents the CPU
usage of a core.
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Figure 9: Comparing Suricata’s CPU usage with SoftIRQ’s CPU usage when
enabling all detection rules in the Suricata configure file. When the Suricata’s
CPU reached 80%, the network throughput dropped to 89 Gb/s along with 62%
traffic dropped by Suricata. The CPU usage was unstable between Suricata and
SoftIRQ, thus requiring Suricata to use more CPU resources to process all the
rules. Each coloured line represents the CPU usage of a core.

enabled a signature rule. In contrast, after used all the signa-
tures in the configure file, the throughput dropped to 89 Gb/s
and discarded 62% packets. The reason for the high CPU usage
and packet drop rate is that each Suricata instance is processing
each packet against 300000 different signatures. The existing
optimisations cannot allow IDSs to handle 100 Gb/s networks.
The CPU gets overloaded and there are not enough CPU cycles
to process new incoming packets. We also observed a signif-
icant packet drop when both IDS’s processes and SoftIRQ are
handled by the same CPU core. On the receiver machine, we
allocated half of the CPU cores (i.e., 12 cores) for the IDS pro-
cesses and another 12 cores for SoftIRQ. As shown in Figure
9, when all detection rules were enabled, it causes high CPU
utilisation for each core to load and analyse each rule. While
there is no enough time for the CPU cores to process SoftIRQ,
the packets from the NIC cannot be handled and dropped before
delivered to the process. As a result, we observe 62% of packet
drop rate with 80 Gb/s traffic. To sum up our observation, we
find that Suricata can not properly handle 100 Gb/s traffic by
enabling all the detection rules. Second, the CPU overload will
impact the IDS packet drop rate. To resolve the performance is-
sue, we suggest to upgrade the hardware by adding more cores.
As a result, we will have more CPU cores to allocate processes
for Suricata, SoftIRQ, and NIC.

5.1. Recommendations

Our objective in this study is to find out how to improve
performance of current open-source IDSs using recently de-
veloped techniques including data processing approaches and
packet capturing mechanisms. In this section, we make three
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recommendations that might help IDS developers as well as the
system administrators in deploying Suricata and Snort in high-
speed networks.

Data Distribution. We discovered that 5G multiple flow traf-
fic is too much for a single IDS instance to handle. To this end,
we can divide the 5G traffic into smaller pieces, each of which
can be handled by a single IDS instance. In the case of us-
ing a Software-Defined Networking (SDN) and an IDS cluster,
network administrators can easily filter out the traffic based on
the network protocols, source, and destination addresses, port
numbers, and then pass on the traffic, which can effectively be
processed by a single IDS instance, such as 2 Gb/s traffic for
each instance. The IDS cluster contains dozens or hundreds of
IDS instances, each instance analysing a fraction of the overall
traffic volume. To achieve this, OpenFlow [26] can extract traf-
fic based on a predefined network protocol, while at the same
time, network administrators can scale the IDS instances based
on the traffic volume. Another approach to reducing the vol-
ume of data could be checking particular flows, for example,
only assessing TCP, UDP, or HTTP flows.

Regular Expression Matching Algorithm. For a signature-
based IDS, a regular expression matching algorithm is widely
used for identifying application protocols and detecting net-
work attacks. However, a major bottleneck in the existing al-
gorithm is that most IDSs inspect each byte from incoming
packets. This causes high CPU usage and memory consump-
tion. Based on our results, besides Becchi et al.’s [18] discov-
ery, the current processors are not powerful to match regular
expression at 10 Gb/s or more. In order to capture network traf-
fic on a 100 Gb/s link, several works [19, 7, 6, 8] proposed a
hardware acceleration solution. For instance, Matoušek et al.
[19] used the multi-striding technique and pipelined finite state
machines in hardware to allow the existing IDS architecture to
handle hundreds of Gb/s. In their solution, the pipelined au-
tomata directly mapped to the Field Programmable Gate Ar-
rays (FPGAs). Their results show that increasing the num-
ber of automata in the pipeline can improve the packet capture
speed to 100 Gb/s. Besides, they used a single input packet
buffer to reduce memory consumption. Another study [7] ad-
dressed the performance bottleneck by optimising the through-
put of Deterministic Finite Automata (DFA). Yang et al. [7]
proposed an ultrahigh-throughput DFA accelerated architecture
that brings all advantages from three FPGA-based algorithms:
Simple State Merge Tree (SSMT), Distribute Data in Round-
Robin (DDRR), and multi-path speculation. In order to reduce
memory consumption by the DFA transition table, they used
a classical compression algorithm to compress the table. The
results showed that in most cases the memory usage of each
rule set is less than 15% of the total resources as well as im-
proving Bro’s processing speed to handle 100 Gb/s throughput.
These studies [19, 7] indicate that by changing regular expres-
sion matching engines and combining some accelerated hard-
ware, existing IDSs can efficiently handle 100 Gb/s throughput
while maintaining the system resource efficiency.

Packet Capturing Mechanism. DPDK creates a set of data

plane libraries and network interface controller drivers for pro-
viding efficient ways to handle packets in the user space. DPDK
allows userland applications to access packets directly from the
NIC, avoiding existing network protocol stacks in the OS. For
packet processing applications that do not need to rely on the
existing network stack, DPDK minimises processing resources
required to access packets.

As Wu et al. [27] reported in their study, it is possible to
accelerate the packet processing in 100 Gb/s with almost no
packet loss. The study shows that with 1500 bytes UDP pack-
ets can be processed at 8Mpps (i.e., 90 Gb/s) without packet
loss, with a maximum of 24 GB memory and six 3 Gb/s CPU
cores. Although this may throttle down to 70% drop rate with
packets smaller than 64 bytes due to an increase in the number
of packets and thus the processing overhead, it may still provide
significant benefits to any packet processing system, including
IDSs. Furthermore, XDP [28] can improve the packet process-
ing within the GNU/Linux kernel up to 24 Mpps per each 3.6
GHz CPU core.

In an IDS, it will require much more processing power to
analyse packets with traditional signature-based detecting mech-
anism. There will be an overhead when using XDP which has to
copy packets to the user space and do context switch as the IDS
runs in user space most of the time while XDP uses eBPF in
kernel space. However, optimising the packet capturing mech-
anism will still provide an initial step to significant performance
improvement and multithreading the packet processing will fur-
ther improve IDS performance.

6. Conclusions and Future Work

In this work, we evaluated the feasibility of using IDSs in
high-speed networks by analysing the performance of two pop-
ular IDSs using up to 100 Gb/s links. The experiment results
from Section 4 show that the multithreaded architecture can
significantly improve IDS performance as well as reduce the
packet drop rate. Further, both IDSs show better performance
when processing traffic under 60 Gb/s. We noticed some pack-
ets have been dropped when we configured the throughput to 60
Gb/s. In terms of accuracy, IDSs show a high accuracy even if
some packets are dropped. Also, we found that IDSs and the re-
ceiver cannot run in parallel on the same server, because it will
cause the system’s SoftIRQ to get overloaded. Once SoftIRQ is
exhausted, the receiver side starts to drop the packets. As a re-
sult, we cannot generate traffic up to 100 Gb/s. Furthermore, the
performance becomes worse if we start to increase the number
of flows per second. Our findings show that Snort and Suricata
are not able to handle network throughput higher than 5 Gb/s,
which reflects 30000 multiple flows per second. All packets
have been dropped when the resource is overloaded. We high-
lighted some solutions to optimise the resource overhead, re-
duce the packet drop rate, and improve the detection accuracy.
For example, we suggest to add a load balancing mechanism
in the existing IDS infrastructure, where multiple flows from a
high-speed network can be distributed to a collection of IDS in-
stances, each one monitors 2 Gb/s network traffic that indicates
13000 multiple flows per second. Moreover, we highlight the
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importance of enabling DPDK as a new capturing mechanism;
DPDK creates a set of data plane libraries and network interface
controller drivers for providing efficient ways to handle packets
in the user space. Wu et al. [27] reported in their study that it
is possible to accelerate the packet processing in 100 Gb/s with
almost no packet loss.

With this study, we explore some new topics that can be in-
vestigated in the future. First, we would like to study the effect
of flow duration on IDS performance. For example, we config-
ure a different number of long-lived flows or a different number
of short-lived flows in our experiment and observe the changes
in IDSs from the performance perspective. Second, we can in-
vestigate SDN techniques such as the use of SDN switches for
distributing the traffic based on the predefined network protocol
that will help in better monitoring of each IDS instance and re-
duce overheads. Third, we will configure the network interface
to use the PF_RING library, and then to repeat the same test
scenarios. We then can compare the performance among Snort,
Zeek, and Suricata and check any performance improvement by
using PF_RING. Last but not least, we also try to find out why
the IDS report does not truly reflect the network packet drop
status.
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