

© Copyright Notice

All rights reserved. No part of this publication may be

reproduced, distributed, or transmitted in any form or

by any means, including photocopying, recording, or

other electronic or mechanical methods, without the

prior written permission of the publisher, except in the

case of brief quotations embodied in critical reviews

and certain other non-commercial uses permitted by

copyright law.

“Chapter17” — 2016/12/7 — 10:34 — page 1 — #1

Chapter 8

Preserving Privacy in Pre-Classification Volume
Ray-Casting of 3D Images

Manoranjan Mohanty, Muhammad Rizwan Asghar, and
Giovanni Russello

Abstract

With the evolution of cloud computing, organizations are outsourcing the storage and
rendering of volume (i.e., 3D data) to cloud servers. Data confidentiality at the third-
party cloud provider, however, is one of the main challenges. Although state-of-the-
art non-homomorphic encryption schemes can protect confidentiality by encrypting
the volume, they do not allow rendering operations on the encrypted volumes. In
this chapter, we address this challenge by proposing –3DCrypt– a modified Paillier
cryptosystem scheme for multi-user settings that allows cloud datacenters to render
the encrypted volume. The rendering technique we consider in this work is the pre-
classification volume ray-casting. 3DCrypt is such that multiple users can render
volumes without sharing any encryption keys. 3DCrypt’s storage and computational
overheads are approximately 66.3 MB and 27 seconds, respectively when rendering
is performed on a 256× 256× 256 volume for a 256× 256 image space. We have
also proved that 3DCrypt is IND-CPA secure.

8.1 Introduction

Cloud computing is an attractive paradigm for accessing virtually unlimited storage
and computational resources. With its pay-as-you-go model, clients can access fast
and reliable hardware paying only for the resources they use, without the risk of
large upfront investments. Nowadays, it is very common to build applications for
multimedia content hosted in infrastructures run by third-party cloud providers. To
this end, cloud datacenters are also increasingly used by organizations for rendering
of images [Cuervo et al., 2015, KDDI Inc., 2012, Intel Inc., 2011]. In these cloud-
based rendering schemes, the data is typically stored in the cloud datacenter, and on
request, the data-to-image rendering operation is performed at the cloud-end.

The data and the rendered image can contain critical information, which when
disclosed, raises data confidentiality and privacy issues. For example, the data can
be a scanned MRI of a patient’s head, whose storage and rendering were outsourced

1

“Chapter17” — 2016/12/7 — 10:34 — page 2 — #2

2 Data Security in Cloud Computing

to the cloud by a hospital due to the adaption of the cloud-based medical imaging
technique. If processed in plaintext, both the data and the rendered image can reveal
information about the disease that the patient may be suffering from. Therefore, the
data must be hidden from the third-party cloud server, which we assume is honest-
but-curious: it honestly performs requested operation, but it can be curious to learn
sensitive information. The data encryption scheme is such that rendering can be
performed on the encrypted data. Although the rendered image must not disclose
any information to the cloud server, an authorized user (i.e., the one holding the en-
cryption key) must be able to discover the secret rendered image from the encrypted
rendered image.

Ideally, one would like to use the fully homomorphic encryption scheme to per-
form any type of computations over encrypted data [Baharon et al., 2013]. However,
current homomorphic encryption schemes are not computationally practical. There-
fore, partial homomorphic schemes have been typically used for the cloud-based
encrypted processing. Using the partial homomorphic Shamir’s (k,n) secret shar-
ing, Mohanty et al. proposed the encrypted domain pre-classification volume ray-
casting [Mohanty et al., 2012]. Their work, however, cannot hide shape of the object
from a datacenter and can disclose the color of the object when k or more datacenters
collude together. Recently, Chou et al. [Chou and Yang, 2015] used permutation and
adjusted the color transfer function (used in rendering) such that critical information
about the object can be hidden from the rendering server. Their work, however, is
not secure enough.

When working on encrypted data, usually a lot of attention is paid to the actual
scheme without considering key management, an aspect critical for organizations.
In a typical organization, issuing the same key to all employees, who want to share
data, is not feasible. In an ideal situation, each employee must have her own personal
key that can be used to access data encrypted by the key of any other employee. This
scenario is often referred to as the full-fledged multi-user model. When the employee
leaves the organization, the employee’s key must be revoked and the employee must
not be able to access any data (including her own data). However, the data (including
data of resigned employees) must be accessible to employees still holding valid keys.

In this chapter, we present 3DCrypt, a cloud-based multi-user encrypted domain
pre-classification volume ray-casting framework based on the modified Paillier cryp-
tosystem. Paillier cryptosystem is homomorphic to only addition and scalar multipli-
cation operations, whereas the pre-classification volume ray-casting (as explained in
Section 8.2.3) performs a number of operations, including additions, scalar multipli-
cations and multiplications. The use of Paillier cryptosystem alone therefore cannot
hide shape of the object as the rendering of opacities, which renders the shape, in-
volves multiplications. We addressed this issue using a private-public cloud model
in such a way that rendering tasks can be distributed among the public and private
cloud servers without disclosing both shape and color of the object to any of them.

Our contributions are summarized as follows:

• We provide a full-fledged multi-user scheme for the encrypted domain volume
rendering.

“Chapter17” — 2016/12/7 — 10:34 — page 3 — #3

3DCrypt 3

• We can hide both color and shape of the object from the cloud. The color and
shape are protected from the public cloud server by encrypting both the color
and opacity information and by performing rendering in an encrypted domain.
The color is protected from the private cloud server by performing rendering
on the encrypted color information. The shape is protected from the private
cloud server by hiding pixel positions of the image space.

• 3DCrypt is such that if both the private and public cloud servers collude, they
can, at most, learn shape of the object. The cloud servers can never know the
secret color from gathered information. Therefore, we provide more security
against collusion attacks than the state-of-the-art Shamir’s secret sharing based
schemes.

Our preliminary analysis performed on a single machine shows that 3DCrypt
requires significant overhead. According to our analysis, the computation cost at
the user-end, however, can be affordable. Security analysis shows that 3DCrypt is
IND-CPA secure.

The rest of this chapter is organized as follows. Section 8.2 reviews exist-
ing approaches for encrypted domain rendering, and provides an overview of pre-
classification volume ray-casting. In Section 8.3, we describe our system model
and threat model. In Section 8.4, we provide an overview of 3DCrypt. Section 8.5
describes how we integrated Paillier cryptosystem to the pre-classification volume
ray-casting. Section 8.6 explains construction details, and Section 8.7 provides se-
curity analysis. In Section 8.8, we report results and performance analysis. Section
8.9 concludes our work.

8.2 Related Work and Background

In this section, we first provide a summary of existing encrypted domain volume
rendering schemes, and then provide an overview of 3D imaging and volume ray-
casting.

8.2.1 Encrypted Domain Rendering

There are very few works in the direction of encrypted domain rendering using
the partial homomorphic encryption. Mohanty et al. proposed the encrypted pre-
classification volume ray-casting [Mohanty et al., 2012] and the encrypted post-
classification volume ray-casting [Mohanty et al., 2013] using Shamir’s (k,n) secret
sharing. Their pre-classification volume ray-casting scheme, however, cannot hide
shape of the rendered object from the cloud server. Furthermore, their scheme re-
quires n datacenters and assumes that k of them must never collude. Recently, Chou
et al. [Chou and Yang, 2015] proposed a privacy-preserving volume ray-casting
scheme that uses block-based permutation (which creates sub-volumes from the vol-
ume and permutes the sub-volumes) and adjustment of transfer function to hide both
the volume and rendering tasks from the rendering server. Their work, however,

“Chapter17” — 2016/12/7 — 10:34 — page 4 — #4

4 Data Security in Cloud Computing

lacks to achieve privacy due to the loss of information from the adjusted transfer
table and the use of permutation.

In literature, there are alternative schemes to address privacy issues by outsourc-
ing of volume rendering and visualization tasks to a third-party server. Koller et
al. [Koller et al., 2004] protected the high-resolution data from an untrusted user by
only allowing the user to view the low-resolution results during interactive explo-
ration. Similarly, Dasgupta and Kosara [Dasgupta and Kosara, 2011] proposed to
minimize the possible disclosure by combining non-sensitive information with high
sensitivity information. The major issue with such schemes is that they leak sensitive
information. To minimize information loss, we consider supporting the encrypted
domain rendering.

8.2.2 3D Images

A 3D image has three dimensions: width, height, and depth. In contrast to 2D images
(which has only width and height), a 3D image better represents the real world, which
is also 3D in nature. To this end, a pixel in a 3D image is represented by four values:
the R, G, B, colors, and the opacity.

We are increasingly using 3D images in our day-to-day life in various ways,
such as in cinema (3D movies), Google map and medical imaging (3D MRI, 3D
ultrasound, etc.). Typically, a 3D image is rendered either from a stack of 2D images
or from a 3D volume data. The former rendering scheme, which is known as surface
rendering, produces inferior image quality than the later rendering scheme, which is
known as volume rendering. In this chapter, we consider volume rendering. There
are a number of ways how a 3D image can be rendered from a given volume data.
Volume ray-casting is the most popular among them. We discuss volume ray-casting
in the following section.

8.2.3 Volume Ray-Casting

(a) (b)

Figure 8.1: Pre-classification volume ray-casting: (a) a general overview and (b) the
rendering pipleline.

Volume ray-casting is a volume rendering technique that renders an image from
a volume (3D data) representing physical properties of an object in the form of
a three-dimensional grid of discrete points, known as voxels. The image is ren-

“Chapter17” — 2016/12/7 — 10:34 — page 5 — #5

3DCrypt 5

Table 8.1: Rendering components of pre-classification volume ray-casting, math-
ematical operations of rendering components, and their suitability for being per-
formed in encrypted domain using Paillier cryptosystem.

Component Operations Can Performed in
Encrypted Domain?

Gradient estimation -, *k (scalar multiplication) Yes
Normal estimation +, *,√ No
Classification Table lookup No
Shading +, *,

∫
, . . . No

Ray projection None Yes
Sampling Random selection Yes
Interpolation +, *k Yes
Composition +, * No

dered by projecting rays from each pixel of the image space to the volume as il-
lustrated in Figure 8.1a. There are mainly two types of volume ray-casting: pre-
classification volume ray-casting and post-classification volume ray-casting. The
pre-classification volume ray-casting [Levoy, 1988] incurs less computation cost
than post-classification volume ray-casting. Therefore, pre-classification volume
ray-casting is typically used in practice [KDDI Inc., 2012] [Sinha System, 2012].
Pre-classification volume ray-casting, which is considered in this chapter, is executed
in a pipeline of independent rendering components: gradient and normal estimation,
classification, shading, ray-projection, sampling, interpolation and composition as
shown in Figure 8.1b. Table 8.1 summarizes operations performed by different ren-
dering components, and whether these operations can be performed in encrypted
domain using Paillier cryptosystem.

We call the rendering operations before and after ray-project as a pre ray-projection
and a post ray-projection, respectively. In this work, we made following observations
about rendering components.

• The pre ray-projection rendering operations can be pre-processed. These oper-
ations produce colors and opacities, which are used by the post ray-projection
rendering. Since the post ray-projection rendering operations are performed
dynamically (after sampling, interpolation and classification), they do not re-
quire physical properties of the object and the exact pixel positions of the
image space.

• Interpolation finds the color Cs and opacity As of a sample point s along a
projected ray from the colors and opacities of eight neighbouring voxels of the
sample point. Mathematically, interpolation of color values can be defined as:

Cs = ∑
v∈N(s)

CvIv

where N(s) is the set of eight neighboring voxels of s, Cv is the color value and
0 ≤ Iv ≤ 1 is the interpolating factor of the voxel v ∈ N(s). Likewise, we can
interpolate opacities As. Therefore, for a constant Iv, this operation requires
only additions and scalar multiplications.

“Chapter17” — 2016/12/7 — 10:34 — page 6 — #6

6 Data Security in Cloud Computing

• Composition finds the color C and opacity A along a projected ray from the
colors and opacities of c sample points {s1,s2, ...,sc}. Mathematically, com-
position can be defined as:

C =
c

∑
i=1

CsiOi

and

A =
c

∑
i=1

Oi,

where Oi = Asi ∏
c
j=i+1

(
1−As j

)
and As is the opacity of s. Therefore, for a

constant Oi, this operation also requires only additions and scalar multiplica-
tions.

• After interpolation, the position and direction of a projected ray, which can
disclose the coordinate of the pixel that casted it, are not required; rather, a ray
must be distinguished from other rays as sample points along this ray need to
be identified during the color/opacity composition.

8.3 System Model

Figure 8.2: Cloud-based rendering of medical data.

In this work, we consider a distributed cloud-based rendering system, where a
cloud server stores and renders volumes on behalf of a volume data outsourcer. Fig-
ure 8.2 presents a real-world medical imaging scenario of 3DCrypt. In our system
model, we assume the following entities.

• Volume Outsourcer: This entity outsources the storage and rendering of vol-
umes to a third-party cloud provider. It could be an individual or part of an
organization. In the latter case, users can act as Volume Outsourcers. Typ-
ically, this entity owns the volume. The Volume Outsourcer can store new
volumes on a cloud server, delete/modify existing ones and manage access

“Chapter17” — 2016/12/7 — 10:34 — page 7 — #7

3DCrypt 7

control policies (such as read/write access rights).In our scenario, the Volume
Outsourcer is part of a volume capturing hospital.

• Public Cloud Server: A Public Cloud Server is part of the infrastructure
provided by a cloud service provider, such as Amazon S31, for storing and
rendering of volumes. It stores (encrypted) volumes and access policies used
to regulate access to the volume and the rendered image. It performs most of
the rendering on stored volumes and produces the partially rendered data.

• Private Cloud Server: The Private Cloud Server sits between the Public
Cloud Server and the rendering requester. It can be part of the infrastruc-
ture, either provided by a private cloud service provider or maintained by an
organization as a proxy server. The Private Cloud Server receives partially
rendered data from the Public Cloud Server and performs remaining render-
ing tasks on the volume. It then sends the rendered image to the rendering
requester. Note that the Private Cloud Server does not store data, it only per-
forms minimal rendering operations on partially rendered data received from
the Public Cloud Server.

• Image User: This entity is authorized by the Volume Outsourcer to render a
volume stored in the Public Cloud Server. In a multi-user setting, an Image
User can (i) render an image (in encrypted domain) that will be accessible by
Image Users (including herself), or (ii) access images rendered by other Image
Users. In both cases, Image Users do not need to share any keying material.

• Key Management Authority (KMA): The KMA generates and revokes keys
to entities involved in the system. For each user (be a Volume Outsourcer
or Image User), it generates a key pair containing the user-side key and the
server-side key. The server-side key is securely transmitted to the Public Cloud
Server, whereas, the user-side key is either sent to the user or Private Cloud
Server depending on whether the user is a Volume Outsourcer or Image User.
Whenever required (say in key lost or stolen cases), the KMA revokes the keys
from the system with the support of the Public Cloud Server.

Threat Model: We assume that the KMA is a fully trusted entity under the
control of the Volume Outsourcer’s organization. Typically, the KMA can be directly
controlled by the Volume Outsourcer. Since the KMA deals with a small amount of
data, it can be easily managed and secured. We also assume that the KMA securely
communicates the key sets to the Public Cloud Server and the Image User. This can
be achieved by establishing a secure channel. Except for managing keys, the KMA
is not involved in any operations. Therefore it can be kept offline most of the times.
This also minimizes the chances of being compromised by an external attack.

We consider an honest-but-curious Public Cloud Server. That is, the Public
Cloud Server is trusted to honestly perform rendering operations as requested by
the Image User. However, it is not trusted to guarantee data confidentiality. The
adversary can be either an outsider or even an insider, such as unfaithful employees.

1https://aws.amazon.com/s3/

https://aws.amazon.com/s3/

“Chapter17” — 2016/12/7 — 10:34 — page 8 — #8

8 Data Security in Cloud Computing

Furthermore, we assume that there are mechanisms to deal with data integrity and
availability of the Public Cloud Server.

In 3DCrypt, the Private Cloud Server is an honest-and-semi-trusted entity. The
Private Cloud Server is also expected to honestly perform its part of rendering oper-
ations. The Private Cloud Server is semi-trusted in the sense that it cannot analyze
more than what can perceptually be learnt from the plaintext volume. We assume
that the Private Cloud Server is in conflict of interest with the Public Cloud Server.
That is, both cloud servers should not collude.

8.4 Proposed Approach

In this section, we present the architecture and an overview of the workflow of
3DCrypt.

Figure 8.3: Distribution of rendering pipeline.

Figure 8.3 provides an overview of the pre-classification volume rendering pipeline,
and illustrates how we distribute the rendering pipeline among different components
of 3DCrypt. The Volume Outsourcer performs pre ray-projection rendering opera-
tions: gradient/normal estimation, classification, and shading as these one-time op-
erations can be pre-processed. The output of these operations is encrypted using
Paillier cryptosystem, and the encrypted volume is sent to the Public Cloud Server.
The Image User projects rays to the encrypted volume stored on the Public Cloud
Server. The Public Cloud Server performs part of the post ray-projection render-
ing operations: sampling and interpolation on encrypted colors and opacities. Then,
the Public Cloud Server sends interpolated colors and opacities to the Private Cloud
Server. The Public Cloud Server, however, does not share information about voxel
coordinates and projected rays with the Private Cloud Server. The Private Cloud
Server decrypts interpolated opacities, and performs remaining post ray-projection
rendering operations: color and opacity composition using plaintext opacities and
encrypted colors. Then, the Private Cloud Server sends the encrypted composite
colors and plaintext composite opacities to the Image User. Finally, the Image User
decrypts composite colors and creates the plaintext rendered image using plaintext
colors and opacities.

Figure 8.4 illustrates the architecture of 3DCrypt. In this system, the Volume
Outsourcer is responsible for storing a volume and defining access policies for the
volume. To achieve this, the Volume Outsourcer interacts with the client module

“Chapter17” — 2016/12/7 — 10:34 — page 9 — #9

3DCrypt 9

Figure 8.4: The architecture of 3DCrypt, a cloud-based secure volume storage and
rendering system.

Store Requester. The Volume Outsourcer provides plaintext volume and access poli-
cies (Step i). The Store Requester performs the first stage encryption on the input
volume using the user-side key and then sends the encrypted volume along with as-
sociated access policies to the Store Keeper module of the Public Cloud Server (Step
ii). On the Public Cloud Server-end, the Store Keeper performs the second stage
of encryption using the server-side key corresponding to the user and stores the en-
crypted volume in a Volume Store (Step iii.a). The Store Keeper also stores access
policies of the volume in the Policy Store (Step iii.b).

Once an Image User expects the Public Cloud Server to render a volume, her
client module Access Requester receives her rendering request in the form of pro-
jected rays (Step 1). The module Access Requester, in turn, forwards the request
to the Access Request Processor module of the Public Cloud Server (Step 2). In
the request, the Access Requester sends rendering parameters (such as direction of
projected rays) and user credentials (which can be anonymized) to the Access Re-
quest Processor. The Access Request Processor first performs the user authorization
check to find out if the user has authorization to perform requested operations. For
this purpose, the Access Manager is requested for checking access policies (Step 3).
The Access Manager fetches access policies from the Policy Store (Step 4). Next, it
matches access policies against the access request. Then, the access response is sent
back to the Access Request Processor (Step 5). If the user is authorized to perform
the requested operation, the Volume Renderer is invoked with rendering parameters
(Step 6). The requested volume is retrieved from the Volume Store (Step 7). Then,
most of the rendering tasks, which do not require multiplication of opacities, are

“Chapter17” — 2016/12/7 — 10:34 — page 10 — #10

10 Data Security in Cloud Computing

performed in the encrypted manner and the partially rendered data is sent to the Ac-
cess Request Processor (Step 8). The Access Request Processor performs the first
round of decryption on the rendered data, hides voxel positions (e.g., permuting co-
ordinates of the voxels) and sends the data, protected pixel positions and the user
identity to the Private Cloud Server (Step 9). The Private Cloud Server performs the
second round of decryption and obtains partially rendered opacities in plaintext. The
plaintext opacities and encrypted colors are sent to the Rendering Finisher module,
which performs rest of rendering tasks involving multiplication of opacities. Since
the opacities are in plaintext, the multiplication of opacities with colors is reduced
to a scalar multiplication. The Private Cloud Server then sends the opacity disclosed
(but shape protected as voxel positions are unknown) and color encrypted rendered
image to the Access Requester (Step 10). The Access Requester decrypts the colors
and shows the rendered image to the Image User (Step 11).

8.5 Solution Details

3DCrypt is based on a modified Pailler cryptosystem that supports re-encryption [Bres-
son et al., 2003,Ateniese et al., 2006,Ayday et al., 2013] and is homomorphic to addi-
tions and scalar multiplications. Therefore, using this cryptosystem, we can encrypt
a volume, for which rendering has been adjusted such that the post ray-projection
rendering tasks including interpolation and composition can be performed by a com-
bination of additions and scalar multiplications. In order to provide the multi-user
support, we extend the modified Paillier cryptosystem [Bresson et al., 2003,Ateniese
et al., 2006, Ayday et al., 2013] such that each user has her own key to encrypt or
decrypt the images. In 3DCrypt, adding a new user or removing an existing one does
not require re-encryption of existing images stored in the cloud.

The main goal of 3DCrypt is to leverage resources of the Public Cloud Server as
much as possible by storing the data volume and by performing most of the rendering
tasks. To ensure confidentiality, both colors and opacities are stored in an encrypted
form. Information about projected rays, however, must be available in pliantext as
it is required in sampling and interpolation steps of the rendering operation. Since
the Paillier cryptosystem is non-homomorphic to multiplication, composition, which
multiplies opacities, cannot be computed on encrypted opacities. Thus, we employ
a private cloud that can perform composition by knowing plaintext opacities. Since
the knowledge of opacities and pixel positions can perceptually disclose shape of
the rendered image, we consider to protect voxel positions from the Private Cloud
Server. We can achieve this by permuting voxel positions to dissociate them from
projected rays.

A key difficulty in integrating the Paillier cryptosystem with volume ray-casting
is the incompatibility of floating point operations of ray-casting operations with the
modular prime operation of the Paillier cryptosystem. One way of overcoming this
issue is by converting the floating point interpolating factors and opacities to their
fixed point representatives. We can achieve this by rounding off a float by d decimal
points and multiplying 10d with the round-off number.

“Chapter17” — 2016/12/7 — 10:34 — page 11 — #11

3DCrypt 11

Figure 8.5: Encryption and decryption processes using 3DCrypt.

Figure 8.5 provides the technical overview of 3DCrypt’s rendering system. In
3DCrypt, the KMA generates the color-key-set {KC

S ,K
C
U} and the opacity-key-set

{KA
S ,K

A
U} for each user in the system (either acting as a Volume Outsourcer or Image

User). Each key set contains a pair of keys: the user-side key and the server-side
key. For each user i, the server-side key of the color-key-set and the opacity-key-
set, which are KC

Si
and KA

Si
respectively, are securely transmitted to the Public Cloud

Server. The Public Cloud Server securely stores all the server-side keys in the Key
Store, which could be accessible only to the Store Keeper and the Access Request
Processor. When the user i is the Volume Outsourcer, the user-side keys of the color-
key-set and the opacity-key-set: KC

Ui
and KA

Ui
, are transmitted to the user. However,

when the user i is the Image User, then the user-side key of color-key-set and opacity-
key-set, KC

Ui
and KA

Ui
, are sent to the user and the Private Cloud Server, respectively.

The workflow of our secure rendering system can be divided into three major
steps, data preparation, ray-dependent rendering and composition. We discuss each
of these steps below.

8.5.1 Data preparation

This step is performed by the Volume Outsourcer prior to projection of rays. Since
this step is independent of any rendering request (in the form of projected rays), this
one-time step can be pre-processed. In this step, the Volume Outsourcer performs
two main tasks: (i) pre ray-projection rendering and (ii) encryption of output of the
pre ray-projection rendering using user-side keys: KC

Ui
and KA

Ui
. As discussed in Sec-

tion 8.2.3, the pre ray-projection rendering, consisting of gradient/normal estimation,
classification and shading rendering components, maps the physical property vi jk of

“Chapter17” — 2016/12/7 — 10:34 — page 12 — #12

12 Data Security in Cloud Computing

the i jkth data voxel to its corresponding color C and opacity A. After this step, an
input volume V can be represented as V ′, where the i jkth voxel of V ′ contains colors
and opacity found by the physical property (typically, represented as a floating point
number) of the i jkth voxel of V .

For a user i, the colors and opacities of V ′ are encrypted using KC
Ui

and KA
Ui

,
respectively. The encryption outputs E∗i (C) and E∗i (A) are sent to the Store Keeper
as an encrypted volume E∗i (V

′). The Store Keeper then uses the server-side keys KC
Si

and KA
Si

to re-encrypt E∗i (C) and E∗i (A) and stores the re-encrypted volume E(V ′) in
the Volume Store.

In the encryption process, we adopt two main optimizations to decrease the stor-
age overhead. First, we use an optimized modified Paillier cryptosystem. Second,
we encrypt three color components – R, G and B – in a single big number rather than
encrypting them independently. We discuss both the optimizations below.

Optimization of the modified Paillier cryptosystem. The modified Paillier cryp-
tosystem, explained in Section 8.6, is represented as: E(C) = (e1,e2), where e1 = gr

and e2 = grx.(1+Cn), where C is the plaintext color. Likewise, we encrypt the opac-
ity A. Note that e1 is independent of the plaintext color. By using a different e1 for
a different color (a typical case), we need 2k bits (where k is a security parameter)
for storing e1 of each color.We propose to optimize this space requirement by using
one e1 for encrypting t colors, requiring 2k bits for storing e1 for all t colors. This
optimization can be achieved by using the same random number r for all t colors.

Encrypting color components. As discussed in Section 8.2.3, the three color com-
ponents (i.e., R, G and B) undergo the same rendering operations. Each of them re-
quires 8 bits in plaintext, but is represented by 2∗k bits (the minimum recommended
value of k is 1024) when encrypted independently. We can reduce this overhead by
representing three color components as a single big number and encrypting this num-
ber in the place of encrypting the color components independently. This encrypted
number will then undergo rendering in the place of rendering of color components.
After decryption, we must, however, be able to recover the rendered color compo-
nents from the rendered big number. One trick to create a big number from color
components is by multiplying 103∗m∗(d+ f) (where d + f is the total rounding places
during rounding operations in rendering) to mth color component and add all the
multiplications.

8.5.2 Ray-dependent rendering

This step is performed by the Public Cloud Server after rays have been projected
by the Image User. In this step, the Public Cloud Server first fetches encrypted vol-
ume E(V ′) from the Volume Store and then performs sampling and interpolation on
E(V ′). We use the same sampling technique as used by the conventional ray-casting.
The interpolation, however, is performed on the encrypted color E(C) and opacity
E(A). As discussed in Section 8.2.3, interpolation can be performed as additions
and scalar multiplications when the interpolating factor Ii jk is available in plaintext.
We therefore disclose Ii jk to the Public Cloud Server. Since the floating point Ii jk

“Chapter17” — 2016/12/7 — 10:34 — page 13 — #13

3DCrypt 13

cannot be used with encrypted numbers, the Public Cloud Server converts Ii jk to an
integer I′i jk by first rounding-off Ii jk to d decimal places and then multiplying 10d to
the round-off value. 3DCrypt is such that it allows the Public Cloud Server to run
additions and scalar multiplications over encrypted numbers, as shown in Equations
8.1 and 8.2, respectively.

E(C1)∗E(C2) = E(C1 +C2) (8.1)

and

E(C)I′i jk = E(I′i jk ∗C) (8.2)

Likewise, we can compute opacity in an encrypted manner. The interpolated color
E(Cs) and opacity E(As) for each sample point s are first-stage-decrypted using the
Image User j’s server-side keys KC

S j
and KA

S j
, respectively. The first-stage-decrypted

color E∗j (Cs) and opacity E∗j (As) are then sent to the Private Cloud Server along with
the proxy ray to which the sampling point s is associated.

8.5.3 Composition

In this step, the Private Cloud Server accumulates the colors and opacities of all the
sampling points along a proxy voxel position. Since this step involves multiplica-
tion of opacities (which are non-homomorphic to Paillier Cryptosystem), the Private
Cloud Server performs the second round of decryption on E∗j (As) using the user j’s
user-side key for opacity, KA

U j
. The multiplied opacities Os, which will be multiplied

with encrypted color, however is a floating point number. As discussed above, we
can convert this float to an integer by first rounding-off the float by f places and
then multiplying 10 f with the rounded-off value. Then, we can perform encrypted
domain color composition using Equations 8.1 and 8.2. Note that since the available
interpolated colors are in encrypted form, the composited color E∗j (C) also remains
encrypted. Furthermore, in absence of voxel positions of the image space, the com-
posited plaintext opacity A does not reveal shape of the rendered image.

The plaintext rendered opacity A and encrypted rendered color E∗j (C) are sent
to the Image User, who decrypts E∗j (C) using KC

U j
and views the plaintext rendered

image.

8.6 Construction Details

In this section, we describe the algorithms used in our proposed scheme. We instan-
tiate two instances of the scheme: one for the color while other for the opacity.

• Init(1k). The KMA runs the initialization algorithm in order to generate pub-
lic parameters Params and a master secret key set MSK. It takes as input a
security parameter k, and generates two prime numbers p and q of bit-length
k. It computes n = pq. The secret key is x ∈ [1,n2/2]. The g is of order:

“Chapter17” — 2016/12/7 — 10:34 — page 14 — #14

14 Data Security in Cloud Computing

φ(n)
2 = φ(p)φ(q)

2 = (p−1)(q−1)
2 and can be easily found by choosing a random

a ∈ Z∗n2 and computing g = −a2n. It returns Params = (n,g) and MSK = x.
KS represents the Key Store, initialised as KS← φ .

• KeyGen(MSK, i). The KMA runs the key generation algorithm to generate
keying material for users in the system. For each user i, this algorithm gener-
ates two key sets KUi and KSi by choosing a random xi1 from [1,n2/2]. Then
it calculates xi2 = x−xi1, and transmits KUi = xi1 and KSi = (i,xi2) securely to
user i and to the server, respectively. The server adds KSi to the Key Store as
follows: KS← KS∪KSi .

• ClientEnc(D, KUi). A user i runs the data encryption algorithm to encrypt the
data D using her key KUi . To encrypt the data D ∈ Zn, the user client chooses
a random r ∈ [1,n/4]. It computes E∗i (D) = (ê1, ê2), where

ê1 = gr mod n2 and
ê2 = êxi1

1 .(1+Dn) mod n2

= grxi1 .(1+Dn) mod n2.

• ServerReEnc(E∗i (D), KSi). The server re-encrypts the user encrypted data
E∗i (D) = (ê1, ê2). It retrieves the key KSi corresponding to the user i and com-
putes the re-encrypted ciphertext E(D) = (e1,e2), where

e1 = ê1 = gr mod n2 and
e2 = êxi2

1 .ê2 = grx.(1+Dn). mod n2

• ServerSum(E(D1), E(D2)). Given two encrypted values E(D1) = (e11,e12)
(where e11 = gr1 and e12 = gr1x.(1+D1n) and E(D2) = (e21,e22) (where e21 =
gr2 and e22 = gr2x.(1+D2n)), the server calculates the encrypted sum E(D1 +
D2) = (e1,e2), where

e1 = e11.e21 = gr1+r2 mod n2 and
e2 = e12.e22 mod n2

= g(r1+r2)x.(1+(D1 +D2)n) mod n2.

• ServerScalMul(c, E(D)). Given a constant scalar factor c and an encrypted
value E(D) = (e1,e2) where e1 = gr and e2 = grx.(1+Dn), the server calcu-
lates the encrypted scalar multiplication E(c.D) = (e∗1,e

∗
2), where

e∗1 = ec
1 = grc mod n2 and

e∗2 = ec
2 = grcx.(1+ cDn) mod n2.

“Chapter17” — 2016/12/7 — 10:34 — page 15 — #15

3DCrypt 15

• ServerPreDec(E(D), KS j). The server runs this algorithm to partially decrypt
the encrypted data for the user j. It takes as input the encrypted value E(D) =
(e1,e2), where e1 = gr and e2 = grx.(1+Dn). The server retrieves the key
KS j corresponding to the user j and computes the first-stage-decrypted data
E∗j (D) = (ê1, ê2), where

ê1 = e1 = gr mod n2 and

ê2 = e
−x j2
1 .e2 mod n2

= grx j1 .(1+Dn) mod n2.

• UserDec(E∗j (D), KU j). The user runs this algorithm to decrypt the data. It
takes as input the first-stage-decrypted data E∗j (D) = (ê1, ê2) where ê1 = gr

and ê2 = grx j1 .(1+Dn)), and her key KU j , and retrieves the data by computing:

D = L(ê2.ê
−x j1
1) = L(1+Dn), where L(u) = u−1

n for all u∈ {u < n2|u = 1 mod
n}.

• Revoke(i). The server runs this algorithm to revoke user i access to the data.
Given the user i, the server removes KSi from the Key Store as follows: KS←
KS\KSi .

8.7 Security Analysis

In this section, we evaluate security of the scheme used in this chapter. In general, a
scheme is considered secure if no adversary can break the scheme with probability
significantly greater than random guessing. The adversary’s advantage in breaking
the scheme should be a negligible function (defined below) of the security parameter.

Definition 1 (Negligible Function). A function f is negligible if for each polynomial
p(.), there exists N such that for all integers n > N it holds that:

f (n)<
1

p(n)

We consider a realistic adversary that is computationally bounded and shows
that our scheme is secure against such an adversary. We model the adversary as a
randomized algorithm that runs in polynomial time and show that the success proba-
bility of any such adversary is negligible. An algorithm that is randomized and runs
in polynomial time is called a Probabilistic Polynomial Time (PPT) algorithm.

The scheme relies on the existence of a pseudorandom function f . Intuitively,
the output a pseudorandom function cannot be distinguished by a realistic adversary
from that of a truly random function. Formally, a pseudorandom function is defined
as:

Definition 2 (Pseudorandom Function). A function f : {0,1}∗×{0,1}∗→{0,1}∗ is
pseudorandom if for all PPT adversaries A , there exists a negligible function negl

“Chapter17” — 2016/12/7 — 10:34 — page 16 — #16

16 Data Security in Cloud Computing

such that:

|Pr[A fs(·) = 1]−Pr[A F(·) = 1]|< negl(n)

where s→ {0,1}n is chosen uniformly randomly and F is a function chosen uni-
formly randomly from the set of function mapping n-bit string to n-bit string.

Our proof relies on the assumption that the Decisional Diffie-Hellman (DDH)
is hard in a group G, i.e., it is hard for an adversary to distinguish between group
elements gαβ and gγ given gα and gβ .

Definition 3 (DDH Assumption). The DDH problem is hard regarding a group g if
for all PPT adversaries A , there exists a negligible function negl such that:

|Pr[A (G,n,g,gα ,gβ ,gαβ) = 1]−
Pr[A (G,n,g,gα ,gβ ,gγ) = 1]|< negl(k)

where g ← G is a group of order φ(n)/2 (where n = pq), and α,β ,γ ∈ Zn are
uniformly randomly chosen.

Theorem 1. If the DDH problem is hard relative to G, then the proposed Paillier-
based proxy encryption scheme (let us call it PPE) is INDistinguishable under Cho-
sen Plaintext Attack (IND-CPA) secure against the server S, i.e., for all PPT adver-
saries A there exists a negligible function negl such that:

SuccA
PPE,S(k) =

Pr


b′ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣

(Params,MSK)← Init(1k)
(KUi ,KSi)← KeyGen(MSK, i)
d0,d1←A ClientEnc(·,KUi)(KSi)

b R←− {0,1}
E∗i (db) =ClientEnc(db,KUi)

b′←A ClientEnc(·,KUi)(E∗i (db),KSi)


< 1

2 +negl(k)

(8.3)

Proof. Let us consider the following PPT adversary A ′ who attempts to solve the
DDH problem using A as a sub-routine. Note that for the proof technique, we take
inspiration from the one presented in [Dong et al., 2011]. Recall that A ′ is given
G,n,g,g1,g2,g3 as input, where g1 = gα ,g2 = gβ and g3 is either gαβ or gγ for some
uniformly chosen random α,β ,γ ∈ Zn. A ′ does for the following:

• A ′ sends n,g to A as the public parameters. Next, it randomly chooses xi2 ∈
Zn for the user i and computes gxi1 = g1.g−xi2 . It then sends (i,xi2) to A and
keeps all (i,xi2,gxi1).

• Whenever A requires oracle access to ClientEnc(.), it passes the data d to A ′.
A ′ randomly chooses r ∈ Zn and returns (gr,grxi1 .(1+dn)).

“Chapter17” — 2016/12/7 — 10:34 — page 17 — #17

3DCrypt 17

• At some point, A outputs d0 and d1. A ′ randomly chooses a bit b and sends
(g2,g

−xi2
2 g3.(1+dbn)) to A .

• A outputs b′. If b = b′, A ′ outputs 1 and 0 otherwise.

We can distinguish two cases:
Case 1. If g3 = gγ , we know that gγ is a random group element of G because γ

is chosen at random. g−xi2
2 g3.(1+ dbn)) is also a random element of G and gives

no information about db. That is, the distribution of g−xi2
2 g3.(1+ dbn)) is always

uniform, regardless of the value of db. Further, g2 does not leak information about
db. So, the adversary A must distinguish d0 and d1 without additional information.
The probability that A can successfully output b′ is exactly 1

2 , when b is chosen
uniformly randomly. A ′ outputs 1 if and only if A outputs b′ = b. Thus, we have:

Pr[A ′(G,n,g,gα ,gβ ,gγ) = 1] = 1
2

Case 2. If g3 = gαβ , because

g2 = gβ and
g−xi2

2 g3.(1+dbn) = g−βxi2gαβ .(1+dbn)

= gβ (α−xi2).(1+dbn)

= gβxi1 .(1+dbn)

Thus, (g2,g
−xi2
2 g3.(1+dbn)) is a proper ciphertext encrypted under PPE. So, we

have:

Pr[A ′(G,n,g,gα ,gβ ,gα,β) = 1] = SuccA
PPE,S(k)

If the DDH problem is hard relative to G, then the following holds:

|Pr[A ′(G,n,g,gα ,gβ ,gαβ) = 1]−
Pr[A ′(G,n,g,gα ,gβ ,gγ) = 1]|< negl(k)
Pr[A ′(G,n,g,gα ,gβ ,gαβ) = 1]< 1

2 +negl(k)

So, we have:

SuccA
PPE,S(k)<

1
2
+negl(k).

Informally, the theorem says that without knowing the user side keys, the proxy
cannot distinguish the ciphertext in a chosen plaintext attack.

8.8 Implementation and Experiment

We implemented the secure ray-casting by integrating the modified Paillier cryp-
tosystem to the volume ray-casting module of the open source 3D visualization soft-
ware VTK6.3.0. We run the implemented 3DCrypt on a PC powered by Intel i5-4670

“Chapter17” — 2016/12/7 — 10:34 — page 18 — #18

18 Data Security in Cloud Computing

(a) (b) (c)

Figure 8.6: Secure rendering for the Head image. (a), (b) and (c) illustrate the
rendered image available to the Image User, the Public Cloud Server and the Private
Cloud Server, respectively.

3.40 GHz processor and 8 GB of RAM, running Ubuntu 15.04. All the components
of 3DCrypt, i.e., the Volume Outsourcer, the Public Cloud Server, the Private Cloud
Server, the Image User and the KMA were simulated. Note that VTK is typically
shipped with post-classification volume ray-casting. We modified VTK to provide
pre-classification volume ray-casting. For dealing with big number cryptographic
primitive operations, we integrated the MIRACL cryptographic library with VTK.

In our implementation, we chose a 1024-bit key size. We round-off the floating
point numbers used in rendering operations by machine precision to avoid round-off
errors. For the modified Paillier encryption, we choose one random number r for all
voxels of a volume, requiring one e1 = gr (first cipher component) for all voxels.

Results. Figure 8.6 illustrates how 3DCrypt provides perceptual security in the
cloud. An image available to the Public Cloud Server is all black since the Public
Cloud Server does not know the color and opacity of the pixels. The image avail-
able to the Private Cloud Server, however, contains opacity information, which can
disclose shape of the image as voxel positions are disclosed to the Private Cloud
Server.

Performance Analysis. In 3DCrypt, processing by the Volume Outsourcer and the
encryption by the Public Cloud Server are one-time operations, which could be per-
formed offline. The overheads of these operations, however, are directly proportional
to the volume size. The overhead for a volume is equal to the product of a voxel’s
overhead with the total number of voxels in the volume (i.e., the dimension of the
volume). In our implementation, we need approximately 4064 bits more space to
store the encrypted color and the opacity of a voxel (as two encryptions of 1024 bits
key size are required for encrypting 32 bits RGBA values). Thus, we require ap-
proximately 8.6 GB of space to store a 256×256×256 volume in encrypted domain
(size of this volume in plaintext is approximately 67 MB). Similarly, for encrypting
color and opacity of a voxel, the Volume Outsourcer requires approximately 540 mil-
lisecond (ms). The Public Cloud Server requires approximately 294 ms more com-
putation with respect to the conventional plaintext domain pre-classification volume
ray-casting implemented on the same machine. Thus, the Volume Outsourcer and the
Public Cloud Server require approximately 2.52 hours and 1.37 hours, respectively,
for encrypting the 256×256×256 volume.

The rendering by the cloud servers and the decryption by the Image User are
performed at runtime, according to the ray projected by the Image User. The over-

“Chapter17” — 2016/12/7 — 10:34 — page 19 — #19

3DCrypt 19

head of performing these operations affects visualization latency, which is discussed
below.

In 3DCrypt, the overhead of transferring and performing the last round rendering
operations in the Private Cloud Server is equal to the product of the number of sam-
ple points with the overhead of a sample point. The total number of sample points is
equal to the sum of the sample points along all the projected rays and the number of
sample points along a ray is implementation dependent. For rendering and decrypt-
ing (the first round) the color and opacity of a sample point, the Public Cloud Server
requires approximately 290 ms of extra computation. For rendering and decrypting
(the second round) opacity of a sample point, the Private Cloud Server requires ap-
proximately 265 ms of extra computation (with respect to the conventional plaintext
domain pre-classification volume ray-casting).

In our implementation, for rendering and decrypting the 256×256×256 volume
data for a 256× 256 image project space, the Public Cloud Server and the Private
Cloud Server require approximately 16.5 extra minutes and 15.2 extra minutes, re-
spectively. Note that for this data and image space, the data overhead at the Private
Cloud Server is approximately 1.75 GB.

The overhead of transferring and decrypting the color-encrypted rendered image
to the Image User is equal to the product of the number of pixels in the image space
(which is equal to the number of projected rays) with the overhead for a single pixel.
In 3DCrypt, the Private Cloud Server must send approximately 2024 bits more data
per pixel to the Image User. Therefore, for rendering a 256×256 image, the Image
User must download 66.3 MB of more data than the conventional plaintext domain
rendering. In addition, the Image User needs approximately 408 ms of computation
to decrypt and recover rendered color of a pixel. Therefore, before viewing the
256×256 image, the Image User must work approximately 27 extra seconds.

8.9 Conclusions

Cloud-based volume rendering presents the data confidentiality issue that can lead
to privacy loss. In this chapter, we addressed this issue by encrypting the volume
using the modified Paillier cryptosystem such that a pre-classification volume ray-
casting can be performed at the cloud server in the encrypted domain. Our proposal,
3DCrypt, provides several improvements over state-of-the-art techniques. First, we
are able to hide both color and shape of the rendering object from a cloud server. Sec-
ond, we provide better security to collusion attack than the state-of-the-art Shamir’s
secret sharing-based scheme. Third, users do not need to share keys for rendering
volume stored in the cloud (therefore, maintenance of per-volume keys is not re-
quired).

To make 3DCrypt more practical, our future work can focus on decreasing per-
formance overheads both at the cloud and the user ends. Furthermore, it would also
be interesting to investigate whether we can extend 3DCrypt for the encrypted do-
main post-classification volume ray-casting.

“Chapter17” — 2016/12/7 — 10:34 — page 20 — #20

20 Data Security in Cloud Computing

“Chapter17” — 2016/12/7 — 10:34 — page 21 — #21

Bibliography

[Ateniese et al., 2006] Ateniese, G., Fu, K., Green, M., and Hohenberger, S. (2006).
Improved proxy re-encryption schemes with applications to secure distributed
storage. ACM Transactions on Information and System Security, 9:1–30.

[Ayday et al., 2013] Ayday, E., Raisaro, J. L., Hubaux, J.-P., and Rougemont, J.
(2013). Protecting and evaluating genomic privacy in medical tests and person-
alized medicine. In Proceedings of the 12th ACM Workshop on Privacy in the
Electronic Society, pages 95–106.

[Baharon et al., 2013] Baharon, M., Shi, Q., Llewellyn-Jones, D., and Merabti, M.
(2013). Secure rendering process in cloud computing. In PST, pages 82–87.

[Bresson et al., 2003] Bresson, E., Catalano, D., and Pointcheval, D. (2003). A sim-
ple public-key cryptosystem with a double trapdoor decryption mechanism and
its applications. In Advances in Cryptology - ASIACRYPT 2003, volume 2894 of
Lecture Notes in Computer Science, pages 37–54. Springer Berlin Heidelberg.

[Chou and Yang, 2015] Chou, J.-K. and Yang, C.-K. (2015). Obfuscated volume
rendering. The Visual Computer, pages 1–12.

[Cuervo et al., 2015] Cuervo, E., Wolman, A., and et al., L. P. C. (2015). Kahawai:
High-quality mobile gaming using GPU offload. In Proceedings of the 13th An-
nual International Conference on Mobile Systems, Applications, and Services,
pages 121–135.

[Dasgupta and Kosara, 2011] Dasgupta, A. and Kosara, R. (2011). Adaptive
privacy-preserving visualization using parallel coordinates. Visualization and
Computer Graphics, IEEE Transactions on, 17(12):2241–2248.

[Dong et al., 2011] Dong, C., Russello, G., and Dulay, N. (2011). Shared and
searchable encrypted data for untrusted servers. Journal of Computer Security,
19:367–397.

[Intel Inc., 2011] Intel Inc. (2011). Experimental cloud-based ray tracing us-
ing intel mic architecture for highly parallel visual processing. Online Re-
port. https://software.intel.com/sites/default/files/m/
d/4/1/d/8/Cloud-based_Ray_Tracing_0211.pdf.

21

https://software.intel.com/sites/default/files/m/d/4/1/d/8/Cloud-based_Ray_Tracing_0211.pdf
https://software.intel.com/sites/default/files/m/d/4/1/d/8/Cloud-based_Ray_Tracing_0211.pdf

“Chapter17” — 2016/12/7 — 10:34 — page 22 — #22

22 BIBLIOGRAPHY

[KDDI Inc., 2012] KDDI Inc. (2012). Medical real-time 3d imaging solution. On-
line Report. http://www.kddia.com/en/sites/default/files/
file/KDDI_America_Newsletter_August_2012.pdf.

[Koller et al., 2004] Koller, D., Turitzin, M., and et al., M. L. (2004). Protected
interactive 3D graphics via remote rendering. In ACM SIGGRAPH, pages 695–
703.

[Levoy, 1988] Levoy, M. (1988). Display of surfaces from volume data. IEEE
Comput. Graph. Appl., 8:29–37.

[Mohanty et al., 2012] Mohanty, M., Atrey, P. K., and Ooi, W. T. (2012). Secure
cloud-based medical data visualization. In Proceedings of the 20th ACM Interna-
tional Conference on Multimedia, pages 1105–1108, Nara, Japan.

[Mohanty et al., 2013] Mohanty, M., Ooi, W. T., and Atrey, P. K. (2013). Secure
cloud-based volume ray-casting. In Proceedings of the 5th IEEE Conference on
Cloud Computing Technology and Science, Bristol, UK.

[Sinha System, 2012] Sinha System (2012). Cloud based medical image manage-
ment and visualization platform. Online Report. http://www.shina-sys.
com/assets/brochures/3Di.pdf.

http://www.kddia.com/en/sites/default/files/file/KDDI_America_Newsletter_August_2012.pdf
http://www.kddia.com/en/sites/default/files/file/KDDI_America_Newsletter_August_2012.pdf
http://www.shina-sys.com/assets/brochures/3Di.pdf
http://www.shina-sys.com/assets/brochures/3Di.pdf

	Preserving Privacy in Pre-Classification Volume Ray-Casting of 3D Images
	Introduction
	Related Work and Background
	Encrypted Domain Rendering
	3D Images
	Volume Ray-Casting

	System Model
	Proposed Approach
	Solution Details
	Data preparation
	Ray-dependent rendering
	Composition

	Construction Details
	Security Analysis
	Implementation and Experiment
	Conclusions

