
WORKING NOTE AC82
Alan Creak

10 January 1992

CLARIFICATION

This note was originally produced on 6-v-1991, not as one of my
Working Notes. I'm dressing it up, almost unchanged, as a Working

Note now to make sure I don't lose it.

This is a discussion on the language(s) we're talking about. I suspect some of it isn't as obvious as it
should be in my report1, though I think it's all there, if only by implication. I want to emphasise the
differences between the stages at which we can describe the process to be executed.

PRINCIPLES.

In my report1, I present a view of the development of a control programme from the time of the decision
to produce the product concerned to the eventual production of a set of programmes for the production
line machines which do the job. My proposal is structured as a stepwise development, where the
specification is transformed in stages from an initial description of the product to a programme for
controlling each machine's behaviour.

I considered four stages of transformation, connecting five states. The states are :

• A specification of the product.
• A specification of the process seen by the product.
• A specification of the process seen by the production line.
• A specification of the process and communications seen by the production line.
• A specification of the process seen by each machine.

To each of the states there corresponds a way of describing the task to be performed. I haven't been very
specific in presenting details of these descriptive approaches, if anything implying that they exist as data
structures lurking in the innards of some programme. In fact, though, each of them is, at least potentially,
a language.

I think we've only really looked at two of the languages, and one of those only in passing : those
corresponding to the process and communications seen by the production line (the language Al of my
report1 (page 48)), and the process seen by the machine (the Cl language (page 56)). I've confused
the issue by not mentioning that two languages are involved - partly because I hadn't thoroughly realised
it, as the difference was obscured by talking about the separate machines of the production line in the
production line case, but about the LIS as a "machine" in the machine case, so that the example
programmes for both cases described the same process. That's the bit I want to clarify.

It is important to bear in mind that the language must also function as the knowledge source for an

expert system. The expert system needs to know about both what happens to the product in the
production line (for things centred on the workpiece) and about what the machines do (for things
centred on machines). We therefore need two (perhaps more) sorts of language : one to describe the
process and communications from the production line's point of view (which is both a natural way to
describe a process, and also important knowledge in its own right); and another to describe the process
from machine's point of view (for reasons of practical necessity). The expert system needs access to
both sorts of knowledge, so must understand both languages: it is obviously in our interests to make the
two as similar as possible.

WHAT F&P DO.

They write all their programmes at the final level - what the machines do. All the preceding parts of the
analysis are done by people in their heads.

That works well - but it is quite inappropriate as a basis for a flexible system that has knowledge

about itself which it can use to address faults or cope with new developments. The knowledge must be
accessible to the system to achieve any advance, and there are two ways in which this can be done.

• First, we can clamp the F&P programmers and engineers in appropriate constraints fitted

with computer screens and electroencephalographic headsets. (Other facilities for

Working note AC82 : page 2.

biological maintenance and housekeeping may be necessary; I shall not discuss those in
this paper.) Problems will be described in natural language on the computer screens, and
the subjects' responses monitored by electroencephalography. Techniques of natural
language construction2 and interpretation of electroencephalographic signals3 are both
under active development, though it may take some time to bring either to the level of
sophistication which might be needed for this project. This is an exciting line of
development which would bring the name of F&P into the worldwide vocabulary; a start
could be made in a few years time for little more than $100,000,000.

• Alternatively, we might try to represent the knowledge of the programmers and engineers

in terms comprehensible to fairly conventional computer programmes, so that it can be
stored in the computer memory. This is pretty boring, limited in its publicity value to a few
learned journals which nobody of any importance reads anyway, and is within the compass
of Adrian Krzyzewski, who costs next to nothing.

DESCRIBING THE PROCESS AND COMMUNICATIONS SEEN BY THE PRODUCTION LINE.

Here is an example of a programme written in the Al-like language. It describes a process which uses a
production line (fictitious, so far as we know) called a Gherkin Packer. It is a rather more detailed
version of the programme which appears on page 49 of my report1.

Machine : Detector.
Stimulus : A bottle arrives.
Action : Send "Found a bottle" to the LIS.

Machine : LIS.
Stimulus : Receive "Found a bottle" from the detector.
Action : Send "Move bottle from Detector to Filler" to Robot.

Machine : Robot.
Stimulus : Receive "Move bottle from Detector to Filler" from the LIS.
Action : Move the bottle to the Filler,
 Send "Operation complete" to the LIS.

Machine : LIS.
Stimulus : Receive "Operation complete" from the Robot.
Action : Send "Fill the bottle" to the Filler.

Machine : Filler.
Stimulus : Receive "Fill the bottle" from the LIS.
Action : Fill the bottle,
 Send "Finished" to the LIS.

Machine : LIS.
Stimulus : Receive "Finished" from the Filler.
Action : Send "Move bottle from Filler to Packer" to Robot.

Machine : Robot.
Stimulus : Receive "Move bottle from Filler to Packer" from the LIS.
Action : Move the bottle to the Packer,
 Send "Operation complete" to the LIS.

Machine : LIS.
Stimulus : Receive "Operation complete" from the Robot.
Action : Send coordinates to the Packer
 Send "Pack" to the Packer,
 Calculate next coordinates,
 Restart.

Machine : Packer.
Stimulus : Receive coordinates from the LIS.
Action : Receive "Pack" from the LIS,
 Pack the bottle at the coordinates.

DESCRIBING THE PROCESS SEEN BY THE MACHINE.

Working note AC82 : page 3.

From that programme, we want to derive programmes to drive the separate machines which constitute the
production line. In this instance, the only interesting machine is the LIS. This requires a Gherkin Packer
programme encoded more or less as below. (There's rather more here than there was in the report,
because this time I've worked it out more carefully.)

Trigger

-- Await a signal from the detector;
 Receive “Found a bottle”
 : from Detector.

Procedure

-- Tell the robot to move the bottle to the filler's workbench;
 Send move instruction
 : to Robot;
 : carry bottle;
 : from detector station;
 : to workbench.

-- Await the "finished" signal from the robot;
 Receive “operation complete”
 : from Robot.

-- Tell the filler to fill the bottle.
 Send fill instruction
 : to Filler.

-- Await the "finished" signal from the filler;
 Receive finished
 : from Filler.

-- Tell the robot to move the bottle to the packer;
 Send move instruction
 : to Robot;
 : carry bottle;
 : from workbench.
 : to packer station.

-- Await the "finished" signal from the robot;
 Receive “operation complete”
 : from Robot.

-- Send the coordinates to the packer;
 Send message
 : to packer
 : contents box coordinates.

-- Tell the packer to pack the bottle into the box;
 Send pack instruction
 : to Packer

-- Calculate the coordinates for the next bottle.
 Calculate next
 : box coordinates.

Working note AC82 : page 4.

Programmes for the other machines will look broadly similar, but will be written using different
vocabularies. For example, here's a programme for the filler :

Trigger
 Detect bottle
 : on workbench.

Procedure
 Fill bottle
 : with gherkins.
 Fill up bottle
 : with vinegar.
 Send signal
 : to controller;
 : using "finished" button.

We have to derive these programmes from the first one. How ?

Take the LIS programme as a reasonably ambitious example. First we select the LIS (or
whatever) pieces from the programme :

Stimulus : Receive "Found a bottle" from the detector.
Action : Send "Move bottle from Detector to Filler" to Robot.

Stimulus : Receive "Operation complete" from the Robot.
Action : Send "Fill the bottle" to the Filler.

Stimulus : Receive "Finished" from the Filler.
Action : Send "Move bottle from Filler to Packer" to Robot.

Stimulus : Receive "Operation complete" from the Robot.
Action : Send coordinates to the Packer
 Send "Pack" to the Packer,
 Calculate next coordinates,

Though these steps are separated in the initial Al programme, from the point of view of the LIS they form
a single sequential programme, initiated by the appearance of the bottle at the detector station. We
therefore want to combine them into a single sequence of instructions.

But we want to do this by some means which will satisfy our criteria of flexibility and

expandability. That means, for one thing, that we can't build into the compiler any vocabulary peculiar to
any individual machine. As both the programmes are almost entirely composed of instructions
concerning peculiar properties of individual machines, this could pose some difficulties - but not many.
We still have at our disposal the syntax of the languages, and it will be clear that this is conspicuously
simple. It is therefore easy to analyse, and provided that the compiler can retrieve all other information it
needs from descriptions of the devices used in the production line, all should be well. This is how it
works.

The basic syntax of the two languages is perhaps apparent. (Note that I'm making this up as I go

along, so it will perhaps work for this example but not much more. To do it properly will need a bit more
work, but this should demonstrate feasibility.) The Al language can be defined in terms of frames :

<Al Programme> ::= { <action frame> } *
<action frame> ::= <machine line> <stimulus line> <action line>
<machine line> ::= Machine : <machine text>
<stimulus line> ::= Stimulus : <stimulus text>
<action line> ::= Action : <action text>

The <machine text> must identify a machine described in the system's database; the syntax of the
<stimulus text> and <action text> are defined in the machine's database entry.

Working note AC82 : page 5.

The Cl language is equally simple :

<Cl programme> ::= <starter> <procedure part>
<starter> ::= <trigger>
 | <whenever> -- See the report - not elaborated here.
<trigger> ::= Trigger <instruction>
<procedure part> ::= Procedure { <instruction> } *

As with Al, there are components - here <instruction> - which must be defined in the Machine Type
Database. Now down to the example. To begin with, the compiler knows that it's dealing with a
programme for the LIS, so it can retrieve the vocabulary proper to the LIS. This must include instructions
for compiling (at least) Receive, Send, and Calculate instructions. So there must be a database
which looks, in part, something like this :

LIS
 Al Syntax
 <stimulus text> ::= ?
 <action text> ::= ?
 Cl syntax
 Receive
 Send
 Calculate

The first item in the Al programme is a Stimulus, which we can reasonably compile into a Trigger.
Next, though, we have to attend to the detail of the instruction, for which we need, first, the syntax for the
<stimulus text> and <action text>. These are plausible entries :

<stimulus text> ::= <receive instruction>
<action text> ::= <any instruction>
<any instruction> ::= <receive instruction>
 | <send instruction>
 | <calculate instruction>
<receive instruction> ::= Receive <machine>.text from <machine>
<send instruction> ::= Send <machine>.text to <machine>
<calculate instruction> ::=

(The form <machine>.text is meant to denote a text string as defined by the <machine> mentioned in
the statement.)

We can now proceed to analyse the first instruction, Receive "Found a bottle" from the

Detector. Matching this against the <stimulus text>, which can only be a <receive
instruction>, we identify Detector as a <machine> and "Found a bottle" as a text string
proper to that machine. To determine what it means, therefore, we must look at the database entry for
Detector, where we shall expect to find a description of a signal called "Found a bottle". Here's a
bit of the Detector's entry in the database :

Detector
 Messages sent
 Found a bottle
 Description : "Found a bottle"

We find the message as expected (if we didn't, we'd report an error), and we find that the message in
fact consists of the string "Found a bottle". In practice, it could equally well be of a quite different
form, but I'll stick to this simple example for convenience. Now we can compile the Cl language
equivalent. Once again, we refer to the LIS database entry to determine the required syntax. We find :

Receive <machine>.text.description : from <machine>

Working note AC82 : page 6.

which by an obvious process becomes :

Receive "Found a bottle" : from Detector.

The next instruction is a little more complex :

Send "Move bottle from Detector to Filler" to Robot.

The first stages must be quite like those for the Detector message, but now we have a message which
contains variable parts. Here's a bit of the Robot database entry :

Messages received
 Move <thing> from <A> to .
 Description :
 <thing> : type object, attribute movable.
 <A> : type place, attribute reachable.
 : type place, attribute reachable.

Matching identifies the components of the instruction, and the variable parts are further described as
required. Types such as object, place, and so on should perhaps be regarded as world knowledge and
built in to the basic language definition. Attributes, which can be used for checking semantics, may be
associated with various things at various levels - so movable is here associated with the object, and is
sufficiently general to be defined globally, while reachable is only applicable to a small class of
machines, and should perhaps be locally defined. Notice too that to evaluate reachable we must know
the identities of the specific robot, object, and places concerned; here we must use information from the
Machine Database.

Associated with each type there must be instructions for handling variables of the type. So an

object will be sought in the Component Database and, for specific details, the Active Products
Database, while a place may require reference to any material component of the system, and must
somehow be identified in the appropriate database. Detector, for example, must denote a place : so
there is a component in the entry for Detector in the Machine Type Database which defines the
meaning of the word used as a location. These will, obviously, normally be expressed relative to some
defined base coordinate of the actual machine concerned.

Now having identified the parts of the instruction with information from the machines concerned,

we can synthesise the next instruction in the Cl programme, again referring to the databases for specific
information on how to construct the required text - or, as it may be, code at some later stage of the
enterprise.

REMARKS.

I don't for a moment imagine that this will work as it stands - I remarked that I'm working it out as I go
along - but I think the idea is sound. Neither do I think that the mechanism described is necessarily the
only way, the best way, or even a particularly desirable way : it is, perhaps, the fundamental way. It is
almost certainly an extremely slow way, and one obvious improvement once much more is known about
the forms of the messages required at different levels is to build something much closer to a conventional
compiler. This would still be quite a simple programme, as the basic structure of the language is simple,
but would probably run at an acceptable speed.

But the important point is this :

It is possible in principle to devise a set of languages which deal with machines in a production
line, and can be adapted to include new sorts of machine through changes to a database, and
without any arduous reprogramming.

Working note AC82 : page 7.

REFERENCES.

1 : G.A. Creak : Information structures in manufacturing processes, Auckland Computer Science

Report #52, Auckland University Computer Science Department, February 1991.

2 : N. Ivanov : M.Sc. Thesis, Auckland University, 1990

3 : Z.Z. Keirn, J.I. Aunon : “Man-machine communications through brain-wave processing”, IEEE

Eng. in Med. Biol. 9#1, 55 (March 1990).

Working note AC82 : page 8.

SUMMARISED DATABASE FRAGMENTS.

Detector
 Al syntax
 Messages sent
 Found a bottle
 Description : "Found a bottle"
 Positions
 . : coordinates :
 name : "detector station"

LIS
 Al Syntax
 <stimulus text> ::= <receive instruction>
 <action text> ::= <any instruction>
 <any instruction> ::= <receive instruction>
 | <send instruction>
 | <calculate instruction>
 <receive instruction> ::= Receive <machine>.text from <machine>
 <send instruction> ::= Send <machine>.text to <machine>
 <calculate instruction> ::=
 Cl syntax
 Receive
 syntax
 Receive <machine>.text.description
 : from <machine>
 Send
 syntax
 Send <machine>.messagetype
 : to <machine>
 : <machine>.messagetype.format
 Calculate

Robot
 Al syntax
 Messages sent
 Operation complete.
 Description :
 Messages received
 Move <thing> from <A> to .
 Description :
 <thing> : type object, attribute movable.
 <A> : type place, attribute reachable.
 : type place, attribute reachable.
 Cl syntax
 Move
 Messagetype
 move instruction
 Syntax
 : carry <thing>
 : from <A>.name
 : to .name

