

© Copyright Notice

All rights reserved. No part of this publication may be

reproduced, distributed, or transmitted in any form or

by any means, including photocopying, recording, or

other electronic or mechanical methods, without the

prior written permission of the publisher, except in the

case of brief quotations embodied in critical reviews

and certain other non-commercial uses permitted by

copyright law.

PrivICN: Privacy-Preserving Content Retrieval in Information-Centric Networking

Cesar Bernardinia, Samuel Marchalb, Muhammad Rizwan Asgharc, Bruno Crispod

aBarracuda Networks, Austria
bDepartment of Computer Science, Aalto University, Finland

cCyber Security Foundry, The University of Auckland, New Zealand
dDepartment of Information Engineering and Computer Science, University of Trento, Italy

Abstract

Information-Centric Networking (ICN) has emerged as a paradigm to cope with the increasing demand for content delivery on

the Internet. In contrast to the Internet Protocol (IP), the underlying architecture of ICN enables users to request contents based on

their name rather than their hosting location (IP address). On the one hand, this preserves users’ anonymity since packet routing

does not require source and destination addresses of the communication parties. On the other hand, semantically-rich names reveal

information about users’ interests, which poses serious threats to their privacy. A curious ICN node can monitor the traffic to

profile users or censor specific contents for instance. In this paper, we present PrivICN: a system that enhances users privacy in

ICN by protecting the confidentiality of content names and content data. PrivICN relies on a proxy encryption scheme and has

several features that distinguish it from existing solutions: it preserves full in-network caching benefits, it does not require end-to-

end communication between consumers and providers and it provides flexible user management (addition/removal of users). We

evaluate PrivICN in a real ICN network (CCNx implementation) showing that it introduces an acceptable overhead and little delay.

PrivICN is publicly available as an open-source library.

Keywords: ICN, Information-centric networking, content names, privacy, confidentiality, proxy encryption

1. Introduction

The Internet was initially designed as a network providing

host-to-host communication using IP addresses. However, it

has dramatically evolved over time to become a global platform

used by governments, corporations and individuals for sharing

a large amount of data. According to Cisco [1], the global mo-

bile data traffic will increase sevenfold in the next five years.

Moreover, all forms of content delivery in the Internet are ex-

pected to represent 86% of the whole traffic [1]. In order to

cope with this growing demand, researchers have proposed to

replace the existing host-to-host communication network with

an information-centric one [2]. Several Information-Centric

Networking (ICN) architectures have been presented, such as

PURSUIT [3], DONA [4], Named-Data Networking (NDN) [5]

or Content-Centric Networking (CCN) [6]. Among them, NDN

and CCN have received most of the attention from the commu-

nity because of three features: hierarchical naming scheme at

networking layer, coupling of name forwarding and data rout-

ing, and simple easy-to-manage caching features (for efficiency

reasons) at every node of the network [7, 8].

In ICN architectures, contents are searched for using their

names. These names are semantically tied to the content they

address. Content names and content data are sent within the

Email addresses: mesarpe@gmail.com (Cesar Bernardini),

samuel.marchal@aalto.fi (Samuel Marchal),

r.asghar@auckland.ac.nz (Muhammad Rizwan Asghar),

bruno.crispo@unitn.it (Bruno Crispo)

network in plaintext and accessible to any ICN node forwarding

them. This leaks sensitive information about interests of users

requesting and receiving contents. A curious ICN node can use

this information to profile users or sell it to marketing com-

panies for targeted advertisement. A malicious ICN node can

prevent the delivery of specific contents in a censorship fashion.

Therefore, the confidentiality of contents and their names must

be protected to avoid these threats and enhance users privacy.

There exist solutions for protecting the confidentiality of

names [9, 10, 11], content data [12] or both [13, 14] in ICN.

However, no solution exists that protects both names and con-

tents confidentiality while preserving some basic features of

ICN. For instance, they remove [15, 16] or impair [9] in-network

caching benefits, or require end-to-end communications and se-

curity association between consumers and providers [10]. This

degrades ICN performance and corrupts users’ anonymity. More-

over, existing solutions suffer from scalability and flexibility is-

sues with respect to user management. Most schemes require to

re-generate a large number of keys and/or the re-encryption of

content names and content data stored on ICN nodes [13, 14],

when handling the addition and removal of users.

To cope with these issues, we propose a system named PrivICN
(PRIVacy-preserving content retrieval in ICN) that enhances

users privacy in ICN by protecting the confidentiality of con-

tent names and content data. PrivICN relies on a proxy encryp-

tion mechanism [17, 18] in which content consumers, content

providers and ICN nodes do not share any key. All contents

and names are in an encrypted form while in-network and rout-

Preprint submitted to Aalto Doc December 5, 2018

ing operations are performed on these encrypted entities. Only

content consumers and content providers can ultimately decrypt

the content data, which is protected from any ICN node. The

contributions of this paper are:

• a set of generic design goals that any privacy-preserving

solution for ICN must meet to be deployable and usable

while achieving its purpose (Section 2.3). These goals

justify the design choices we made for PrivICN and they

can help in designing future proposals for protecting pri-

vacy in ICN.

• a privacy-preserving system for content request and de-

livery over ICN: PrivICN (Sections 4 and 5). In contrast

to previous solutions, it preserves all ICN features (in-

cluding in-network caching and no requirement for end-

to-end communications) and it provides flexible user man-

agement (addition/removal of users).

• an experimental evaluation of PrivICN in a real ICN net-

work (Section 6). It shows that it is deployable and in-

duces an acceptable overhead in terms of storage and

computation. It introduces an acceptable delay in net-

work communications (≈30%).

• an open-source library implementing PrivICN available

at [19].

This paper is an extended version from a previous publica-

tion [20] and includes the following major additions. (1) We

introduce a set of design goals for any privacy-preserving solu-

tion for ICN and we evaluate the extent to which our proposed

solution (PrivICN) meet them. (2) We provide the implementa-

tion for the cryptographic primitives of PrivICN and make them

available as a public library. (3) We present an extended evalu-

ation of the proposed solution including its assessment in a real

CCNx network deployment.

2. Background and Problem Description

2.1. ICN Overview
Information-Centric Networking is a clean-slate approach

for the future Internet. Since there are many ICN architec-

tures [7], we focus on the most popular ones in this paper:

CCN [6] and NDN [5]. We present their principles and name

them indifferently using the generic term ICN in the remaining

of the paper. ICN communication is based on two primitives:

interest and data messages. The interest expresses the will of

a client for content, while a data message contains the answer

for that content. The communication paradigm is led by names,

known as content names, which are contained in the interest and

data messages. These names are made of hierarchically orga-

nized and human-readable components. For instance, /it/Venice
and /org/wikipedia/Maradona are two valid ICN names com-

posed of 2 and 3 components, respectively. To refer to content

stored in data messages we will use the term content data.

To support content retrieval and delivery, every ICN node

holds three tables:

• Content Store (CS) is a caching structure that stores con-

tent data temporarily.

• Pending Interest Table (PIT) keeps track of the currently

non-satisfied interests. It serves as a trace of the reverse

path for a requested content data to be delivered through

once found.

• Forwarding Interest Base (FIB) is a routing table used

to determine the interface to forward interest messages

through.

A client sends an interest to an ICN edge node, namely the

first node it is connected to and is at the edge of the network.

The ICN edge node receiving the interest extracts the content

name and looks it up in its CS to determine if it is locally

cached. If so, the content is sent back through the interface

over which the interest arrived and the interest is discarded. Al-

ternatively, the node lookups the PIT to determine whether it is

already waiting for the requested content. If an entry is found,

the PIT is updated to add a new incoming interface for the con-

tent name and the interest is discarded. If no match is found in

both CS and PIT, the node operates the longest prefix match of

the received content name against the FIB. The result of this op-

eration determines the interface on which the interests must be

forwarded. The next ICN node receiving the interest applies the

same procedure until the requested content is eventually found.

Figure 1 depicts an example of content retrieval and de-

livery in an ICN network. It shows the CS, PIT and FIB ta-

ble state after each step of the procedure. The client Bob is

willing to retrieve the wikipedia page of the football player

Maradona. Bob creates an interest message with the content

name /org/wikipedia/Maradona and sends it to the ICN edge

node A (1). A checks whether the content name has any match

in CS and PIT tables. It does not and as a result, the interest

message is forwarded to node B according to the FIB table (2).

A new entry is added to the PIT specifying the content name

and incoming interface of the request: Bob. B runs the same

process and forwards the interest to C (3). C finds a match in

its CS (4). The content is encapsulated into a data message (5),

which is forwarded through the reverse path using the entries

recorded in the PIT (6–8). The intermediary nodes (A and B)

store a copy of the content data in their CS. Finally, Bob re-

ceives the wikipedia page of Maradona (8).

2.2. Privacy Issues in ICN
ICN architectures distribute content in plaintext. Any ICN

node on the path of an interest or data message can intercept it.

Examining the content of an ICN data message can leak infor-

mation about user interests. This information can be valuable

and monetized by third parties, e.g., marketing companies, to

perform targeted advertisement campaigns. Similarly, gather-

ing enough content delivered to a user can be used to profile and

uniquely identify her. Malicious ICN nodes could also prevent

the delivery of contents related to given topics in order to cen-

sor a certain type of information [21]. Thus content data needs

to be protected and kept confidential to prevent such inference

by ICN nodes.

However, protecting only content data does not solve the

issue. As previously discussed, the major ICN architectures

(CCN and NDN) use a URI like naming scheme for naming

2

Figure 1: Example ICN architecture (inspired from [7]) in which Bob requests Maradona’s wikipage. His interest is disseminated within the network (red path).

Once the content found, it is sent back through the same path taken by the interest message (blue path). CS, PIT and FIB table state is shown after each step of the

process.

contents. Consequently, names are typically human-readable

and have a semantic correlation with their content [22, 23, 24].

Content names contained in interest messages are also sent in

plaintext and visible to all forwarders in ICN. Hence, a curi-

ous ICN node can easily infer what a content consumer or a

group of consumers is interested in by monitoring requested

content names. For instance, if we refer to the example illus-

trated in Figure 1, node A can discover that Bob is interested

in Wikipedia and the football player Maradona. By transitiv-

ity, nodes B and C can infer the same interest for some content

consumers located behind a given interface. The same threats

previously presented remain if only the confidentiality of con-

tents is guaranteed. Thus, both content data and content names

must be confidential and protected from ICN nodes to enhance

user privacy.

Threat model. The system is composed of content consumers,

content providers and ICN nodes. We consider an attack model

in which attackers are ICN nodes. Their goal is to infer in-

terests for a given consumer based on the messages she sends

and receives. ICN nodes are honest-but-curious, i.e., they hon-

estly participate in message routing and content retrieval but

can passively monitor the traffic that goes through them. They

can apply any kind of analysis on the traffic and collude with

other ICN nodes to achieve their goal. We assume they can only

perform passive attacks and do not cover active attacks. We do

not make any assumptions on content consumers and content

providers.

Our goal is to prevent content consumers from revealing

their interests to ICN nodes, i.e., preserving the confidentiality

of their requested content data. We do not seek to protect the

integrity of content data and their names though. This can be

achieved by existing methods such as signatures from the con-

tent provider.

2.3. Design Goals

We define the following design goals for a deployable solu-

tion that provides confidential content delivery, which enhances

content consumers privacy in ICN:

G1 Confidentiality of information: ICN nodes must not be

able to read contents delivered to a content consumer. In

addition, content names must also remain confidential.

ICN nodes must be able to perform lookup and longest

prefix match on content names without inferring client

interests from their requests.

G2 Ease of management: The system must be able to man-

age a large and varying number of users. Especially, the

addition and removal of content consumers and content

providers from the system must be possible for a low

cost. The replacement of ICN nodes must also be pos-

sible for a low cost to guarantee the quality of service.

G3 Performance & overhead: The system must provide

efficient content name lookup and fast content delivery.

More specifically, the computational overhead and the

communication delay must remain acceptable, e.g., <50%

with respect to a plain ICN implementation that does not

provide any confidentiality in content delivery.

3

Figure 2: Proxy Encryption Cryptosystem: Clients i and j use a proxy to share encrypted information without leaking secrets.

G4 Preserve ICN features: ICN features that differentiate

it from IP must be preserved. These include in-network

content caching, name-based routing and abstaining from

resorting to end-to-end communication. Also, the solu-

tion must not alter the forwarding process of messages,

i.e., it must preserve the CS-PIT-FIB workflow.

G5 No security association: Content providers and content

consumers must not require to share information between

them prior to any content request. The signature of con-

tents can reveal the identity of a content consumer and

compromise her anonymity. The establishment of a shared

secret requires end-to-end communication and impairs

ICN features.

3. Proxy Encryption

To address the proposed research challenges, we propose to

adapt an existing cryptographic primitive [17] – proxy encryp-

tion – to ICN. Proxy encryption is an asymmetric encryption

scheme that we present in this section.

The notion of proxy encryption was first introduced in [25]

and solves the following problem. Two clients expect to com-

municate encrypted information through a proxy without shar-

ing any secret. Every client holds a secret key, which allows it to

encrypt/decrypt information. The proxy encryption transforms

encrypted ciphertext from one client into encrypted ciphertext

for another client, without sharing any information about the

keys or the plaintext.

To build a proxy encryption system, we require:

• Key Management Server. A KMS is a fully trusted au-

thority that is responsible for generation and revocation

of keys. It generates one single master key XMK for the

system and several pairs of client/proxy key for every

client i in the system such that: ∀i,XMK =Xclient,i+Xproxy,i
• Client Key. Every client i gets a private key Xclient,i and

keeps it secret.

• Proxy Keys. The proxy holds a list of every client it serves

and its corresponding proxy key (public key). For in-

stance, if a proxy accepts requests from clients 3, 5 and

12, it holds a table that maps: 3 → Xproxy,3, 5 → Xproxy,5
and 12 → Xproxy,12.

• Trapdoor. A trapdoor function is a mathematical function

that is easy to compute in one direction but difficult to

compute in the opposite direction without having special

information. If T D is a trapdoor function, there exists

some information x, such that given T D(m) and x, we

can easily calculate m. T Dx(m) is the calculus of T D(m)
while applying the information x. x is a security key. T D
is a commutative function meaning that T Dy(T Dx(m)) =
T Dx(T Dy(m)).

Figure 2 shows the encryption/decryption process in the

proxy encryption cryptosystem. Client i intends to send a mes-

sage m to Client j, without sharing information about their se-

cret keys (Xclient,i, Xclient, j) or the plaintext m. To this end,

Client i encrypts the message m with its secret key Xclient,i into

ci = T DXclient,i(m) and sends ci to the Proxy. The Proxy holds a

corresponding proxy key for Client i and j (Xproxy,i, Xproxy, j).

It encrypts the received encrypted message ci from Client i
with Xproxy,i such that c = T DXproxy,i(ci). The two subsequent

trapdoor computations with client key Xclient,i and proxy key

Xproxy,i from any client i generate a ciphertext c from m such that

c= T DXMK (m). c can be subsequently decrypted with the proxy

key corresponding to the target Client j to get c j = T DXclient, j(m).

The resulting ciphertext c j is sent to Client j that decrypts it with

its secret key Xclient, j.

4. PrivICN at a glance

The main idea behind PrivICN is to employ proxy encryp-

tion [17, 18] for providing confidential lookup and retrieval of

content data over ICN.

To protect user interest, content consumers transform each

component of a content name, e.g., /c1/c2/c3, into a corre-

sponding trapdoor /T D(c1)/T D(c2)/T D(c3) using their client

keys. All T D(ci) have the same fixed length, which is indepen-

dent from ci. Trapdoors do not leak any information about their

original components ci and make the content name confidential.

The content name is sent as part of an interest to an ICN edge

node connected to content consumer i, which serves as a proxy

and re-encrypts the trapdoors using the proxy key correspond-

ing to the requesting content consumer. Next, the ICN node

matches the encrypted content name against encrypted tables

stored on ICN nodes (CS, PIT, FIB). All table entries are en-

crypted in the same form in any ICN node, i.e., as if encrypted

using the master key of the system. Content providers follow

the same procedure as content consumers to announce content

4

Figure 3: Content request and delivery using PrivICN. Additional operations are added to Steps 1, 5 and 8 compared to a typical ICN network.

Figure 4: Implementation of PrivICN using Proxy Encryption.

names in the network. A content provider transforms compo-

nents in content names into trapdoors that are re-encrypted by

the ICN edge node it is connected to.

To protect content data, content providers encrypt them into

trapdoors. They send the trapdoors to an adjacent ICN edge

node that re-encrypts and stores them. The ICN edge node

connected to a requesting content consumer acts as a proxy. It

pre-decrypts the encrypted content data before sending it to the

requesting content consumer that finally decrypts it.

Using PrivICN, the flow of messages mainly remains same

as presented in Figure 1. There are only small additions to Steps

1, 5 and 8 that we show in Figure 3 and describe in details in

Section 5:

• Step 1: the content consumer first generates a trapdoor

from the content name it wants to request (1.a – interest

generation). The trapdoor is sent to the ICN edge node

(A) that re-encrypts it (1.b - ICN re-encryption).

• Step 5: the content provider generates a trapdoor for a

content (5.a – content generation). The trapdoor is sent

to the ICN edge node (C) that re-encrypts it (5.b - ICN

re-encryption).

• Step 8: the content delivery is completed by pre-decryption

of the content data by the ICN edge node (A) connected

to the requesting content consumer (8.a - ICN pre-decryption).

The content consumer can access the requested content

by decrypting the pre-decrypted content data with its client

key (8.b - Client decryption).

All remaining steps (Steps 2-4 and 6-7) are the same as al-

ready illustrated in Figure 1 albeit that matching operations are

performed on encrypted content names and tables.

Figure 4 depicts how we adapt standard proxy encryption

(depicted in Figure 2) in PrivICN. While all proxy encryp-

tion operations are traditionally delegated to a single host: the

proxy (cf. Section 3), we distribute them among different ICN

edge nodes in PrivICN. All ICN edge nodes know the con-

tent consumers and providers directly connected to them and

they have the proxy key for each of them. A single ICN edge

node is only in charge of re-encrypting content names and data

using the proxy key Xproxy,i of the requesting client. This re-

encryption produces content names and a data as if encrypted

with the master key XMK . All routing operation in ICN core

nodes are performed on content names and data encrypted us-

ing XMK . At the receiving end of the request, an other ICN edge

node will pre-decrypt content data using the proxy key Xproxy, j
of the receiving client. The receiving client will finally be able

to decrypt the content using its client key Xclient, j. This all pro-

5

cess is further detailed in Section 5.

We envision PrivICN to be deployed in an ecosystem with

three parties. The first party are content consumers and content

providers of the ICN network. The second party is an Internet

Service Provider (ISP) that provides the network infrastructure

for content retrieval. The third party is the KMS that provides

the client and proxy keys to ICN clients and ICN edge nodes

respectively. The ISP wants to provide a privacy-preserving

service to its clients (and claim to do so). This scenario is

realistic considering the increasing attention given to privacy

and the corresponding legal measures taken to protect it, e.g.,

EU General Data Protection Regulation (GDPR) [26]. One

step towards enhancing clients privacy in ICN is by perform-

ing content retrieval over confidential data. The ISP contracts

the KMS to enforce this confidentiality. The ISP controls all

the routers of its network and knows which ones are ICN edge

nodes. The ISP would reveal the list of known ICN edge nodes

to the KMS, which in turn would only deliver proxy keys to

these edge nodes. In such a deployment, any ICN client would

be directly connected to an ICN edge node (part of the con-

sidered ISP). The ICN edge node acts as the proxy for proxy

re-encryption in PrivICN.

PrivICN provides end-to-end encryption of both content names

and content data between content consumers and content providers.

Thus, the design goal G1 from Section 2.3 is realized since

confidentiality of both content names and content data is pre-

served from ICN nodes. The proxy encryption scheme allows

PrivICN to store contents and names in a single encrypted form

while in the network. This preserves the benefits of in-network

caching and allows ICN nodes to perform name-based routing.

By providing these features, we do not require end-to-end com-

munication between content consumers and providers. Thus, it

demonstrates that PrivICN preserves all ICN features and meets

design goal G4. Moreover, it does not need any security associ-

ation or key exchange between content consumers and content

providers. They only need a private key to participate in the

system, which satisfies G5.

5. Solution Details

We selected ElGamal encryption system [27] as the basis to

implement our proxy encryption system. ElGamal is an asym-

metric encryption algorithm where private keys will serve as

client keys and public keys as proxy keys. It is worth noting that

a client key (private key) is only known by the considered client

(content consumer or requester) and the KMS while a proxy key

(public key) is known to the KMS and to all ICN edge nodes.

However, proxy keys remain private to all clients of the net-

work. In this section, the terms content consumer and content
provider are used interchangeably. While they have different

roles in ICN, they have same client capabilities in PrivICN.

5.1. Initialization and Key Generation

The KMS generates a master secret key and public param-

eters using the Init method on a security parameter k. After

setup, the KMS generates keys for every content consumer and

content provider in the system. It runs KeyGen, which takes as

input the identity of a client and generates a key pair including

a client key (private key) and a proxy key (public key). The

client key Kclient,i is securely sent to the client i and stored in its

key store. The proxy key Kproxy,i is provided to every ICN edge

node the client i is connected to.

• Init(k): Given a security parameter k, the KMS gen-

erates two prime numbers p and q such that q|p − 1.

It generates a cyclic group G of order q with generator

g such that G is a subgroup of Z
∗
p. It chooses a ran-

dom s ∈ Z
∗
q and XMK ∈ Z

∗
q, which is a master secret key

and calculates h = gXMK . Then, our scheme relies on

a pseudorandom function f that takes two arguments s
and x (message to encrypt) and returns y. We refer to

f (s,x) as fs(x). The KMS publishes the public parame-

ters Params = (G,g,q,h, f) and keeps securely the mas-

ter secret key MSK = (XMK ,s).
• KeyGen(MSK, i): For each client i, the KMS chooses

a random number Xclient,i ∈ Z
∗
q and computes Xproxy,i =

XMK − Xclient,i where Xproxy,i �= Xclient,i. Next, it sends

Kclient,i = (Xclient,i,s) securely to client i and Kproxy,i =
(i,Xproxy,i) to any edge node adjacent to client i. The edge

nodes append the new proxy key for client i to their proxy

key store.

The FIB table of each ICN node remains empty at this point

and is later populated as contents are published by content providers.

Similarly, PIT and CS tables will be populated as content con-

sumers start requesting content data.

5.2. Content & Interest Generation
Content data and content names are encrypted in a different

manner in PrivICN. While content data needs to be decrypted

and available in clear to clients, routing and matching operation

in FIB, PIT and CS are operated on encrypted content names.

Content names only require to be encrypted in a way that allows

comparisons between them.

Content providers publish content data on the network us-

ing the ContentTD operation. This generates a trapdoor that

contains a content data encrypted with the client key of the

provider. On the other hand, content names are encrypted by

both consumers and providers using the NameTD operation.

This operation encrypts each component of a content name into

a trapdoor using the client key. The encryption process for con-

tent data (ContentTD) and content name (NameTD) is differ-

ent because of the requirement for decryption previously de-

scribed. While data encrypted with ContentTD can be recov-

ered by decryption, data encrypted with NameTD cannot. Con-

tent providers store content data and content names in their en-

crypted form as produced by ContentTD and NameTD. These

are further transmitted to adjacent ICN edge nodes to announce

their availability and location in the network.

ICN clients generate their interest for a content name using

NameTD. This operation is performed before Step 1 in Figure 3

and the result is sent to an adjacent ICN node. The output of

6

NameTD is confidential because encrypted with a client key

that only client i holds.

• ContentTD(D,Kclient,i): A content provider i encrypts a

content data element D using proxy encryption and its

client key Kclient,i = (Xclient,i,s). For each data element D,

we choose a random number r ∈ Z
∗
q. Next, we compute

PE∗
i (D) = (ê1, ê2), where ê1 = gr and ê2 = grXclient,iD.

PE∗
i (D) is sent to the ICN edge nodes adjacent to i.

• NameTD(e,Kclient,i): A content consumer (respectively

content provider) i requests (respectively announces) a

content name e to the network by generating a trapdoor.

The trapdoor is encrypted using its client key Kclient,i =
(Xclient,i,s). e is composed of several components c j.

The client computes σ = fs(c j) for each component c j.

It generates T D∗
i (c j) = (t̂1, t̂2), where t̂1 = gσ and t̂2 =

t̂1
Xclient,i = gσXclient,i . NameTD returns T D∗

i (e) being the

concatenation of all T D∗
i (c j).

It is worth noting that NameTD is based on ElGamal en-

cryption system with two minor changes. First, as we do not

require to decrypt content names, we substitute D (data to en-

crypt) by the constant 1. Second, the random number r is re-

placed by the output of the pseudorandom function fs applied

to ci. fs is common to all clients and content providers.

5.3. ICN Re-Encryption
ICN edge nodes receive content data and content names en-

crypted with client keys Kclient,i. In order to perform lookup

operations in routing tables and deliver content data that can

be decrypted by other clients j �= i, these cyphertexts must be

transformed. ICN edge nodes re-encrypt these cyphertexts into

ciphertexts as they would be if encrypted using the master key

XMK , but without explicitly using it. Since the sum of the client

i key and its associated proxy key are equal to the master key,

the successive application of trapdoors with the client i key

and its associated proxy key produces a ciphertext that can be

decrypted with the master key XMK . Encrypted content data

PE∗
i (D) are re-encrypted using ICN-ContentTD operation. En-

crypted content names T D∗
i (e) are re-encrypted using ICN-

NameTD.

• ICN-ContentTD(j,PE∗
i (D)): The ICN edge node retrieves

the proxy key Kproxy,i corresponding to content consumer

i as initially provided by the KMS. It computes (ê1)
Xproxy,i ·

ê2 = (gr)Xproxy,i ·grXclient,iD = grXclient,i+rXproxy,i D = grXMK D.

This gives PE(D)= (e1,e2) with e1 = gr and e2 = grXMK D.

PE(D) is equal to the results of ElGamal encryption ap-

plied on D with the master key XMK .

• ICN-NameTD(i,T D∗
i (e)): The ICN edge node retrieves

the proxy key Kproxy,i corresponding to content consumer

i. It computes: T D(e) = T = t̂1
Xproxy,i × t̂2 = gXMKσ . Note

that the multiplication is performed over modular expo-

nentiation. ICN-NameTD is applied to every pair T D∗
i (ci)

corresponding to every component of e. T D(e) is equal

to the results of our modified ElGamal encryption scheme

(NameTD) applied on e with the master key XMK .

Once a content data and its content name are announced

by a content provider and both undergo ICN re-encryption, the

ICN edge node triggers a routing algorithm that will populate

FIB tables [28, 29] and possibly cache the encrypted content in

some nodes. Thus contents and content names are stored in ICN

nodes (CS, PIT and FIB) in the same encrypted form, i.e., as if

encrypted with the master key XMK , regardless of the client that

initially generated them. Since only the KMS holds this key, no

node or client can decrypt and access content names or contents

in clear.

5.4. ICN Lookup

After the execution of ICN-NameTD, content names have

been converted into ciphertext as if encrypted using the master

key. Also, names populating the CS, PIT and FIB of ICN nodes

are encrypted in the same manner. These tables must support

two types of operations: the exact match and the longest prefix

match (cf. Section 2.1). MatchTDs compares two encrypted

ciphertexts in order to route interest and content messages in the

network. To execute the longest prefix match or exact match,

MatchTDs is executed several times with the different compo-

nents c j of the content name e.

• MatchTDs(T D(e1),T D(e2)): The ICN node performs a

simple equality match T1 = T2 that returns true in case of

a match and false otherwise.

It is worth noting that each client has its own key for en-

crypting the request by generating a client-encrypted trapdoor.

The second round of encryption by the ICN node using the

proxy key re-encrypts the client-generated trapdoors. This re-

sults in trapdoors that eventually get encrypted under MK, which

is revealed neither to the ICN nodes nor to the clients.

5.5. Content Retrieval

If a requested content is already cached in an ICN node, the

retrieval is straightforward since it is already referenced (con-

tent name) and stored (content data) as encrypted with XMK .

However, if the interest message reaches the content provider,

the content name is encrypted in the form T = gXMKσ , which is

not understandable by the latter.

In ICN, when a content provider starts serving a content

name, a link is created between the content provider and the

ICN edge node. This link is implemented as an interface in

the ICN edge node and another in the content provider. Only

one content name is associated with one interface and if multi-

ple contents are served, multiple interfaces are created. When

an edge node receives a request for a content name, it knows

which interface from the content provider serves it. Thus, there

is no need for the content provider to understand the encrypted

content name and only the ICN edge node has to request the

right interface according to its mapping of the encrypted con-

tent name.

7

5.6. ICN Pre-Decryption
Once a content is found in the network, a data message fol-

lows the reverse path taken by its corresponding interest mes-

sage. The payload of the data message is encrypted as a result

of ICN-ContentTD= PE(D). The message eventually reaches

the ICN edge node directly connected to the content consumer

j, which runs ICN-ContentDec to pre-decrypt the content data

using the proxy key of j. It is worth mentioning that we only

need to decrypt the payload of the content data message while

the content name remains encrypted.

• ICN-ContentDec(j,PE(D)): The ICN edge node retrieves

the proxy key Kproxy, j corresponding to content consumer

j. The ciphertext PE(D) is decrypted as e2 ·(e1)
−Xproxy, j =

grXMK D ·(gr)−Xproxy, j = gr(XMK−Xproxy, j)D= grXclient, j D. The

ICN node sends PE∗
j (D) = (ê1, ê2) to the requesting con-

tent consumer j, where ê1 = gr and ê2 = grXclient, j D.

5.7. Client Decryption
The content consumer j receives the data message contain-

ing the payload pre-decrypted by an ICN edge node: PE∗
j (D).

The content consumer decrypts it running ContentDec with its

client key Kclient, j. Content consumer j is the only one capable

of decrypting the message because it has been pre-decrypted

with its proxy key Kproxy, j. This step ends the content retrieval

procedure without the content consumer revealing its requested

content name nor the content itself to any ICN node.

• ContentDec(PE∗
j (D),Kclient, j): The content consumer de-

crypts the ciphertext as

ê2 · (ê1)
−Xclient, j = grXclient, j D · (gr)−xclient, j = D.

5.8. Revocation
A client key may be compromised and need to be removed

from the system. This operation is managed by the KMS that

can revoke the key of any given client i. A list of revoked proxy

keys is generated and broadcast (as a Certificate Revocation List

- CRL) on the ICN network on a regular basis (e.g., once per

hour) for ICN nodes to run Revoke on each component of the

list. Proxy keys of revoked clients are deleted from any node

on the ICN network. No ICN node will re-encrypt/pre-decrypt

any message from/to a revoked client after this operation.

• Revoke(Kproxy,i): Client i is revoked by removing its proxy

key Kproxy,i from the key store of any ICN nodes.

This section introduced the several operations needed to im-

plement PrivICN. It is worth noting that initialization of the

system and key generation for each client are independent op-

erations. The latter is lightweight and only needs to generate

two keys (client + proxy) for each new user. This is a one-time

operation and the number of clients in the system does not have

an impact on its running operations albeit the KMS stores all

generated client/proxy key pairs. Similarly, the key revocation

process consists in updating a CRL that is distributed at regu-

lar time interval. This does not depend either on the number of

revoked clients. The addition/removal of users does not require

any modifications to the encrypted content and names stored in

the network. ICN core nodes can be replaced without any cost.

New ICN edge nodes must request server keys from clients they

serve to the KMS, as they receive interests from these clients.

Thus, we can conclude that PrivICN meets the design goal G2
providing easy and flexible user management for large number

of users.

6. Evaluation

In this section, we evaluate the performance of PrivICN.

First, we evaluate the computational cost and time required for

each operation defined by PrivICN (Section 6.2). Some op-

erations are one time operations while others need to be re-

peated. We seek to identify bottleneck operations and evaluate

if PrivICN is theoretically applicable without incurring too high

delay in communications and computational cost to ICN partic-

ipants. Second, we evaluate the storage overhead in ICN rout-

ing tables and the computational overhead for performing rout-

ing operations on encrypted content names (Section 6.3). This

set of experiments highlights the storage capabilities required

by ICN nodes to implement PrivICN as well as the overhead

on routing operations compared to using non-encrypted content

names. Third, we evaluate the actual performance of PrivICN
when deployed in a real ICN network, i.e., CCNx implemen-

tation (Section 6.4). This experiment compares the theoretical

performance results obtained in Section 6.2 to real world per-

formance results when PrivICN is deployed. It also presents

the overall time overhead generated by PrivICN when consid-

ering a real communication delay, and to compare it to a plain

(non-confidential) CCNx implementation. Finally, Section 6.5

evaluates the size overhead for content names and content data

with respect to the size of an ICN message. This shows the

reduction in usable space for actual payload in ICN messages

while using PrivICN. All experiments consider different level

of provided security as represented by the size of keys k (in bits)

used for encryption, i.e., k ∈ {512,1024,2048}.

6.1. Implementation Details
The implementation prototype of PrivICN is developed in

C++ programming language. The base ICN implementation

we chose is CCNx from PARC [30]. All cryptographic oper-

ations are computed using the OpenSSL library. PrivICN is

packaged into the libprotector library, which is publicly avail-

able [19]. It exposes wrappers for C and Python. It consists of

three components: a module for the Key Management System

(KMS-module), a module for ICN nodes (node-module) and a

module for clients (client-module).

• KMS-module is responsible for initialization of the sys-

tem (Init) and key generation (client key & proxy key)

for each client (KeyGen). It also manages key distribu-

tion and generates the client revocation list.

• Node-module is responsible for content data and content

name re-encryption (ICN-ContentTD & ICN-NameTD),

for content data pre-decryption (ICN-ContentDec) and

8

for table lookup (MatchTDs). It also implements the Re-
voke function.

• Client-module is responsible for content data and interest

generation (ContentTD & NameTD) and for decrypting

contents (ContentDec).

6.2. Basic Operations Performance

We evaluate each operation presented in Section 5 individ-

ually in order to identify potential bottleneck operations and

compute a theoretical overhead for PrivICN. Each module is

simulated on a standard notebook with 2.7 GHz processor and

8.0 GB RAM. Results constitute averages over 10,000 inde-

pendent executions. Table 1 summarizes the average time of

each evaluated operation. Comprehensive experiments results

are also available in the library [19].

We see that the key size increases exponentially the time of

each operation except MatchTDs, which takes quite steadily

0.3μs either without using PrivICN or using it with a key of

512-bit or 1024-bit key. There is a small increase to 0.43μs
when using a 2048-bit key though. MatchTDs is a manda-

tory operation for both a normal ICN network and one using

PrivICN. It is performed several times per lookup on each

ICN node. Experiments show that performing this operation

on encrypted content names has a very low absolute overhead

(< 0.15μs) compared to non-encrypted names.

On the other hand, all other operations are specific to PrivICN.

The first three operations in the table are performed offline and

only triggered when a new client join the network (KeyGen) or

when a content is first published (ContentTD, ICN-ContentTD).

These initial operations take very little time (<7 ms) regardless

of the key size and thus would not impact the original perfor-

mance of an ICN network.

The four next operations in Table 1 constitute the static
overhead. These are operations that are performed for any con-

tent request and delivery, regardless of the location of a content

to retrieve in the network. Static Overhead (SO) sums up this

overhead as defined in Equation (1) with t(x) being the com-

putation time for the operation x. SO is between 1.2ms for a

512-bit key and around 40ms for a 2048-bit key.

SO = t(NameT D)+ t(ICN-NameT D)

+t(ICN-ContentDec)+ t(Content-Dec)
(1)

It is worth noting that NameTD and ICN-NameTD are

computed on content names of diverse length (number of com-

ponents). These are randomly picked from a public sample of

ICN names containing 13 million content requests [31]. Con-

tent names in this file are composed of five components on

average. Figure 5 shows the computation time for NameTD
depending on the number of components c in a content name.

Computation time is averaged over 20 runs using content names

randomly selected from [31]. This time increases linearly with

the number of components in the content name as each compo-

nent is encrypted individually. The same observation applies to

ICN-NameTD that takes a similar time.

ICN ICN + PrivICN
Keysize – 512-bit 1024-bit 2048-bit

KeyGen – 0.10ms±0.02 0.46ms±0.03 2.9ms±0.1
ContentTD – 0.17ms±0.01 0.90ms±0.04 6.2ms±0.1
ICN-ContentTD – 0.09ms±0.01 0.47ms±0.02 3.3ms±0.1
MatchTDs 0.28μs 0.28μs 0.29μs 0.43μs
NameTD – 0.48ms±0.19 2.39ms±0.09 16.3ms±6.2
ICN-NameTD – 0.41ms±0.16 2.26ms±0.09 15.9ms±6.0
ICN-ContentDec – 0.14ms±0.01 0.61ms±0.03 3.8ms±0.1
Content-Dec – 0.14ms±0.01 0.61ms±0.03 3.8ms±0.1
Static Overhead – 1.2ms±0.2 6.0ms±0.1 39.8ms±6.1

Table 1: Time for PrivICN operations using different encryption key sizes.

Mean time (± standard deviation) obtained over 10,000 independent execu-

tions.

-10

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
im

e
(m

s.
)

Number of Components in a Content Name

512-bit key
1024-bit key
2048-bit key

Figure 5: Increase in computation time for NameTD operation as the number

of components in a content name increases. Mean time and standard deviation

for 20 runs using random seed names [31].

If we consider the time consumed by ICN-NameTD, re-

spectively ICN-ContentDec, they determine the throughput of

an ICN edge node in term of interest messages, respectively

data messages, it can process per time unit. Table 2 reports

this throughput for different key sizes. We see that a short key

(512-bit) allows an ICN edge node to process thousands of in-

terest and data messages per second. The throughput is lower

using a 2048-bit key with 62 processed interests per second and

263 data messages. This asymmetry is expected since content

names require one encryption per component while a data mes-

sage is encrypted at once. However, it is not problematic since

one interest messages is sent for one content data that is likely

fragmented into several data messages.

PrivICN presents an insignificant overhead of 0.43μs for

name comparisons (MatchTDs). MatchTDs is the only PrivICN’s

operation that is repeated for every hop of a packet in the net-

work. Since this operation is very fast, we can expect a good

scalability of PrivICN to large networks counting a high num-

ber of nodes. Its static overhead is lower than 40 ms with a

key size of 2048-bit that guarantees the security of the system.

Similarly, ICN edge nodes keep a satisfactory throughput for in-

terest and data messages using any size of key. Thus, PrivICN
shows a very low theoretical overhead that would ensure its de-

ployability in an ICN network.

9

Key size Interest message throughput Data message throughput

512-bit 1
4.1×10−4 = 2439 msg./s 1

1.4×10−4 = 7142 msg./s

1024-bit 1
2.3×10−3 = 434 msg./s 1

6.1×10−4 = 1639 msg./s

2048-bit 1
1.6×10−2 = 62 msg./s 1

3.8×10−3 = 263 msg./s

Table 2: Interest and data messages throughput for an ICN edge node using

PrivICN.

6.3. Lookup Time and Routing Table Size

We implemented FIB, PIT and CS on ICN nodes as hash

tables. Hash table is a common data structure that meet the

requirements specified by the ICN specification [32]. It is cho-

sen because it has a static lookup time that does not depend

on the number of entries in the table (O(1) complexity). Since

matching operations are similar for all of them, we only eval-

uate lookup performance and size for the FIB table. We used

ICN content names randomly selected from [31] to fill the FIB

table in experiment. Every experiment was repeated 20 times

to obtain average lookup time and FIB table size.

Lookup in FIB table consists in the longest prefix match.

We implemented it in the following manner: The complete

encrypted content name /T D(c1)/T D(c2)/.../T D(cn) is first

searched for in the FIB table. If no match is found, the last

component T D(cn) is removed and the remaining prefix

/T D(c1)/.../T D(cn−1) is searched for in the FIB table. This

last component removal and search process continues until we

find a match in the table.

Figure 6 depicts the time taken for lookup in FIB tables

having an increasing number of entries. We see that lookup

time is constant overall regardless of the size of the FIB ta-

ble We actually observe that this time decreases as the size of

the table increases. This is because with more entries in the

FIB table, we get a higher probability to get a match for a long

name prefix, reducing the number of comparisons required with

MatchTDs. For example, assume we search for the content

name /org/wikipedia/Maradona. First, we compute the hash

of the full content name and look for a match into the FIB ta-

ble. Remember that this matching operation has a constant time

(O(1)) regardless of the FIB table size since we implemented

the FIB, PIT and CS tables as hash tables. If it is not found, we

continue by removing subsequently the latest component and

do a longest prefix match again. As the number of entries in the

FIB table increases, the probability of finding a longest prefix

match becomes higher. This reduces the number of matching

operation required and consequently reduces the overall lookup

time.

In contrast to results observed in Table 1 for MatchTDs,

Figure 6 shows a larger difference in the overall lookup time

between the different key sizes. We can see an 8-fold differ-

ence between the time taken by PrivICN with a 2048-bit key

compared to not using it. Nevertheless, lookup time remains

lower than 10μs with PrivICN allowing an ICN node to pro-

cess over 100,000 lookups per second.

Figure 7 depicts the increase in FIB table size (MB) ac-

cording to the number of entries. There is a significant storage

overhead when using PrivICN. The difference between a non-

 0

 0.005

 0.01

 0.015

 0.02

 1 10 100 1000 10000

A
ve

ra
ge

 lo
ok

up
 T

im
e

in
 th

e
F

IB
 ta

bl
e

(m
s.

)

Number of Entries in the FIB table

512-bit key
1024-bit key
2048-bit key
No security

Figure 6: Lookup time in FIB tables according to the number of entries in the

table. Mean time and standard deviation for 20 lookup on FIB tables filled with

randomly selected names [31].

encrypted FIB table (0.8MB) and one with name encrypted with

a 2048-bit key (42MB) is 50-fold. The use of shorter key length

reduces this overhead: 1024-bit → 21MB, 512-bit → 10.7MB.

PrivICN has a low overhead in lookup time but induces a signif-

icant overhead in table size. However, we can assume an ICN

node can afford to store routing tables of a few tens of MB,

ensuring the deployability of PrivICN.

0.000010

0.000100

0.001000

0.010000

0.100000

1.000000

10.000000

100.000000

 1 10 100 1000 10000

F
IB

 T
ab

le
 S

iz
e

(M
B

)

Number of Entries in the FIB table

512-bit key
1024-bit key
2048-bit key
No security

Figure 7: Increase in FIB table size as the number of entries in it increases for

different key size. Average size and standard deviation computed over 20 FIB

tables filled with randomly selected content names [31].

6.4. Network Performance

To evaluate the actual performance of PrivICN when de-

ployed in a real ICN network, we built a CCNx network. We

seek to evaluate the overhead for the retrieval of a content that

fits (encrypted) into a single data message. We do not evaluate

the impact of fragmentation in which a content is divided into

several data message. Our CCNx network is depicted in Fig-

ure 8 and consists in a linear topology composed of one client,

n ∈ {1,2,3,4} ICN nodes and one content provider. We se-

lected a linear topology because we want to measure the time

to download a content data as the number of hops to reach it

10

increases. This topology maximizes the number of hops for a

message to be exchanged between a client and a provider.

The ICN nodes were implemented in virtual machine placed

in the following locations: 1. Innsbruck (Austria); 2. Nancy

(France); 3. New York City (USA); 4. Buenos Aires (Ar-

gentina). Every virtual machine ran in Virtual Box with 1 pro-

cessor and 256MB of RAM. The client was always located in

Innsbruck (Austria). The content provider was located at the

same location as the last ICN node of the n-node topology.

E.g., for a 2-node topology, the content provider is in Nancy

(France).

Our CCNx implementation is based on the HelloWorld pack-

age from PARC [30] and our PrivICN library [19].

• Content Consumer is implemented based on the

HelloWorld Consumer application from PARC. It was mod-

ified to implement the client-module functionality.

• CCNx Nodes implement a CCNx prototype (Athena) from

PARC. It was modified to support the node-module. The

caching capabilities of Athena were disabled to force ev-

ery request to reach the ICN edge node connected to the

provider.

• Content Provider is implemented based on the

HelloWorld Producer application from PARC. It was mod-

ified to implement the client-module functionality.

Figure 8: n-nodes topology used for experiments.

The scenario for the experiment is the following. The con-

tent consumer requests a list of 10,000 randomly chosen content

names from a sample name file [31]. The matching contents are

provided by the content provider located on the last node of the

topology. No content is cached in ICN nodes. Contents have a

small size and fit into a single data message. We measure the

download time, from interest generation to content decryption,

observed by the client for each request it makes.

Figure 9 depicts the average download time we measured

empirically on several n-nodes topology (n ∈ {1,2,3,4}) and

using different key sizes. It also depicts the theoretical down-

load time (dashed line) we expected according to performance

evaluation obtained in Section 6.2. The theoretical download

time consists of the time of the required PrivICN operations

plus a Communication Delay (CD). Equation (2) defines this

theoretical download time depending on the key size used (key)

and the number of ICN nodes n to cross. It consists of the static

overhead (SO), two lookups per node (one for interest message

forwarding and one for data message routing), except the last

 0

 200

 400

 600

 800

 1000

 1 2 3 4

D
ow

nl
oa

d
tim

e
(m

s.
)

Nodes in the Topology

Empirical result (512-bit key)
Theoretical (512-bit key)

Empirical result (1024-bit key)
Theoretical (1024-bit key)

Empirical result (2048-bit key)
Theoretical (2048-bit key)

Figure 9: Theoretical and empirical download time using PrivICN in an n-node

ICN network.

node that performs only one lookup, and twice a communi-

cation delay (CD) between each ICN node (n− 1). SOkey and

t(Lookup)key are obtained from experimental results of Sec-

tions 6.2 and 6.3, respectively. We selected CD as the aver-

age of all communication delays observed between two suc-

cessive ICN nodes during the empirical evaluation. We have

CD = 97ms.

DownloadTimekey(n) = SOkey +(2n−1)× t(Lookupkey)

+2(n−1)×CD
(2)

Figure 9 shows that both theoretically and empirically the

download time increases linearly with the number of nodes in

the topology. We observe a significant difference between the-

oretical and actual download time though. This difference is

present from a small topology with one node but increases only

slowly as the topology grows. Thus, we can deduce that this

difference is mostly generated by the static overhead (SO) of

PrivICN that happens to be around 100ms higher in practice

than in theory. Since this difference grows slowly as we add

more nodes to the topology, we can conclude that the actual

lookup time is also higher than the theoretical lookup time.

This absolute difference in SO and t(Lookup) is explained by

the fact that we used virtual machines with far less resources

during this experiment (256MB of RAM) than in Sections 6.2

and 6.3 (8GB of RAM). However, the linear growth in down-

load time is mostly produced by the communication delay (CD)

rather than PrivICN.

Figure 10 shows the ratio of delay due to PrivICN with

respect to the overall download time:
DownloadTime−CD

DownloadTime
.

It decreases as the size of the topology grows, starting from

around 80% for a 1-node topology to reach less than 35% for a

4-node topology using any key size. Following this trend, we

see that the delay generated by PrivICN becomes proportion-

ally lower (<30%) with respect to the overall download time

11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8

P
riv

IC
N

 d
el

ay
 (

%
 o

f D
L

tim
e)

Nodes in the Topology

2048 bits
2048 bits -- projection

1024 bits
1024 bits -- projection

512 bits
512 bits -- projection

Figure 10: Ratio of delay due to PrivICN with respect to the overall download

time. Values for 1-4 nodes topology are empirically measured, values for 5-8

nodes topology are theoretical projections.

as the network grows. This experiment shows that PrivICN in-

duces an acceptable delay that proportionally decreases as the

network grows. Consequently, we conclude that PrivICN has

good performance and a acceptable delay showing that we meet

the design goal G3.

6.5. Content Names / Content Size and MTU

The encryption of content names and content data increases

the size of ICN messages. We evaluate the overhead of PrivICN
in term of message size and its impact on the length of content

names that can be requested.

An interest message is composed by a content name and

a header. A data message is composed by a content name, a

header and a payload. The ICN header has a fixed size that

we assume to be 20 bytes (as for the Internet Protocol) and it

is not affected by PrivICN. However, each encrypted content

name component has a fixed size independent from its original

size and equal to the key size: keysize
8 Bytes. Encrypted compo-

nents are concatenated and separated by a 1-byte encoded char-

acter (#Components− 1 separators) before being added to an

ICN message. Equation (3) gives the size of a PrivICN Content
Name (PCN).

PCN (Bytes) = (
keysize

8
+1)×#Components−1 (3)

This size of interest and data messages must remain smaller

than the Maximum Transfer Unit (MTU) value defined for ICN

packets. Thus, the number of components in content names

supported by PrivICN depends on the MTU and the encryption

key size. This determines the space available for payload in

data messages. CCNx defines an MTU of 8192 Bytes.

Figure 11 depicts the percentage of MTU available to de-

liver the payload of a requested content composed of n com-

ponents. The point where the curves reach 0 gives the max-

imum length of a content name (number of components) that

can be sent in an interest message (empty payload). We see that

PrivICN allows one to request long content name of over 30

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

%
 M

T
U

 d
ed

ic
at

ed
 to

 P
ay

lo
ad

Components in Content Names

MTU 8KB

512-bit key
1024-bit key
2048-bit key

Average number
of components
 in content names

Figure 11: Maximum size of transported payload (in percentage of MTU) with

respect to name length.

components for any considered key size. By requesting content

names of average length (5 components) we see that from 84%

to 96% of the packet size is dedicated to the payload, which is

reasonably high.

It is worth noting that encryption has also an impact on the

payload size. PrivICN uses a cipher that allows to store a max-

imum number of bytes per block (i.e. 2048-bit can store 256

bytes, 1024-bit: 128 bytes, 512-bit: 64 bytes, etc.). For in-

stance, when we transmit a large content, the content is not

transmitted only in packets but is also divided into several blocks.

After applying ICN-ContentTD, every block will generate two

encrypted ciphertexts of
keysize

8
Bytes×2 by construction. For

instance, for a 1MB file encrypted with our scheme and a 2048-

bit keysize, we will require 4 MB to transmit the content. Thus

PrivICN requires four times as many messages as a normal ICN

network for content delivery. This overhead is mostly due to

payload encryption that is not implemented by default in ICN:

data is sent in plain text. However, traffic encryption is be-

coming a requirement to protect communications and is imple-

mented in most protocols at different layer. Thus, we would

assume that it may also become mandatory in ICN and the over-

head we observe would apply to any ICN traffic.

The same overhead applies to any content in the ICN net-

work, e.g., to content stored in caches. Content data cached in

the network are also encrypted and require four times the space

that they would require if stored in clear text.

7. Discussion

In this section we analyze the extent to which we meet the

design goals formulated in Section 2.3 and discuss the potential

limitations of PrivICN.

12

7.1. Meeting Design Goals

G1 - Confidentiality of information. Both contents and con-

tent names are encrypted in PrivICN as introduced in Section 4.

No ICN node has access to this information. Only the client

making the request and the potential content provider (if the

content is not cached in the network) can know the subject of an

interest. From a content provider perspective, there is no linka-

bility between an interest and its author. Hence, the information

about a requested content cannot be exploited and users privacy

is guaranteed. From the ICN node perspective, confidential-

ity of content data and content names does not guarantee full

users privacy. A curious ICN node could still perform dictio-

nary attacks [33] (as done for password hashes) by encrypting

some selected content names and comparing them to received

encrypted interests. This attack is less scalable and has a high

computational cost for the adversary, which would decrease the

performance of the ICN node in content retrieval. We showed

in Section 6 that PrivICN can efficiently use 2048-bit keys that

meets the current minimal security recommendations for en-

cryption [34]. Thus, PrivICN preserves the confidentiality of

contents and content names, which enhances users privacy.

G2 - Ease of management. The whole management of PrivICN
is centralized in the KMS. It performs addition, via key gener-

ation and distribution, and removal, via revocation list genera-

tion and distribution, of users from the system (cf. Section 5).

These operations are independent from the current number of

users in the system and do not induce any overhead at run time.

The encrypted contents and names present in ICN nodes do not

require any modification and remain encrypted in the master

key space when adding/removing users. The cost of user key

generation has been evaluated to be a few milliseconds in Sec-

tion 6.2. In addition, ICN core nodes can be replaced without

any cost in case of failure. When replaced, ICN edge nodes

must request server keys to the KMS as they receive interests

from new clients. Thus, PrivICN provides an easy management

for a large and varying number of users and any modification is

made at a low cost.

G3 - Performance & overhead. We have demonstrated in G2
that PrivICN can manage a large number of users. Section 6

showed that its operations generate little delay that decreases

in proportion as the network grows. The time for content re-

trieval is dominated by the network delay and PrivICN gener-

ates only around 30% additional delay in a large enough net-

work (cf. Section 6.4). The overhead in lookup time for ICN

nodes is negligible (a few microseconds) and PrivICN provides

a significant throughput for both interest and data messages (cf.

Section 6.2). The most significant overhead of PrivICN is on

the size of tables and exchanged contents. The size of FIB, PIT

and CS tables can be increased by a factor of 50. The traffic

generated to transfer a file increases linearly with the size to

the encryption key. Nevertheless, the tables storage remains af-

fordable for ICN nodes since they represent a few tens of MB at

most. The real world deployment of PrivICN demonstrated on

a small network in Section 6.4 that PrivICN is deployable and

generate an acceptable overhead.

G4 - Preserve ICN features. PrivICN stores contents and

names in a single encrypted form while in the network using

proxy encryption methods. Thus, encrypted content can be

stored in the network on any ICN node and served to any client

that can decrypt them. Similarly names are encrypted in a sin-

gle form component by component, which allows ICN nodes

to perform longest prefix match operations for routing. Thus,

PrivICN preserves the benefits of in-network caching and name-

based routing. Also, contents can be retrieved in a secure man-

ner from any node on the network and there is no need for end-

to-end communication between clients, pre-determined ICN nodes

or content providers. Finally, the normal CS-PIT-FIB workflow

is preserved as described in Section 5. PrivICN preserves all

ICN features.

G5 - No security association. Client and proxy keys are man-

aged by the centralized KMS that provides them when a client

join the network. This is a one time operation. From then

on, a client use its client key to communicate securely with

any node of the network. No security association with a spe-

cific node is required and no message is signed. Thus no end-

to-end communication occurs between users, which preserves

their anonymity.

7.2. Limitations

Proxy encryption and client / ICN node collusion. Con-

tent names and contents are in the from of cyphertext encrypted

with the master key XMK while traversing the network of ICN

nodes (cf. Section 4). The master key is held by the trusted

KMS only. However, getting a client key Xclient,i and the cor-

responding proxy key Xproxy,i, one can recover the master key

XMK = Xclient,i +Xproxy,i. Hence, we must assure that the dis-

tribution of client keys is limited to ICN clients only and ICN

nodes only have access to proxy keys. To avoid key leakage and

having a single entity holding both a client and a proxy key, the

key management system can provision keys in a secure manner

using trusted hardware [35]. This ensures that each key provi-

sioned by the KMS will be tied to a physical hardware compo-

nent on a given client / ICN node. This key cannot be extracted

from it or revealed to an attacker. Nevertheless, the collusion of

one client and one ICN node breaks the security of the system

as an attacker could decrypt both contents and content names if

it controls both. We assumed ICN nodes to be honest but curi-

ous in our attack model (cf. Section 2.2). Thus this collusion

should not happen since every message to decrypt would need

extra communications between the colluding client and node as

client and proxy keys are tied to trusted hardware.

Centralized key management system. The use of a central-

ized key management system exposes a single point of failure

for the system in case it gets compromised or is hosted by an

untrusted entity. The master key can leak and be used to decrypt

any contents and names forwarded on the network. However,

several widely deployed systems, e.g., credit cards, rely on such

a centralized infrastructure and have proven to be secured. The

delegation of key management to a trusted hardware entity [35]

such as Intel SGX [36] can assure there is neither master key

13

leakage nor misuse of it. We can constrain the usage of the

master key to key generation only and prevent its usage for

encryption/decryption. As previously presented the usage of

trusted hardware on the KMS also guarantees the provisioning

of client and proxy keys in a secure manner.

Inter-domain application. PrivICN is currently designed for

intra-domain usage where a single KMS serves the whole do-

main. We gave the example of an ISP for such a domain where

PrivICN can be applied (Section 4). PrivICN cannot be read-

ily applied in inter-domain scenarios without breaking the con-

fidentiality of content names and data. The ICN node at the

junction of two domains would be required to decrypt and re-

encrypt content names and data from domain 1 (master key

XMK1) to domain 2 (mater key XMK2) to enable delivery of con-

tents involving several domains. This junction node would have

access to names and data in clear in the process. One solution

to extend PrivICN for inter-domain applications is to enforce

decryption and re-encryption to happen in a trusted execution

environment (TEE) [35]. Content names and data would be

decrypted using XMK1 and re-encrypted using XMK2 inside the

TEE of the junction node without it being able to learn anything

about the clear content data and names. TEEs become increas-

ingly deployed and available as features for many processors,

e.g., Intel SGX [36].

Client revocation delay. ICN nodes do not check every time

they receive an interest if the client generating it is authorized to

make a request i.e., if its key is valid. This is a choice for sake of

performance and scalability. The key revocation list is periodi-

cally generated and broadcast by the KMS (cf. Section 5). This

process induces a delay before ICN nodes are notified about

the revocation of one client. Meanwhile a revoked client can

continue to participate in the ICN network. The interval of re-

vocation list updates must be computed to provide a trade-off

between responsiveness of the system and overhead of commu-

nications needed to broadcast the updates. The same problem

is presented by widely deployed systems such as HTTPS and

TLS for certificate revocation.

Impact of caches in ICN nodes. The ICN literature tries to

address the problematic of caches in ICN. It is not clear yet the

number of caches and their size required at every node of the

network. With this limitation in mind, we have deployed exper-

iments without in-network caching features enabled. Without

caches, we have always worked with the worst-case scenario

where in-network caching storage is be available to help reduc-

ing the download-time. We believe that PrivICN will benefit

from the use of caches. We expect in the early future that mea-

surements about number of caches and cache sizes will be avail-

able in the research literature (with respective tools) to address

this point.

Space for content in data message. We have seen in Sec-

tion 6.5 that encryption significantly increases the size of con-

tent names. This has limited effect on interest messages that

do not contain payload. However, it significantly reduces the

space for payload in data messages, increasing the number of

required message to deliver a content. Currently, ICN couples

name routing and data forwarding. Both interest and data mes-

sages contain the complete content name. Although we require

each individual element of a content name for FIB longest pre-

fix match, the PIT and CS table require exact content name

match. Thus, a full content name can be encoded at once to be

used for PIT and CS. This means that interest messages must

contain the content name encrypted element by element as we

defined it, since they are forwarded according to the FIB. How-

ever, data messages are routed according to the PIT and can

contain a hash of the full content name. By using a hash, we

can dedicate more space to the payload and use longer names

in interest messages. Also the size of PIT and CS tables would

be drastically reduced. However, it would add a small overhead

for computing the hash of the content name contained in interest

messages at each ICN nodes. Nevertheless, this solution modi-

fies the original CCNx or NDN protocols and explains why we

did not implement it.

7.3. Portability to other ICN architectures

PrivICN is designed for the most popular ICN architectures:

CCN and NDN. We discuss in this section its applicability to

other architectures.

7.3.1. Data Oriented Network Architecture (DONA)
In contrast to CCN or NDN, DONA does not store contents

in the network. Content is only stored by content providers and

clients, who can hold replicas of original contents. In DONA, a

content is addressed by a hash computed on a set of keywords

related to the content and the identity of its original content

provider. There is no hierarchy in content names. Clients re-

quest a content using the hash that can be found in, e.g., a

search engine or a website. The request is sent to a local re-
solve handler (equivalent to an ICN edge node). The request

is then forwarded until it reaches another local resolve handler

connected to the content provider or a client holding a replica

of the requested content. The last local resolve handler knows

the source of the request and delivers the content found using

IP.

PrivICN can provide confidentiality of content names to

DONA. All requests and announcements use as a name a hash

composed by the set of keywords and the identity of the content

provider. PrivICN can provide confidentiality of these hashes,

the DONA’s content names by using NameTD. Then, local

resolve handlers receiving these announcements and requests

re-encrypt them using ICN-NameTD. DONA can operate the

same normal routing operations on these encrypted names rather

than on the original hashes. This would increase the size of

names from 40 Bytes hashes to fix-length content names (e.g.,
256 Bytes encrypted names for a 2048-bit key – content names

are not decomposed in components DONA). Content names

would be confidential since in contrast to hashing, this encryp-

tion cannot be performed by a single node/client alone and needs

the collaboration of one client and one local resolve handler.

Contents are delivered over IP. The content provider or the

client holding a replica can know the destination of the requested

content through the local resolve handler. Thus, contents can be

14

sent encrypted using, e.g., a TLS session that guaranties end-to-

end confidential communications between clients and content

providers.

7.3.2. Publish Subscribe Internet Technology (PURSUIT)
PURSUIT proposes an architecture based on a publish/subscribe

overlay. Content providers announce their content to a rendez-
vous node (equivalent to an ICN edge node) using a hash com-

puted on a list of keywords. The rendez-vous node is in charge

of announcing the presence of the new content inside the net-

work. Clients wishing to download a content, subscribe to it

through their nearest rendez-vous node. They use the hash of

keywords to do so. The rendez-vous node is in charge of find-

ing the path to the nearest replica of the requested content and

provides a way to send the data back to the client.

For names, PURSUIT can use PrivICN the same way as

for DONA. Clients and content providers request and announce

content names encrypted using NameTD instead of hashes. The

rendez-vous node acts as an ICN edge node and re-encrypt them

using ICN-NameTD.

When a content is requested, the rendez-vous node contacts

the nearest content provider and sends the path to deliver the

content. The content provider encrypts the content the same

way as in PrivICN’s content generation using ContentTD . The

path to deliver the content starts by another rendez-vous node

that re-encrypts the content with ICN-ContentTD. Successive

rendez-vous nodes perform the ICN lookup operations on en-

crypted names until they reach the last rendez-vous node. This

rendez-vous node pre-decrypts the content and sends it to the

client that can decrypt it.

PrivICN can be applied to other ICN architecture than CCN

and NDN as we showed. This only require small adaptation and

modifications of the considered architectures.

8. Related Work

Although Information-Centric Networking addresses exist-

ing problems of the current Internet, it introduces an array of

new privacy threats. These include cache privacy, content pri-

vacy, name privacy and signature privacy [9, 37, 38]. PrivICN
addresses the privacy of content data and content names by pro-

viding confidentiality for both. We first discuss proposals that

provide content data and content names confidentiality inde-

pendently and then jointly as we do.

8.1. Content Data Confidentiality

The protection of contents in ICN can be accomplished us-

ing asymmetric encryption. An obvious solution is to use a

similar mechanism as TLS. Every client generates a session key

and encrypts it using the content provider public key. All fur-

ther communications between the client and content provider

are encrypted using the session key. Along this line, a session-

based access control mechanism (SAC) for ICN has been intro-

duced [16]. In SAC, a session key is negotiated between any

client and provider and used for specific communications be-

tween them during the session. As such, same content data is

encrypted with different session keys before being sent in the

network. Similarly Chen et al. [15] introduce an access con-

trol model where clients and content providers each hold a pub-

lic/private key-pair. Every time a content consumer requests

a content name, the provider sends an encrypted version of the

content data specifically created for the content consumer. Once

the encrypted content data is sent, the content consumer nego-

tiates a symmetric key with the provider to decrypt the received

content data. Although these solutions protect the confiden-

tiality of content data, they have major drawbacks. First, all

content requests must reach the content provider and require to

build an end-to-end secure channel between content consumer

and content provider. Second, content data is encrypted with

different keys for each consumer and session. Thus an en-

crypted content data cannot be served to different consumers

and there is no need to cache it in the network loosing the bene-

fit of in-network caching, which is one of the main ICN feature.

An alternative to asymetric encryption is broadcast encryp-

tion. It allows a content provider to generate an encrypted con-

tent data that can be decrypted by a set of clients [39]. A group

of consumers interested in a same content data pre-calculate a

common key, based on information given by a KMS. This key

will be used by content providers and the group of clients to ex-

change requests and contents. This solution is proposed in [9]

without providing any implementation or assessment though.

While a content data can be encrypted and serve a group of con-

sumers, this scheme suffers from the same shortcomings as the

previous one. There will be several groups of consumers with

different keys, prohibiting in-network caching of contents in a

single encrypted format and producing a large caching over-

head. Most interests would likely reach the content provider

and would not be resolved by ICN nodes. Furthermore, content

providers each requires a long list of group keys to serve any

requesting group.

Wood et al. [40] present two alternatives to provide con-

tent data confidentiality in ICN. A first solution relies on El-

Gamal and Schnorr’s signature and a second one on Identity-

Based Encryption (IBE) [41] . Fotiou et al. [42] also propose a

scheme based on IBE and assume that every content consumer

has an identification in the network. IBE schemes allow to en-

crypt content data by using the public parameters of a content

provider. Intermediate consumers receiving the content data

can re-encode it such that other clients can decrypt it by negoti-

ating a key with the original content provider. These solutions

present nevertheless several drawbacks since a secure channel

between the content consumer and the content provider must

be created in order to retrieve the identity of content providers.

Such end-to-end tunnel is against the principle of name-based

routing, which is one of the most interesting features of ICN.

Moreover, any user can sign messages with the identity of the

content provider. Any available content data in the network

could be provided by any other node in the network. Finally, if

the private key of any content provider of the network is com-

promised, every content data encrypted with this key could be

decrypted.

15

In contrast to these solutions, PrivICN does not need end-

to-end communications between consumers and providers, it

allows in-network caching with content data and content names

encrypted in a single space. In addition, compromised keys can

be revoked and client keys or proxy keys alone are useless if

only one gets compromised. Since both are hosted on different

machines, this is less likely to happen, providing better security.

Some previous work suggested, as we do, to protect the confi-

dentiality of content data using proxy re-encryption. This solu-

tion was first proposed by Chabanee et al. [9]. Their proposal

relies on generating a pair of public/private key for each content

data in the network. When a content provider publishes a new

content data, it creates a new key pair to encrypt specifically

this new content data. This solution has two major drawbacks:

1) if different content providers provide the same content data,

it will not have the same representation in the network, which

prevents an optimal caching of contents. 2) The key distribu-

tion process is not discussed in the paper. Since one key pair

is used for a unique content, witnessing which client retrieves

which key leaks information about the content data it is looking

for. In contrast, PrivICN preserves full in-network caching ca-

pabilities and it is not exposed to side channel attacks by mon-

itoring the public keys retrieved by a content consumer. We

also propose a solution for ensuring the confidentiality of both

content names and content data while only the confidentiality

of content is tackled using proxy re-encryption in [9]. Da Silva

et al. also proposed a proxy re-encryption system to control

access to content in ICN [43]. As for [9], the paper only dis-

cusses how such a system could be implemented in different

ICN architectures. However, no specific cryptosystem nor any

concrete system design and implementation are proposed. The

paper only evaluates primitives for encryption and decryption

at ICN edge nodes and user ends as well as the memory con-

sumption of these operations. In contrast, PrivICN is publicly

available as a library and it has been evaluated in a real CCNx

deployment.

8.2. Content Name Confidentiality
The protection of content names has different requirements

than contents, namely that protected content names must sup-

port prefix match operations but the protection does not need

to be reversible i.e., names can be encoded with one way func-

tions. Considering this fact, Chaabane et al. [9] propose to use

bloom filters to provide name confidentiality. Bloom filters are

space-efficient data structures to test the membership of one ele-

ment in a set. CS, PIT and FIB tables are implemented as bloom

filters as well as the requested content name, which is a hierar-

chical bloom filter HB = (B1,B2, ...,Bn) where Bi is a bloom

filter made of the first i components of the name. The match

operations are operated between bloom filters, which preserves

name confidentiality. However, a malicious ICN node can gen-

erate bloom filters with one element and test incoming interests

against it to discover what a requested content name is. Thus,

this solution is vulnerable to attacks by curious ICN nodes in

contrast to PrivICN.

Alternatively, names can be secured using onion routing [44]

schemes similar to Tor [45]. Content names components are

each encrypted using a different key and thus can only be de-

crypted by specific ICN nodes holding the corresponding key [10,

46]. When receiving an interest, an ICN node can decrypt only

the first component of the content name, which unveils the next

destination of the interest. This first component is removed by

the ICN node and a new interest is generated, which requests

the truncated content name. The process is repeated until the

last component is reached and the content retrieved. Tourani

et al. [10] propose such an anti-censorship mechanism based

on Huffman coding. A content consumer generates an interest

with content name components encoded using Huffman cod-

ing and to which it appends a pre-defined plaintext prefix such

as /anonym. The content consumer sends the interest that is

routed according to the plaintext prefix /anonym to a specific

ICN node of the network called anonymizer. The anonymizer

acts as a Tor exit node. It can only read the content name re-

quested by the content consumer and will serve it from its CS,

if cached, or request it in its name if not. This proposition

presents several drawbacks. First, there is a need for extra com-

munication to reach the anonymizer before being able to fetch

any content even though the content data would be cached on

the path to the anonymizer. Thus some main benefits of ICN,

including the full exploitation of in-network caching, are lost.

Second, there is a security association between the content con-

sumer and the anonymizer, which induce an overhead. Finally,

if the anonimyser is curious, it can infer consumers’ interests,

since interest are linked to their authors based on the security

association that was performed. Tsudik et al. [47] proposed a

similar scheme relying on a more efficient cryptographic con-

struction. Although more efficient than previous solutions, the

scheme presents the same issues as other Tor alike schemes.

A last solution to protect content names in ICN relies on ho-

momorphic encryption as proposed in [11] for enhancing lookup

privacy. The problem is tackled as Private Information Retrieval

(PIR). The scheme provide satisfactory security and does not

present similar flaws as other proposals. However, the major

issue with PIR based solutions [48, 49, 50, 51] and Oblivious

RAM (ORAM) [52, 53, 54] is the large computational and com-

munication overhead they produce as well as their inability to

scale to large deployment.

In contrast to Bloom filter based solutions [9] for name

lookup or Tor based proposals [10, 46, 47], PrivICN provides

better security since no ICN node can perform attacks to re-

cover requested content names. Moreover, Tor based solutions

require security association between client and nodes, give dif-

ferent roles to ICN nodes and reduce the performance of ICN

preventing the optimal use of in-network caching. PrivICN
does not present these drawbacks and preserves the full fea-

tures of ICN. Finally, in contrast to the solution based on ho-

momorphic encryption, PrivICN has a low overhead and it also

protects content data.

8.3. Content and Name Confidentiality
The problem of protecting both content data and content

names has been addressed in a limited manner in the literature.

However, we explained in Section 2.2 that both are necessary

to efficiently enhance users privacy.

16

One solution relies on Attribute Based Encryption (ABE) [55,

14]. Attribute Based Encryption (ABE) is a type of public-key

encryption in which the decryption of a cyphertext depends on a

set of content consumers attributes [56]. Ion et al. [55] propose

a scheme in which content providers encrypt contents using an

encryption key derived from name components and identifiers

of consumers allowed to access the content. This way only au-

thorized clients, and no ICN node, can decrypt a specific con-

tent data. ICN nodes route interests using lookup operations on

encrypted content names. These can only be decrypted by the

content provider because based encrypted using its public key.

An issue of this scheme is that lookup operation based on

ABE is based on bilinear pairing, which induces a high compu-

tational overhead [57, 58]. A solution to improve the efficiency

of the routing algorithm [14] uses ontologies that combine sev-

eral encrypted attributes. Despite reducing the cost of lookup

operations, they still rely on bilinear pairing and remain more

costly than PrivICN. It is also worth noting that content con-

sumer’s revocation is complicated in ABE systems, since de-

cryption keys depend on attributes and not on the content con-

sumer. To revoke a content consumer, we must remove from

the network all contents encrypted with its identity as possible

recipient. We must also re-encrypt all these content data using

a key that does not depend on its identity. PrivICN provides an

easy and low overhead revocation procedure that is handled by

the KMS and requires only to remove a specific proxy key from

ICN nodes key store.

A solution was proposed to handle revocation in ABE based

systems [13]. It uses a proxy server that holds a list of black-

listed consumers. All interest requests made on the network are

treated by the proxy server which forward them to the network

if emitted by authorized consumers and drop them otherwise.

The mechanism keeps several drawbacks such as forcing all in-

terest messages to go through a single entity: the proxy server.

Moreover, it just improve the response time of the system to a

client revocations and as for previously described schemes, if a

consumer gets blacklisted all the contents it was authorized to

access must be eventually re-encrypted.

As discussed before, PrivICN keeps the original features of

ICN and does not require to send interests to specific nodes e.g.,
proxy. Moreover, it provides easy user management, especially

for addition and removal of content consumers from the system.

9. Conclusion

Privacy is a major concern in Information-Centric Network-

ing (ICN). ICN nodes can monitor, profile and censor clients

if the confidentiality of content data and content names is not

properly protected. To address this problem, we introduced

PrivICN, a privacy preserving system for requesting and re-

trieving contents in ICN. PrivICN relies on a modified proxy-

encryption scheme to provide confidentiality for both content

data and content names. In contrast to previous work, it pre-

serves the full features of ICN and introduces a small computa-

tional overhead on clients and network edges only. It presents

several features that have been extensively evaluated both the-

oretically and empirically in a real ICN network (CCNx imple-

mentation). These include ease of user management and espe-

cially the addition and removal of participants at a low cost. It

presents an acceptable communication delay and a low compu-

tational overhead on the client (consumer and provider) and the

ICN edge nodes while requiring an acceptable storage on ICN

nodes. The security of our scheme has been assessed since all

content data and content names are encrypted with a required

level of security. In addition, it is resilient to most attacks ICN

nodes can perform. It is deployable with small adaptations to

an ICN network and all components needed for deployment are

publicly available as an open-source library. As future work

we will propose solutions to reduce the traffic generated by

PrivICN since this currently grows linearly with respect to the

size of the key used for encryption.

Acknowledgements

This work was supported in part by the SELloT project

funded by the Academy of Finland under the WiFiUS program

(grant 309994). We thank the anonymous reviewers for their

helpful comments.

[1] Cisco, “Cisco visual networking index: Global mobile data traf-

fic forecast update, 2016-2021,” http://www.cisco.com/c/en/us/

solutions/collateral/service-provider/visual-networking-index-vni/

mobile-white-paper-c11-520862.pdf, Cisco, Tech. Rep., March 2017,

Cisco White Paper.

[2] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A

survey of information-centric networking,” IEEE Communications Mag-
azine, vol. 50, no. 7, 2012.

[3] N. Fotiou, P. Nikander, D. Trossen, G. C. Polyzos et al., “Developing

information networking further: From psirp to pursuit.” in Broadnets.

Springer, 2010, pp. 1–13.

[4] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,

S. Shenker, and I. Stoica, “A data-oriented (and beyond) network archi-

tecture,” in ACM SIGCOMM Computer Communication Review, vol. 37,

no. 4. ACM, 2007, pp. 181–192.

[5] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Pa-

padopoulos, L. Wang, B. Zhang et al., “Named data networking,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 66–73,

2014.

[6] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,

and R. L. Braynard, “Networking named content,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies. ACM, 2009, pp. 1–12.

[7] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopou-

los, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A survey of

information-centric networking research,” IEEE Communications Sur-
veys & Tutorials, vol. 16, no. 2, pp. 1024–1049, 2014.

[8] C. Bernardini, “Stratégies de cache basées sur la popularité pour con-

tent centric networking,” Ph.D. dissertation, University of Lorraine, May

2015.

[9] A. Chaabane, E. De Cristofaro, M. A. Kaafar, and E. Uzun, “Privacy in

content-oriented networking: Threats and countermeasures,” ACM SIG-
COMM Computer Communication Review, vol. 43, no. 3, pp. 25–33, July

2013.

[10] R. Tourani, S. Misra, J. Kliewer, S. Ortegel, and T. Mick, “Catch me

if you can: A practical framework to evade censorship in information-

centric networks,” in Proceedings of the 2nd International Conference on
Information-Centric Networking. ACM, 2015, pp. 167–176.

[11] N. Fotiou, D. Trossen, G. Marias, A. Kostopoulos, and G. Polyzos, “En-

hancing information lookup privacy through homomorphic encryption,”

Security and Communication Networks, vol. 7, no. 12, pp. 2804–2814,

2014.

[12] Mannes et al., “Controle de acesso baseado em reencriptação por proxy

em redes centradas em informação,” in SBseg, 2014.

17

[13] R. S. da Silva and S. D. Zorzo, “An access control mechanism to en-

sure privacy in named data networking using attribute-based encryption

with immediate revocation of privileges,” in 2015 12th Annual IEEE Con-
sumer Communications and Networking Conference (CCNC), Jan 2015,

pp. 128–133.

[14] B. Li, D. Huang, Z. Wang, and Y. Zhu, “Attribute-based access control

for ICN naming scheme,” IEEE Transactions on Dependable and Secure
Computing, 2016.

[15] T. Chen, K. Lei, and K. Xu, “An encryption and probability based ac-

cess control model for named data networking,” in Performance Comput-
ing and Communications Conference (IPCCC), 2014 IEEE International.
IEEE, 2014, pp. 1–8.

[16] Y. Wang, M. Xu, Z. Feng, Q. Li, and Q. Li, “Session-based access control

in information-centric networks: Design and analyses,” in Performance
Computing and Communications Conference (IPCCC), 2014 IEEE Inter-
national. IEEE, 2014, pp. 1–8.

[17] Dong et al., “Shared and searchable encrypted data for untrusted servers,”

Journal of Computer Security, vol. 19, no. 3, 2011.

[18] A.-A. Ivan and Y. Dodis, “Proxy cryptography revisited.” in NDSS, 2003.

[19] “libprotector,” https://github.com/mesarpe/libprotector, last accessed:

July 5, 2017.

[20] M. R. Asghar, C. Bernardini, and B. Crispo, “Protector: Privacy-

preserving information lookup in content-centric networks,” in Commu-
nications (ICC), 2016 IEEE International Conference on. IEEE, 2016,

pp. 1–7.

[21] N. Fotiou, S. Arianfar, M. Särelä, and G. C. Polyzos, “A framework for

privacy analysis of ICN architectures,” in Privacy Technologies and Pol-
icy - Anual Privacy Forum. Springer, 2014, pp. 117–132.

[22] C. Ghali, G. Tsudik, and C. A. Wood, “Network names in content-centric

networking,” in Proceedings of the 3rd ACM Conference on Information-
Centric Networking. ACM, 2016, pp. 132–141.

[23] J. Hong and et al., “Requirements for Name Resolution Ser-

vice in ICN,” 2018. [Online]. Available: https://tools.ietf.org/id/

draft-jhong-icnrg-nrs-requirements-03.html

[24] S. Signorello, S. Marchal, J. François, O. Festor, and R. State, “Ad-

vanced interest flooding attacks in named-data networking,” in 2017 IEEE
16th International Symposium on Network Computing and Applications
(NCA). IEEE, 2017, pp. 1–10.

[25] M. Blaze, G. Bleumer, and M. Strauss, Divertible protocols and atomic
proxy cryptography. Berlin, Heidelberg: Springer Berlin Heidelberg,

1998, pp. 127–144. [Online]. Available: http://dx.doi.org/10.1007/

BFb0054122

[26] P. de Hert and V. Papakonstantinou, “The new general data protection reg-

ulation: Still a sound system for the protection of individuals?” Computer
Law & Security Review, vol. 32, no. 2, pp. 179–194, 2016.

[27] T. El Gamal, “A public key cryptosystem and a signature scheme based

on discrete logarithms,” in Proceedings of CRYPTO 84 on Advances in
Cryptology. New York, NY, USA: Springer-Verlag New York, Inc.,

1985, pp. 10–18.

[28] L. Wang, A. M. Hoque, C. Yi, A. Alyyan, and B. Zhang, “OSPFN: An

OSPF based routing protocol for Named Data Networking,” NDN Con-

sortium, Tech. Rep. NDN-0003, 2012.

[29] J. Garcia-Luna-Aceves, “Name-based content routing in information cen-

tric networks using distance information,” in Proceedings of the 1st inter-
national conference on Information-centric networking. ACM, 2014,

pp. 7–16.

[30] “Ccnx helloworld,” https://github.com/PARC/ccnxHelloWorld, last ac-

cessed: July 5, 2017.

[31] U. Schnurrenberger, “ICN names,” http://www.icn-names.net/download/

cisco-icn-names-2014-12 en.html, last accessed: October 10, 2018.

[32] J. Shi, “Named data networking in local area networks,” 2017. [Online].

Available: http://hdl.handle.net/10150/625652

[33] A. Narayanan and V. Shmatikov, “Fast dictionary attacks on passwords

using time-space tradeoff,” in Proceedings of the 12th ACM conference
on Computer and communications security. ACM, 2005, pp. 364–372.

[34] E. Barker, “Nist special publication 800-57 part 1 revision 4,” NIST, Tech.

Rep., 2016.

[35] J. S. Dwoskin and R. B. Lee, “Hardware-rooted trust for secure key man-

agement and transient trust,” in Proceedings of the 14th ACM Conference
on Computer and Communications Security, ser. CCS ’07. ACM, 2007,

pp. 389–400.

[36] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptology ePrint
Archive, vol. 2016, p. 86, 2016.

[37] R. Tourani, T. Mick, S. Misra, and G. Panwar, “Security, privacy, and ac-

cess control in information-centric networking: A survey,” arXiv preprint
arXiv:1603.03409, 2016.

[38] G. Acs, M. Conti, P. Gasti, C. Ghali, and G. Tsudik, “Cache privacy

in named-data networking,” in Distributed Computing Systems (ICDCS),
2013 IEEE 33rd International Conference on. IEEE, 2013, pp. 41–51.

[39] A. Fiat and M. Naor, “Broadcast encryption,” in Annual International
Cryptology Conference. Springer, 1993, pp. 480–491.

[40] C. A. Wood and E. Uzun, “Flexible end-to-end content security in ccn,” in

Consumer Communications and Networking Conference (CCNC), 2014
IEEE 11th. IEEE, 2014, pp. 858–865.

[41] A. Shamir et al., “Identity-based cryptosystems and signature schemes.”

in Crypto, vol. 84. Springer, 1984, pp. 47–53.

[42] N. Fotiou and G. C. Polyzos, “Securing content sharing over ICN,” in Pro-
ceedings of the 2016 conference on 3rd ACM Conference on Information-
Centric Networking. ACM, 2016, pp. 176–185.

[43] R. S. da Silva and S. D. Zorzo, “On the use of proxy re-encryption to con-

trol access to sensitive data on information centric networking,” in Infor-
mation Networking (ICOIN), 2016 International Conference on. IEEE,

2016, pp. 7–12.

[44] D. Goldschlag, M. Reed, and P. Syverson, “Onion routing,” Communica-
tions of the ACM, vol. 42, no. 2, pp. 39–41, 1999.

[45] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-

generation onion router,” Naval Research Lab Washington DC, Tech.

Rep., 2004.

[46] J. Kurihara, K. Yokota, and A. Tagami, “A consumer-driven access con-

trol approach to censorship circumvention in content-centric network-

ing,” in Proceedings of the 2016 conference on 3rd ACM Conference on
Information-Centric Networking. ACM, 2016, pp. 186–194.

[47] G. Tsudik, E. Uzun, and C. A. Wood, “Ac 3 n: Anonymous communi-

cation in content-centric networking,” in Consumer Communications &
Networking Conference (CCNC), 2016 13th IEEE Annual. IEEE, 2016,

pp. 988–991.

[48] N. Borisov, G. Danezis, and I. Goldberg, “Dp5: A private presence ser-

vice,” Proceedings on Privacy Enhancing Technologies, vol. 2015, no. 2,

pp. 4–24, 2015.

[49] S. Yekhanin, “Private Information Retrieval,” Commun. ACM, vol. 53,

no. 4, pp. 68–73, April 2010.

[50] P. Williams and R. Sion, “Usable PIR,” in NDSS. The Internet Society,

2008.

[51] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private informa-

tion retrieval,” in Foundations of Computer Science, 1995. Proceedings.,
36th Annual Symposium on. IEEE, 1995, pp. 41–50.

[52] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. De-

vadas, “Path ORAM: an extremely simple oblivious RAM protocol,” in

Proceedings of the 2013 ACM SIGSAC conference on Computer & com-
munications security. ACM, 2013, pp. 299–310.

[53] O. Goldreich and R. Ostrovsky, “Software protection and simulation on

oblivious RAMs,” J. ACM, vol. 43, no. 3, pp. 431–473, May 1996.

[54] R. Ostrovsky, “Efficient computation on oblivious rams,” in Proceedings
of the twenty-second annual ACM symposium on Theory of computing.

ACM, 1990, pp. 514–523.

[55] M. Ion, J. Zhang, and E. M. Schooler, “Toward content-centric privacy in

ICN: Attribute-based encryption and routing,” in Proceedings of the 3rd
ACM SIGCOMM workshop on Information-centric networking. ACM,

2013, pp. 39–40.

[56] A. Sahai, B. Waters et al., “Fuzzy identity-based encryption.” in Euro-
crypt, vol. 3494. Springer, 2005, pp. 457–473.

[57] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption

for fine-grained access control of encrypted data,” in Proceedings of the
13th ACM conference on Computer and communications security. Acm,

2006, pp. 89–98.

[58] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-

based encryption,” in Security and Privacy, 2007. SP’07. IEEE Sympo-
sium on. IEEE, 2007, pp. 321–334.

18

