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Abstract

In the Public Key Infrastructure (PKI) model, digital certificates play a vital role in securing online communication. Communicating
parties exchange and validate these certificates and the validation should fail if the certificate has been revoked. However, some
existing studies [1, 2] raise an alarm as the certificate revocation check is skipped in the existing PKI model for a number of reasons
including network latency overheads, bandwidth costs, storage costs and privacy issues. In this article, we propose a Certificate
Revocation Guard (CRG) to efficiently check certificate revocation while minimising bandwidth, latency and storage overheads.
CRG is based on OCSP, which caches the revocation status of certificates locally, thus strengthening user privacy for subsequent
requests. CRG is a plug and play component that could be installed on the user’s machine, at the organisational proxy or even in
the ISP network. Compared to a naive approach (where a client checks the revocation status of all certificates in the chain on every
request), CRG decreases the bandwidth overheads and network latencies by 95%. Using CRG incurs 69% lower storage overheads
compared to the CRL method. Our results demonstrate the effectiveness of our approach to improve the certificate revocation
process.

1. Introduction

Online transactions are becoming more ubiquitous nowa-
days. In today’s Public Key Infrastructure (PKI), the Secure
Socket Layer (SSL) or Transport Layer Security (TLS) is the
most widely deployed protocol for securing online communi-
cation. It offers mutual authentication and establishes a secure
channel that provides encryption for end-to-end communica-
tion over the Internet. There are a wide range of services that
use SSL/TLS, such as secure web browsing (i.e., HTTPS), se-
cure virtual communication (i.e., VPNs) and secure file transfer
(i.e., SFTP).

The SSL/TLS protocol is based on certificate validation,
which takes place before establishing the secure channel. This
validation fails if any certificate in the certificate chain (involv-
ing root, intermediate and leaf) is revoked, which could be due
to compromised or stolen private keys or fraudulent issuance
[4, 5]. There are serious security consequences if the revoca-
tion process is incomplete or poorly-implemented, for instance
a leaf certificate could enable attackers to easily eavesdrop the
communication until the certificate is expired. The situation is
even worse when it comes to an intermediate (or root) certifi-
cate because it allows attackers to issue ‘valid’ certificates for
any domain. Therefore, it is essential to check certificate revo-
cation during the certificate validation process.
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In 2014, more than 80,000 certificates were affected by the
Heartbleed bug [6]. Since then, certificate revocation check-
ing has become more pressing to eliminate the possibility of
establishing a secure channel using a revoked certificate, thus
preventing any man-in-the-middle attack. There are two com-
monly used methods to check certificate revocation, namely
Certificate Revocation List (CRL) and Online Certificate Sta-
tus Protocol (OCSP). The CRL method allows clients to fetch
a list of revoked certificates while the OCSP method responds
with the status of a certificate when requested. There is also an
extension of OCSP, called OCSP Stapling, that allows clients to
pull the revocation status from the application server instead of
the OCSP server, thus reducing network latency by saving an
extra round-trip.

Most recent studies [1, 2] have examined the revocation
checking in all major browsers. They find that many web browsers
check certificate revocation with the pre-defined conditions. Liu
et al. [2] show that CRLSet1 contains revoked certificates is sur-
prisingly low (0.35%) from their experiments. Google Chrome
uses a CRLSet instead of the recommended methods for check-
ing certificate revocation. Firefox only checks leaf and Ex-
tended Validation (EV)2 certificates that contain the OCSP re-
sponders. Some desktop browsers bypass the leaf certificate
revocation checking if the revocation information cannot be
found in an issued certificate. Worse, mobile browsers do not
perform certificate revocation checking. The main reason be-
hind that could be extra network latency, bandwidth costs, stor-

1CRLSet contains a list of revoked certificates. Typically, CRLSet is
made public. Through a public URL, CRLSet could be fetched periodically
by Chrome.

2Extended validation is a mechanism for CAs to assert that the identity
verification process has followed a set of established criteria.
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age overheads, or even privacy risks. Unfortunately, bypassing
the certificate revocation check can result in session hijacking
and unauthorised issuance of new certificates.

Over the last two decades, there has been a lot of work
[7, 8, 9, 10, 11, 12, 13] on the effectiveness of certificate revo-
cation and associated privacy concerns. In [7], Topalovic et al.
suggested using short-lived certificates. However, their design
results in high bandwidth overheads due to the hassle of fetch-
ing new certificates valid only for a short span of time. Kocher
[8] proposed a tree-based approach for checking certificate re-
vocation, requiring high computational cost at the client end.
There are also some other solutions, but most of those solutions
[9, 10, 11, 12, 13] required changes in the legacy infrastructure.

In this article, we propose a new certificate revocation method:
Certificate Revocation Guard (CRG). CRG is based on OCSP
and caches the certificate revocation status locally. It takes ad-
vantages of both OCSP and CRL methods. It saves bandwidth
cost, network latency and storage cost when compared with
OCSP and CRL. Due to local caching, CRG improves user pri-
vacy by not sending every OCSP request to the revocation man-
ager. We emphasise that CRG does not require any changes in
the legacy infrastructure and can be installed on the user’s ma-
chine, at the organisational gateway/proxy or even in the ISP
network.

This article extends our initial work [3]. Compared with our
4-page conference paper [3], this article provides more details
on performance issues in existing revocation mechanisms and
explains the factors that cause users not to use the existing revo-
cation mechanisms. Further, our previous work only considered
the feasibility of using CRG from the performance perspective.
Moreover, we provide a complexity analysis of CRG. In this
work, we have put more considerations on how to deploy this
CRG in various environments (such as from the client end, the
middlebox, and the service provider end), as well as the pri-
vacy and security challenges we may face and how to properly
mitigate these challenges. Also, a comprehensive comparison
between our solution and the existing techniques has been dis-
cussed. We analysed the advantages and disadvantages of using
each solution in terms of performance and deployment costs. In
what follows, we highlight some new contributions in this arti-
cle.

• We discuss the feasibility of deploying CRG in the cur-
rent infrastructure. The advantages and disadvantages of
each deployment scenario are listed, and feasible solu-
tions are proposed.

• We explain privacy and security concerns. For instance,
CRG does not interact with the revocation manager for
every request. After making the first request to the re-
vocation manager, the OCSP response is cached for a
certain period in which it remains valid. Consequently,
CRG will not disclose user activities to third parties. Be-
sides, we describe how CRG could defend against the
most common attacks. Our security analysis shows that
the proposed approach is secure.

• We provide a comprehensive comparison between CRG

and the existing techniques. Based on the efficiency, pri-
vacy, and some other parameters, we find CRG is more
effective than other solutions and easier to deploy as well
as it does not require changes in the existing infrastruc-
ture.

The remainder of this article is organised as follows. In
Section 2, we provide some background and explain the lim-
itation of using existing methods. Our new solution, CRG, is
explained in Section 3. Section 4 analyses performance and
complexity of CRG. Section 5 discusses privacy and security
concerns. Different deployment scenarios and performance im-
provements are covered in Section 6. In Section 7, we review
related work and provide a comprehensive comparison between
our solution and existing solutions based on network resource
consumption, privacy, and deployment cost. Finally, in Sec-
tion 8, we conclude this article and provide research directions
for future work.

2. Background

There are a number of studies, such as [14] and [15], show-
ing that many applications (such as online banking apps, VPNs,
and web browsers) use SSL/TLS for establishing a secure chan-
nel to exchange sensitive information. The main goal of this se-
cure channel is to offer mutual authentication and preserve in-
tegrity and confidentiality of exchanged information. Basically,
SSL/TLS allows clients to verify identity of the target server
before establishing any private communication. SSL/TLS falls
under PKI, which we briefly review in this section. In particu-
lar, we describe a digital certificate, which is the core of PKI.
We also explain how a digital certificate is issued, verified and
revoked.

Digital Certificate. A digital certificate is used as a key com-
ponent that binds a subject’s ID to its public key. It consists of
a number of fields including, but not limited to:

• the subject’s name;

• the subject’s public key;

• the certificate issuer, a.k.a. the Certificate Authority (CA),
an authorised entity that issues digital certificates;

• a serial number that uniquely identifies the digital certifi-
cate;

• validity period indicating start and expiration dates of the
certificate;

• a certificate chain, building a chain of certificates up to
the root CA, which is a trust anchor3 in the PKI model;
typically, there are three types of digital certificates: a
leaf, an intermediate and a root CA, where latter two
types are part of the certificate chain; and information
about the authority that manages revocation information.
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Figure 1: A basic overview of the PKI model indicating certificate issuance and
revocation as well as showing SSL/TLS certificate exchange and validation.

Certificate validation is an essential part of SSL/TLS. While
validating a certificate, it is also important to check certificate
revocation. Basically, a certificate might need to be revoked
before its expiry if the private key corresponding to the certifi-
cate is compromised or stolen. If not revoked properly, leaf
and intermediate certificates with compromised/stolen private
keys can result in session hijacking and unauthorised issuance
of new certificates, respectively.

There are two commonly used methods for disseminating
information about certificate revocation: CRL and OCSP. Ide-
ally, as part of certificate validation, the certificate revocation
status must be checked.

Figure 1 illustrates the model and visualises the problem.
As we can see in the figure, a CA issues a certificate to an Ap-
plication Server (Step I). If requested, the CA can revoke an
issued certificate and publishes a CRL (Step II), which is man-
aged by the Revocation Manager. In our model, we assume
that the revocation manager manages both a CRL server and an
OCSP server.

In Figure 1, dotted lines represent the certificate issuance
and revocation workflow while solid lines show the sequence of
establishing an SSL/TLS connection. In SSL/TLS, a Client (a
web browser) sends a Client Hello message (Step 1) to request
a new SSL/TLS connection. The application server responds
with a Server Hello message (Step 2) followed by a server Cer-
tificate (Step 3). After receiving a certificate, the client validates
the certificate. However, as reported by some studies [2, 16],
some clients miss the certificate revocation check as we can see
in Figure 1.

In the following, we describe both certificate revocation meth-
ods and discuss advantages and disadvantages of each one.

2.1. Certificate Revocation Lists (CRLs)
A CRL contains a list of revoked certificates [17]. Each

CRL entry represents a serial number, a revocation timestamp

3A list of trust anchors is shipped with Operating Systems (OS).

and a revocation reason (optional) for the revoked certificate. In
this method, CAs embed the CRL’s URL in each released cer-
tificate, which can be downloaded by the client. The CRL file
helps the client to check whether the current certificate’s serial
number is listed in that CRL. Every CRL has an expiration date
that allows the client to cache the CRL file until it expires. This
method requires CAs to periodically re-issue a new CRL, even
if it is not updated. If the cached CRL expires, the clients must
download an updated CRL file. The major limitations of this
method include high bandwidth, network latency and storage
overheads for the client.

2.2. Online Certificate Status Protocol (OCSP)

As an alternative solution to CRLs, OCSP [18] reduces band-
width and storage overheads by allowing clients to query an
OCSP server for the revocation status of a single certificate.
Similar to CRLs, the OCSP server’s URL can be found in the
issued certificates. The client sends an HTTP GET request to
the OCSP server for querying the status of the given certificate.
There are three different types of OCSP status responses: good,
reject and unknown, indicating that a certificate is not revoked,
it is revoked or the OCSP server does not know about the cer-
tificate being requested. This method has its own drawbacks.
The client queries the certificate revocation status every time
instead of caching the list of revoked certificates, thus increas-
ing the latency as well as privacy risks [7].

Using OCSP, the privacy of users could be compromised in
a sense that it requires the client to contact an OCSP server for
each SSL connection. To solve the privacy issue, there is also an
extension of OCSP that allows clients to get the certificate status
directly from the application server. This new method is called
OCSP Stapling [19] in which the application server queries the
OCSP server and caches the status of its own certificate. The
OCSP stapling method solves the privacy issue in OCSP and
reduces the latency. However, this extension is not supported
by all the servers. Second, this extension still increases some
bandwidth and latency because an application server has to send
back the OCSP status to the client, which reports the certificate
revocation status. Besides, for long distance TCP sessions, the
session latency increased if the sessions need multiple round
trips.

3. Proposed Solution

In this article, we propose CRG that aims at addressing
problems associated with CRL and OCSP methods. The ba-
sic workflow of CRG is outlined in Figure 2. As we can see,
both certificate issuance (Step I) and CRL publication (Step II)
stay the same. Besides, there is no change in the SSL/TLS flow.
That is, we do not require any modification in the SSL/TLS pro-
tocol so steps 1, 2 and 3 are the same as already illustrated in
Figure 1. However, CRG intercepts the Certificate message of
the SSL/TLS protocol (Step 3) and consults its status with the
Revocation Manager (Step 4), which returns either valid or re-
voked (Step 5). If the status is valid, CRG sends (Step 6) the
original certificate it received in Step 3. If the certificate has
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Figure 2: Basic overview of our proposed approach in which CRG intercepts the SSL/TLS Certificate message (Step 3) and consults the certificate revocation status
with the revocation manager (Step 4). CRG caches the response (Step 5) and, depending on the valid or revoked certificate, sends either the original or a fake
certificate (Step 6) to the client, respectively.

been revoked then CRG has to communicate this information
to the client. It is important to mention that we do not modify
the underlying protocol between the client and the application
server. Instead, we generate a fake certificate to indicate that
the certificate is not valid anymore. In other words, the fake
certificate is such that its validation on the client will fail.

Certificate Revocation Guard (CRG). Figure 3 provides a
detailed view of CRG. As we can see, CRG is decomposed into
four main components: Certificate Checker, Certificate DB,
Certificate Validator and Certificate Modifier. From the de-
ployment point of view, CRG could be installed on the user’s
machine, at the organisational proxy or even at the ISP. Each
deployment choice has possible trade-offs that are discussed in
detail in Section 6. The functionality of each entity is described
below:

Certificate Checker. We define the certificate checker as a
core component in our design. It is an interface between the
application server and rest of the components in CRG. It is
responsible for intercepting the SSL/TLS certificate messages.
After intercepting a certificate message, for each certificate in
the certificate chain (except root certificates), it checks whether
the certificate is valid or revoked. One challenge of using the
certificate’s serial number as the search key is that the serial
number may not be unique. To achieve this, CRG uses the
certificate’s serial number and the certificate’s issuer informa-
tion for classifying the different certificates with identical serial
numbers.

For each certificate, there are two possibilities: either the
certificate is an existing one, meaning its status was already
cached recently, or it is a new certificate (or an existing one
with expired caching time, which is explained later). The for-
mer case saves CRG bandwidth and reduces the latency. There-
fore, it first checks with the certificate DB. In the latter case, it
has to request the certificate validator for checking the revoca-
tion status. In either case, it sends the certificate chain together
with a revocation decision to the certificate modifier. The deci-
sion is considered yes if the status of all the certificates in the
certificate chain is valid. Otherwise, the decision will be no.

Certificate DB. The certificate DB creates and manages the
revocation information for each requested certificate. For each
certificate entry, the database maintains the following fields:
the certificate’s serial number, the revocation status, the next
update time when the revocation status needs to be checked
again, the certificate type, frequency of request (indicating how
many times a certificate has been requested) and the certificate
issuer as depicted in Table 1. We assume that the certificate
DB is populated based on requests by the certificate checker.
From the configuration point of view, CRG is flexible enough.
Specifically, it is possible to allocate a certificate DB of a certain
size. In that case, the certificate DB has to be downsized once
it approaches the configured size limit. To this end, we have
different choices. One straightforward choice is to remove en-
tries with a lower frequency of requests, because they are less
likely to be requested again. We can also filter based on cer-
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Figure 3: A detailed view of CRG: in case of a new certificate, the Certificate Checker intercepts the SSL/TLS Certificate message (Step 3), consults the Certificate
DB (Step 3a) before forwarding the Certificate Revocation Request to the Certificate Validator (Step 3b). The Certificate Validator requests the certificate status
(Step 4), gets the status (Step 5) and sends the response to the Certificate Checker (Step 5a). The Certificate Checker updates the Certificate DB and forwards the
decision together with the certificate (Step 5c) to the Certificate Modifier, which can send the original or faked certificate to the client (Step 6).

Table 1: An example of a database with cached certificates, each one identified with a serial number, stored with its revocation status (valid or revoked), next
update time when the Revocation Manager needs to be contacted again, certificate type (leaf or intermediate), frequency of request and certificate issuer.

Serial Number Revocation Status Next Update Time Certificate Type Frequency
of Request

Certificate
Issuer

123456789 Valid 25-04-2016 Leaf 50
GeoTrust

Global CA

345678912 Revoked 28-04-2016 Leaf 40
GeoTrust

Global CA

781234567 Valid 30-04-2016 Intermediate 120
GeoTrust
Root CA

116890045 Revoked 29-04-2016 Intermediate 100
Baltimore

CyberTrust Root
... ... ... ... ... ...
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tificate type, next update time, revocation status or certificate
issuer. In case of filtering based on certificate type, we can
remove entries with leaf certificates assuming intermediate cer-
tificates will be requested more frequently. Another potentially
attractive choice is removing all entries where next update time
has been reached (or is about to be reached). Likewise, we can
choose either valid or revoked ones. The certificate issuer could
be a more personalised choice that takes into account what are
typical issuers in the user’s vicinity because they have the like-
lihood to be requested the most. Alternatively, we can consider
refreshing the certificate DB based on most recently used or
least recently used in which case we also need to record the
time of the request. Without loss of generality, we can specify a
policy that could be based on a set of possible designed choices
optionally with complex conditions.

Certificate Validator. The goal of the certificate validator is
to check the certificate revocation by contacting the revocation
manager. The certificate checker requests the certificate valida-
tor by providing information about the authority that manages
revocation information, i.e., the revocation manager. After re-
ceiving the request, the certificate validator connects with the
revocation manager and gets the certificate status, which is ei-
ther valid or revoked. It is important to distinguish between two
authorities that manage revocation information: a CRL server
and an OCSP server. A certificate provides information about at
least one of them. Typically, a certificate includes URLs of both
servers. Using a CRL server may provide more information
than required because the certificate validator will get a list of
all the revoked certificates, incurring high bandwidth and stor-
age costs but being more privacy-preserving and efficient from
the point of view of caching the complete list for subsequent
requests. On the other hand, if we contact the OCSP server,
we can lower storage and bandwidth overheads at the cost of
increased latencies for subsequent requests. However, OCSP
is less privacy-preserving as the revocation manager would be
able to profile behaviour of the client. For efficiency reasons,
we use the OCSP method, but we cache the response in the cer-
tificate DB so that we can minimise potential privacy issues as
well as decrease the latency and bandwidth overheads.

Certificate Modifier. From the usability point of view, it is a
common practice to hide the lock icon in the address bar and
show a security warning to the user if the certificate validation
fails. Taking inspiration from this approach, CRG issues a fake
certificate if the certificate has been revoked. The fake certifi-
cate is specifically designed to signal the client that the certifi-
cate has been revoked. A fake certificate can easily be made
from the original one by modifying the certificate expiry. Al-
ternatively, we can change other fields (such as signatures) in
the certificate that can result in unsuccessful validation. How-
ever, the aforementioned approaches of generating fake certifi-
cates will result in high latency due to modifications in original
certificates. We can follow a radically different approach by
pre-computing a set of fake certificates that could be used by
the certificate modifier. If the original certificate is valid, the
certificate modifier does not take any action and forwards the
original certificate to the client.

CRG in Action. In the following, we discuss three cases in-
dicating three situations: when CRG receives a new certificate,
a cached certificate with the next update time reached and a
cached certificate without the next update time reached. The
two former ones represent the most complex case because in
both situations CRG has to contact the revocation manager.

Case 1) In case of a new certificate, after receiving the cer-
tificate (Step 3), the certificate checker gets the status update
from the certificate DB (Step 3a). Since the certificate is new,
there will be no entry in the database. The certificate checker
has to contact the certificate validator (Step 3b). The certificate
validator checks the status of this new certificate (Step 4) and
gets the response (Step 5), which it forwards back to the cer-
tificate checker (Step 5a). To cache the status, the certificate
checker updates the database (Step 5b) by inserting a new entry
for this new certificate and initialises the frequency of request
field by 1. The certificate checker also sends the decision to
the certificate modifier (Step 5c). Note that both Steps 5b and
5c can run in parallel. However, for reducing the latency, we
recommend Step 5c should take precedence. Based on the de-
cision made by the certificate checker, the certificate modifier
finally communicates back to the client (Step 6).

Case 2) If there is a cached certificate with the next update
time reached, like the case of a new certificate, CRG performs
the same steps (i.e., Steps 3b, 4, 5, 5a and 6) except Step 5b. For
updating status of a certificate having an entry in the database
with the next time reached, CRG updates its revocation status
and next update time as well as incrementing the frequency of
request by one.

Case 3) If the certificate is a cached one without the next
update time reached, after receiving the certificate (Step 3), the
certificate checker gets the status update from the certificate DB
(Step 3a). Since there is already an entry in the table, it incre-
ments the frequency of request by one. Next, it directly sends
the response to the certificate modifier (Step 5c), which ulti-
mately forwards the certificate to the client (Step 6).

Extending CRG. In general, CRG is able to efficiently deal
with certificate revocation. CRG relies on the assumption that
status of a certificate will stay the same until the next update
time. The next update time is part of the OCSP or CRL re-
sponse. However, in practice, the certificate can get revoked
before this time. In such cases, the basic version of CRG will
not be so effective. To tackle those cases, we propose to extend
CRG. The idea is to subscribe for instant revocation of certifi-
cates whenever a new certificate gets cached. This will require
the revocation manager to introduce an additional server that is
responsible for handling subscriptions. This additional server
will update all subscribers with information about certificates
that get revoked before the next update time. The certificate val-
idator on the CRG end can be responsible for dealing with such
subscriptions. Since our design is flexible, we allow users to
configure whether this extension of CRG with the subscription
mode should be on or off. Like the policy for downsizing the
certificate DB, users can specify a policy for narrowing down a
set of certificates which they can subscribe for.
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4. Performance and Complexity Analysis

In this section, we provide a comparative analysis of over-
heads incurred by existing methods (including CRL and OCSP)
and our proposed method, i.e., CRG. Specifically, we analyse
network latency as well as bandwidth and storage overheads.
Further, we analyse the communication complexity of the net-
work latency. Our results show that CRG outperforms both
CRL and OCSP methods.

4.1. Experimental Environment
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Figure 4: Measuring bandwidth consumption and latency between the existing
revocation checking mechanisms and CRG. CRG on the mirror host can mon-
itor all incoming and outgoing traffic from the UoA campus network. Here,
CRG can return the revocation status to the test PCs in the UoA campus net-
work.

Figure 4 illustrates the experimental environment in detail.
Basically, we run CRG out of our main network (see Figure 4).
CRG receives traffic from optical taps and operates only on the
duplicated traffic. This design allows us to collect the perfor-
mance results from the existing revocation process as well as
the results from CRG. For instance, to calculate the latency
improvement, we used the test PC from the UoA campus net-
work to query a certificate revocation status from a target OCSP
server. We start the timer when the request is sent, and we stop
the timer once we receive the reply. The latency is the time
the user takes to receive the revocation response. Meanwhile,
if the CRG has a record of the requested certificate in the local
cache, it returns its response immediately to the test PC. As a
result, the test PC will receive two certificate revocation status
responses – one from the OCSP server and another one from
CRG. Next, we analyse the arrival time of the two responses
and determine which scheme takes the least time. Such strate-
gies are used to compare the bandwidth consumption between
the existing revocation mechanisms and CRG.

4.2. Data Collection
For our experiments, we have collected live Internet traffic

(i.e., HTTPS) at the gateway of The University of Auckland,
New Zealand. To collect the data, we wrote a Python script that
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Figure 5: A summary of data we used for our experiments: we distinguish
three types of certificates, namely root, intermediate and leaf. For each type of
certificate, we show how many unique as well as total requests we observed.

uses the PFRing4 capture mechanism to minimise the packet
drop rate in a 10 Gb/s high-speed network. The script captured
and recorded the first three messages (i.e., Client Hello, Server
Hello and Certificate) of SSL/TLS flows. After the data collec-
tion, we launched our benchmarking experiments. We used a
Windows 7 machine having a Core i5 2.2 GHz processor with
8 GB memory to launch three different test scenarios. In OCSP
test cases, we used the Openssl5 library to send OCSP queries
for each certificate. We captured and analysed the operation
overhead through Wireshark reports. On the other hand, we
tested the CRL approach in different browsers to analyse the
same number of certificates, the results demonstrated the band-
width overhead and the local storage requirement for download-
ing all the CRL files. We then used our CRG approach to pro-
cess the same trace file on the same machine.

To extract certificate messages from the trace file, we used
TShark6. Each certificate message in the SSL/TLS protocol
represents a chain of certificates involving root, intermediate
and leaf certificates.

Our results show that there are 2200 SSL/TLS certificate
messages in the dataset we had recorded, as described above.
Figure 5 illustrates breakdowns of the root, intermediate and
leaf certificates in all the requests. In total, there are 1867 root,
1920 intermediate and 2187 leaf certificates. In our dataset, we
discovered that the unique root, intermediate and leaf certifi-
cates are 15, 33 and 166, respectively.

In our experiments, we do not consider checking revocation
status of root certificates, assuming they are taken care by OS or
browsers. Without loss of generality, root certificates can also
be handled by our approach.

4http://www.ntop.org/products/packet-capture/pf_
ring/

5https://www.openssl.org/
6https://www.wireshark.org/docs/man-pages/tshark.

html
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4.3. Ethical Considerations

Our research involved collecting network traffic, of which
some would have been initiated by persons using computers on
the UoA network or accessing UoA network. The only infor-
mation collected by our research was the first three messages
of the SSL exchange between client and server. The ethics ap-
proval must be sought from the UoA Human Participants Ethics
Committee (UAHPEC) for projects involving human partici-
pants. “A human participant is a person with whom there is
some intervention or interaction that would not be occurring, or
would be occurring in some other fashion, but for the research,
or as a result of the research.” As the research collection was
passive, there was no interaction with human participants. The
Oxford English Dictionary (OED) defines intervention as “the
action of intervening, ‘stepping in’, or interfering in any affair,
so as to affect its course or issue.” As our research collection
did not change or affect any data, our research collection was
not an intervention, as per aforementioned definition. As the re-
search collection was not an interaction or an intervention with
a human participant, it did not require approval by UAHPEC.
On the privacy issue the Privacy Act 1993 defines personal in-
formation as “information about an identifiable person”. The
research collection of network traffic only collected metadata
concerning the SSL protocol and the associated certificates. It
did not collect data about the resources (e.g., web sites) be-
ing accessed nor did it attempt to decrypt the content of SSL
traffic. Therefore, the research information collected does not
meet the definition of personal information. Even if the infor-
mation collected was classed as personal information Principle
2 of Section 6 of the Privacy Act provides researchers with the
ability to collect personal information from sources other than
directly from the individual where it “is not reasonably prac-
ticable in the circumstances” or “that the information will not
be used in a form in which the individual concerned is identi-
fied; or will be used for statistical or research purposes and will
not be published in a form that could reasonably be expected
to identify the individual concerned.” As it is not practicable to
get this information from individuals and is being used for re-
search purposes and will not be published in a form that could
possibly identify any individuals then the collection from the
network does not breach the collection/consent principle of the
Privacy Act 1993. Finally, the collection was performed under
the authority of UoA staff.

4.4. Bandwidth Cost

Bandwidth refers to the data throughput capacity for each
certificate’s revocation checking. In case of CRG and CRL, af-
ter checking certificate revocation, the client caches the revoca-
tion status locally for a certain time. This caching saves band-
width cost because the client can locally check the revocation
status of certificates that are repeated. However, OCSP requests
the OCSP server to check the revocation status of each certifi-
cate even if the certificate is repeated. For measuring band-
width overhead, we use the dataset described in Section 4.2 and
calculate the accumulative bandwidth cost of all the requests.
The comparison of bandwidth has been shown in Figure 6. Our
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Figure 6: Comparison of bandwidth overheads of two existing methods with
CRG. CRG saves over 95% bandwidth cost when compared with OCSP.

dataset shows that OCSP requires 850 bytes for checking the
revocation status. Since CRG is built on OCSP, it also re-
quires 850 bytes for checking the revocation status and the same
caching cost, which is explained in Section 4.6. CRL uses more
bandwidth for fetching the CRL file, the median value of band-
width usage is 1800 bytes, which is more than double than that
of CRG. However, the size of a CRL response is dependent
on the number of certificates to be revoked. Therefore, a CRL
response can be large, while an OCSP response is always the
same size. If we compare CRG with OCSP, we save over 95%
bandwidth cost.

4.5. Network Latency
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Figure 7: Comparison of network latency of two existing methods with CRG.
As comapred to OCSP, CRG improves latency by 95%.

Network latency is the time between sending the revocation
status request and receiving the response. In our experiments,
we calculated the round trip time between each certificate re-
quest and response. From the experiment results, we observed
a network latency from 20 milliseconds (ms) to 2 seconds. The
average latency for OCSP and CRG is 30 ms. It may take longer
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for CRL depending on the file size. The median value for la-
tency in case of CRL is 700 ms. Similar to bandwidth cost, we
use the dataset described in Section 4.2 and calculate the accu-
mulative network latency of all the requests. In our experiment,
CRG is placed close to the gateways of our campus’s access net-
work. This approach provides two benefits: it captures client’s
connections to any TLS servers, and the round trip time is min-
imized by reducing the communication path.

We present results of network latency in Figure 7. Simi-
larly to the bandwidth comparison, CRG incurs a low latency
overhead because it processes 95% of the requests locally. In
contrast, OCSP incurs the most latency overhead, as it interacts
with the OCSP server for each request.

4.6. Storage Cost
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Figure 8: Comparison of local desk storage between CRG and CRL. CRG saves
storage space by 69%. OCSP is not included because it does not cache the
certificate revocation status locally.

Since we cache the status of revoked certificates, that re-
quires some storage. In a CRL file, there is a single entry for
each revoked certificate. The file size determines the total num-
ber of entries. This is similar to the certificate DB in CRG. On
average, each certificate entry (already explained in Section 3)
occupies 300 bytes in CRG. In contrast, most of the CRLs are
of 1000 bytes. The difference is caused by the inconsistent CRL
file size. Typically, the file includes all the revoked certificates
from the same CAs. Gibson Research Corporation generated a
report in 2013 [20], they observed the smallest CRL file is 236
bytes and the largest is 28,198,758 bytes. Two years later, Liu
et al. observed that the CRL file size can be up to 51 kB [2].
Conversely, each entry in CRG only contains revocation status
of the requested certificates. Figure 8 demonstrates the storage
cost for saving revocation status of approximately 200 certifi-
cates using CRG and CRL. OCSP is not considered because
it does not cache the revocation status. As compared to CRL,
CRG saves storage cost by 69%.

4.7. Communication Complexity
We consider the case where a client sends a certificate re-

vocation request to an OCSP server. The latency (L) for packet

transmission can be expressed as:

L = D(src,dest)/v+L/b+H ∗Trouter +Tcontention

where D(src,dest) is the distance from the source node to the des-
tination node, v is a transmission medium speed. For instance,
the multimode fibre optic cable speed and the transmitting dis-
tance limits are 100 Mb/s for distance up to 2 km (100BASE-
FX), Gb/s up to 1000m, and 10 G/s up to 550 m. L is packet
size, b is channel bandwidth, H is hop count, Trouter is router de-
lay, and Tcontention is the delay due to network contention. Based
on this equation, we can see that many factors can affect the
network delay; for example, the distance between source and
destination, the longer distance takes more time to process the
packet. Moreover, the number of routers between the source
and destination also has an impact on latency because each
router requires time to process the packets that pass through it.
Besides, the signal speed in transmission media also affects net-
work latency, such as a fibre optic cable has a lower latency than
a copper cable via a long-distance connection. Furthermore, we
need to consider the time it takes the client to establish a con-
nection with the OCSP server. To estimate the communication
overhead, we installed CRG on the gateway of the campus net-
work. The distance between the test PC to the gateway is less
than 2KM; the number of hops is 1. Based on our trace file,
we find the connection between the test PC and OCSP server
is very fast, so we removed Tcontention when we calculate the
network delay. The advantage of this is that we can reduce the
delay caused by the longer distance, or the delay caused by hav-
ing to go through multiple routers, and the transmission speed
decreases due to the congestion on the transmission path. In this
study, we did not consider the energy consumption when using
a smartphone to communicate CRG versus the power cost via
an OCSP server. However, we found some works [21, 22] on
this aspect to help us in the future for measuring the power con-
sumption of CRG and how to optimise CRG from the energy
efficiency perspective.

5. Privacy and Security Analysis

CRG is a novel solution that caches the certificate revoca-
tion status. CRG aims at ensuring that Internet users do not use
certificates that are no longer trusted. Therefore, CRG is likely
to be targeted by attackers, such as hackers can compromise
data integrity, data confidentiality, and CRG availability. In this
section, we will discuss the possible security and privacy issues
that CRG may face as well as providing the relevant solutions
to address each security or privacy risk.

Minimising Privacy Loss. Privacy is an issue when we use
OCSP because a user’s browsing behaviour can be deduced by
analysing OCSP requests. In CRG, we do not interact with the
revocation manager for every request. After making the first re-
quest to the revocation manager, the OCSP response is cached
for a certain period in which it remains valid, i.e., the next up-
date time. The next request to the revocation manager is sent
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when the next update time is reached or a new certificate is ob-
served. This design significantly improves the user behaviour
visible to the revocation manager.

Database Security. In our current solution, a certificate re-
vocation status is temporarily stored in the local database, but
with the increasing use of certificate revocation status, the lo-
cal storage method will bring many security risks, such as data
integrity and Single Point of Failure (SPOF). To address those
concerns, we reviewed the existing studies [23, 24] and found
the blockchain-based solutions. Blockchain emerges as a robust
solution and provides compelling properties about data integrity
as well as eliminating the SPOF issue. For example, each cer-
tificate revocation status will be saved into a block, when a
block is part of the chain. All participants in this blockchain
network have agreed on its content. Hence, all saved certificate
revocation statuses are practically non-repudiable, transparent,
and persistent. As a result, it is infeasible for anyone to mod-
ify or delete the existing certificate revocation record from the
blockchain network. There is no central DB for managing the
data storage and verifying the revocation status. Therefore, the
SPOF issues can be eliminated by using this decentralised in-
frastructure.

Denial of Service (DoS). DoS attacks can be mounted to over-
load the certificate DB or by sending fake requests in an attempt
to exhaust the processing resources. For the former case, users
can set up a size limitation for the certificate DB. When the cer-
tificate DB size limit is reached, CRG will stop caching OCSP
responses, however the revocation checking will still work. In
this way, we can minimise the risk of DoS and other attacks
(such as the memory overloading attack, which could easily be
mounted when the certificate DB size is small and an attacker
is able to send a large number of requests). In the latter case,
if a user sends a large number of revocation checking requests
for different certificates during a short period of time, CRG will
add the user’s IP address into a blacklisting. CRG could be con-
figured to ignore traffic from that IP or reject that traffic.

Communication Intercepting and Hijacking Attacks. As il-
lustrated in Figure 3, we introduced a certificate DB in CRG
to query and update the certificate revocation status. If attack-
ers are able to monitor the communication with this certificate
DB, they can launch a man-in-the-middle attack by intercept-
ing messages and modifying the revocation status in Step 3a
and Step 5b, respectively. In order to ensure the confidentiality
and integrity of each request, we use authenticated encryption
(using symmetric keys) to build a secure channel between CRG
and the external DB.

If attackers manage to have malicious access to CRG, in
particular to the communication channel between the certificate
modifier and the client, they can hijack and modify the certifi-
cate response in Step 6 of Figure 3. Here, we can distinguish
two scenarios in the context of modifying the response in Step
6. First, an attacker can modify a fake certificate with a le-
gitimate one. This scenario brings down the security to that
of the traditional infrastructure, where no revocation check is
performed. In the second scenario, we assume that an attacker

modifies a legitimate certificate with a fake one. We can over-
come the issue in such a scenario by setting up an entity that
should be responsible for keeping track of the count of fake
certificates sent to the client. A System Administrator could
be alerted if the count of fake certificates is more than a cer-
tain limit. Devising a sophisticated mechanism for dealing with
such a scenario is part of our future work.

6. Discussion

Our comparative analysis provides useful insights into the
performance improvements of using CRG. We highlight a posi-
tive linear relationship between the CRG performance cost and
the number of requests sent to OCSP servers. Firefox proposes
an OCSP deployment scenario [25] that uses a shared cache of
OCSP responses for accessing the same websites. However,
this type of solution can only be used for a particular browser.
Our approach is generic enough to cache OCSP responses at
the system, router, gateway, proxy, or ISP level. We next dis-
cuss possible design choices to deploy CRG and highlight some
performance achievements.

6.1. CRG Deployment Scenarios

From the deployment point of view, it is possible to install
CRG on the user’s devices or to consider an on-path deployment
strategy. CRG needs to receive each SSL/TLS flow between
clients and servers for managing the certificate revocation sta-
tus. In the following, we discuss possible choices to deploy
CRG.

Client Side Deployment. CRG can be installed on either pow-
erful personal computers or mobile devices. Our findings con-
firm that fetching revocation status can be an expensive opera-
tion for clients, particularly those devices that have limited re-
sources. For example, mobile devices with a limited storage
space or power, and PCs with a high network latency.

There is a trade-off between limited storage usage and low
network capacity. For the former case, clients have to set a lim-
ited size on CRG for configuring the certificate DB and clear
it when it is nearly full. In the latter case, clients can increase
the storage usage for caching more OCSP responses. From the
communication point of view,all the processes will be handled
locally by CRG on the device. Generally, there is no communi-
cation cost for checking the cached certificates.

Router Deployment. Caching OCSP responses on the router
closer to the target networks reduces the latency because the la-
tency depends largely on how far the client is away from the
OCSP servers. The drawback of doing this is the storage size
because existing routers use most of their memory to maintain
routing information, so they may not have sufficient space avail-
able for a CRG database. If we want to deploy CRG on the
existing routers, we have to consider the certificate DB size.
However, placing CRG on the router brings many benefits in-
cluding improving global availability, reducing bandwidth and
no additional upgrading requirements on the client side.

10



Gateway/Proxy Deployment. CRG can be located at the gate-
way or proxy level. It would help to improve user experience
for fetching the certificate revocation status with a lower band-
width cost and a lower latency. From the management point of
view, this deployment option reduces an operation cost for mak-
ing any changes in CRG compared to the aforementioned ones.
Network administrators only need to modify CRG at the gate-
way/proxy instead of changing all the routers or all the client
devices in a target network.

ISP Level Deployment. There is no additional requirement
for placing CRG at the ISP level. The only concern is the stor-
age size because the number of cached certificates can become
very high by monitoring all certificates from the subscribing
networks. Clients have to determine the most effective size of
their certificate DB. The database size is the main requirement
when deploying CRG in different locations. We suggest clients
configure storage size as high as possible in any location to fully
exploit potential benefits of CRG.

6.2. Increased Performance Gain
Due to our disk storage limitation, we collected live traffic

only for half an hour. Based on our sample file, we noticed
95% of requests were using cached certificates. That is why,
CRG is more efficient than the other two schemes (CRL and
OCSP), and the results showed that CRG improved the band-
width and latency by 95% when performing the certificate re-
vocation check. Besides, we found 65% local desk storage im-
provement when comparing CRG and CRL. Therefore, if we
extend the measurement time to a week (which is a typical
time when the caching status expires) or more, we believe more
cached certificates will be observed, thus enabling increased
performance gain. Consequently, it will generate better per-
formance results.

7. Related Work and Comparative Analysis

In last two decades, there has been much work in the area
of certificate revocation for improving the existing revocation
solutions [7, 8, 13, 33] and measuring certificate revocation be-
haviour [1, 2, 16]. In the following, we will point out the dif-
ferences between our approach and the existing solutions.

7.1. Improving CRL and OCSP Methods
In [34], Myers investigated options that can be used to ad-

dress some revocation issues. Some of Myers’ suggestions have
already been taken into account by existing techniques, such as
OCSP. The study by Topalovic et al. [7] also builds on top
of Myers’ suggestion of implementing short-lived certificates.
Furthermore, Myers suggested fetching the results from the on-
line relying party. Alternatively, the relying party could ascer-
tain a certificate’s reliability using cached data. There are two
drawbacks of using Myers’ approach: the cost of deploying the
short-lived certificate and how can we trust a certificate status
from an online relying party. In contrast, We proposed CRG
that validates a certificate revocation status from a certificate is-
suer and utilise the existing certificate revocation processing to

reduce deployment costs. The similar deployment issues have
been observed from [35, 32], Schulman et al. [35] presented
RevCast in 2014; their approach transmits the revocation sta-
tus over existing FM radio rather than the traditional Internet
links. As a result, end users will receive the revocation status
through an embedded FM RDS receiver, or via a proximal FM
RDS receiver. Two years later, Chariton et al. [32] suggested
that CA pushes a revoked certificate information to the DNS
system. Therefore, a web browser can query the DNS system
to find revocation information about the certificate. However,
Both solutions require changes to our existing revocation in-
frastructure.

A study by Millen and Wright [36] is closer to our work.
They addressed the trade-off between the time of the certificate
is revoked and the time of the update. They proposed a depen-
der list that includes a set of subscribing parties. Those sub-
scribing parties receive notifications immediately after a certifi-
cate is revoked, rather than delaying a periodic schedule. Like
their work, by extending the basic CRG, we introduce subscrib-
ing clients and publishing servers. However, the client only
subscribes to each certificate she requests (and caches), instead
of a CRL file. Another similar approach has been made by Sza-
lachowski et al. [31] in 2016. They introduced a new frame-
work that use middle-boxes to store the revocation information.
Besides, they take advantage of content-delivery networks to
receive the new revocations from the subscribing CA servers.
This solution, however, is still insecure and inefficient, it deals
with lack of trust in the dissemination system, as well as the
deployment costs. Unlike their solution, CRG uses the exist-
ing revocation process, it queries the trusted CA and extracts
the revocation status from each response. Furthermore, CRG
does not require any additional cost for updating the existing
infrastructure.

In [33], Russell et al. pointed out the performance problem
on mobile digital units for checking certificate revocation. They
proposed a new hash-based authentication solution for checking
a fraudulent revocation status. We cannot compare their solu-
tion directly with our work because our study focuses on the
revocation efficiency instead of checking for fraudulent revoca-
tion responses.

In [13], Gutmann studied some workarounds for reducing
the CRL bandwidth overhead, such as by using different expiry
times, assigning long-term or short-term CRLs. However, these
solutions do not solve storage limitations or revocation lookup
complexity.

In [8], Kocher proposed a Certificate Revocation Tree (CRT)
solution. The main idea is to find an efficient and more scal-
able method for distributing revocation information. Kocher
designed a tree issuer for compiling revocation information, a
confirmation issuer to publish the elements from CRT and a re-
ceiver to fetch the certificates. Compared to our work, CRT
introduces a high computational load because it has to compute
hashes for checking the certificate status.

In [7], Topalovic et al. discovered some certificate security
breaches of certificate authorities imposed by OCSP. Conse-
quently, some browsers, such as Google Chrome, permanently
disable OCSP and take direct ownership over certificate revoca-
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Table 2: Comparison of CRG with existing solutions based on the following characteristics: latency (i.e., the time taken to check revocation status); bandwidth
(i.e., the communication overhead to check revocation status); storage (i.e., the amount of storage required to store revocation information); privacy (i.e., hiding

user behaviour from third parties); deployable (i.e., ideally requiring no changes to existing infrastructure); generic (i.e., whether the solution is generic for all the
clients or specific to a particular client i.e., browser in most cases).

Revocation Solutions Low Latency Low Bandwidth Low Storage Privacy Deployable Generic
Short-lived certificates [7] No No No Yes No Yes
Certificate revocation tree [8] Yes Yes Yes No No Yes
Short-term CRLs [13] No No No Yes No Yes
CRL [17] Yes No No Yes Yes Yes
OCSP [18] No No Yes No Yes Yes
OCSP Stapling [19] No No Yes Yes No Yes
CCSP [26] Yes Yes Yes Yes No Yes
CRLite [27] Yes Yes Yes Yes No Yes
Revocation transparency [28] No No Yes No No Yes
CRLSet [29] No No No Yes No No
OneCRL [30] No No Yes Yes No No
RITM [31] Yes Yes Yes Yes No No
DCSP [32] Yes No Yes Yes No Yes
CRG (Our proposed solution) Yes Yes Yes Yes Yes Yes

tion. To reduce this risk, they developed a new prototype for au-
tomatically releasing short-lived certificates. For the client side,
they developed a Chrome plug-in for receiving update notices
from the subscribing servers. Their study addressed potential
security issues in certificate validation and revocation while our
solution aims at improving the revocation performance.

Some recent studies suggest modifications in existing sys-
tems. In [28] has explored extending certificate transparency
[37] approach, where Revocation Transparency (RT) uses pub-
lic logs to ensure that users and servers can obtain the recent
revocation status from the log. However, the solution does not
scale up well regarding performance, because the client still re-
trieves a revocation status for each observed certificate.

Additionally, Google and Mozilla proposed their own revo-
cation mechanisms: namely CRLSet [29] and OneCRL [30],
respectively. Both solutions require the clients to pull the revo-
cation information from the pre-defined the servers. The draw-
back of these solutions is performance. That is, the clients have
a difficulty to handle revocation information of a large number
of certificates when there are limited processing, bandwidth,
and storage capabilities.

Another study [26], Chariton et al. introduced a new ap-
proach that aggregates several certificates’ revocation informa-
tion into a single OCSP response. This OCSP response is de-
signed as a bitmap, where each single bit represents revocation
status of a certificate. If the certificate is revoked, the bit will
be set as “1” and “0” otherwise. Their results show that the
new approach reduces space requirements and the number of
signing operations performed by the OCSP server. Larisch et
al. [27] design a system (CRLite) to push all valid certificate
revocations to browsers. CRLite contains two components: a
server-side and a client-side; the former component aggregates
all valid certificate revocation information, while the latter one
will fetch the information to check the observed certificate’s
revocation status. CRLite shows a significant improvement re-
garding reducing latency and bandwidth and ensuring privacy.
However, deploying these approaches requires changes in the

existing infrastructure, which is the main drawback. In contrast,
we can deploy CRG into the existing infrastructure without any
modification.

There are also other studies that have been conducted [9,
10, 11, 12]. However, solutions proposed in those studies are
not widely deployed for various reasons. For instance, most
solutions either change or replace the existing CRL and OCSP
methods, while our method does not require any changes in the
legacy infrastructure. Overall, CRG adds another layer on top
of existing methods for improving the revocation checking. Ta-
ble 2 compares CRG with existing revocation solutions regard-
ing efficiency (including latency, bandwidth, and storage), pri-
vacy, deployability, and applicability (i.e., generic or specific).

7.2. Measuring Certificate Revocation
Most recently, Zhu et al. [1] measured the latency of OCSP

queries. Their results show that the average latency for each
OCSP lookup is 20 ms, but we observed it closer to 35 ms. The
difference could be caused by the location of the OCSP server.
In other words, the Round-Trip Time (RTT) plays a significant
role in calculating the latency. Liu et al. [2] observed revo-
cation checking behaviour by analysing similarities and differ-
ences between web browsers and OS as well as Google’s cer-
tificate revocation infrastructure. Zhang et al. [16] studied how
many certificates are reissued or revoked after detection of the
Heartbleed OpenSSL bug.

Note that some measurement studies are not directly linked
to our work, but they exposed the existing revocation issues
and explained how this impacts the existing revocation meth-
ods. These studies provide a complete view of certificate re-
vocation in today’s PKI. In short, all the certificate revocation
methods suffer from at least one of the following issues: privacy
invasive, high latency, high bandwidth and storage overheads.

7.3. Browser’s “Fail Soft” Policy
Some articles [38, 20] pointed out that many browsers set

the default security settings not checking the revocation status.

12



Samoshkin et al. called it a “fail soft” policy, meaning that
browsers treat no reply to an OCSP request as a good reply. Re-
cent studies also detected similar issues. Liu et al. [2] observed
that mobile browsers disabled certificate revocation checking,
because of the latency and power issues. To address this issue,
in this article we propose CRG: a lightweight solution to im-
prove certificate revocation performance without changing the
existing infrastructure.

8. Conclusions and Future Work

Certificate revocation checking is an essential part of cer-
tificate validation. There are existing methods to check cer-
tificate revocation; however, they suffer from high bandwidth
overhead, network latency or storage overhead. As an alterna-
tive solution, this article has presented CRG to reduce band-
width overhead, network latency and storage overhead when
compared with existing methods. Furthermore, CRG ensures
users’ privacy by minimising interaction with OCSP servers.

For future work, we suggest further investigating the CRG
extension to proactively handle certificates that are revoked be-
fore the next revocation update is due. We also plan to devise a
sophisticated mechanism for dealing with scenarios when CRG
gets compromised.
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