
WORKING NOTE AC72
Alan Creak

21 June 1989

PFL SYNTAX

This document records a new version of the PFL syntax, started in 1984, but for the most part devised after
Peter Sergent finished his Ph.D. work1. It is better structured than Peter's version, and I believe significantly
improved in some respects because it benefits from the experience of Peter's work.

WHY AM I WRITING THIS NOTE ?

A recent resurgence of interest in PFL has encouraged me to believe that it isn't actually dead. I'm
therefore dressing up this syntax definition in marginally respectable, and referenceable, form, and
offering it for discussion.

IMPROVEMENTS.

There are two main changes, which I deem to be improvements, in this definition as compared with
Peter's original design. They are :

• The idea of the machine declaration, which collects together all the material pertaining to a

machine in the physical sense. The most general abstraction in the original definition was
the procedure, semantically very similar to the traditional Algol procedure, and all required
abstractions had to be mapped onto that. A machine is much more like a Simula class (or,
maybe better, and Ada package), and can contain processes of various sorts, data
structures, and code; this seems to be a much better model for the required description of a
physical machine, which may have a complex description, several different sorts of
operating procedure, special instructions for starting up and shutting down, and so on. The
provision of a machine abstraction also makes it much easier to deal with multiple
machines of the same type.

• The clear distinction between the parts of a machine – the description of its interface, the

components of the machine, procedures for handling special conditions, and normal
operating instructions. This gives a much clearer structure to the code, and in principle
provides information to the PFL system which it can use in automatically disposing of the
various components.

These brief accounts are intended only to give the flavour of the matters considered, and to suggest,
rather than justify, my trains of thought. Much of this material can be expanded significantly if it seems
to be a good idea; I have a lot of notes on the language design, which may be worth transcribing into
legible form if anyone's interested. (Though not all the notes are really about this syntax;

SYNTAX NOTATION.

The syntax notation is based on colloquial BNF as commonly used, but extended in particular to permit
controlled selections from sets of items. The main reason for this provision is to make it possible to
describe languages in which some parts are to be regarded as declarative rather than procedural, so that
the order of the components is not important – so that, for example, the descriptions of different attributes
of a data structure can be given in any order – but there is some control over the number of occurrences
of components of various sorts – so that we can insist on exactly one type specification and not more than
one initial value. Imposing such conditions amounts to introducing a degree of context-dependency into
the notation, and most versions of BNF, plain or extended, don't extend much in that direction.

Working note AC72 : page 2

WHAT HAPPENED TO WORKING NOTE AC49 ?

I wrote the Note in question2 in 1986. It contains a few sample "PFL programmes", or bits thereof. By
and large, they don't conform to the syntax presented here. One might well ask why.

There is no very deep explanation for the difference in notation. When I wrote the Note, I had for some
time done very little work on the PFL compiler I was writing, partly because of pressure of other
commitments, but also because I had some doubts as to the way the compiler and the language were
developing. The note itself was to summarise and clarify my current thoughts, and to provide a sample of
them which I could discuss with George Blanchard. It didn't seem too important at the time to stick to the
precise syntax, because my concern was with the broader structures of the language; and my work on the
compiler hadn't given me any experience of the language as a whole. So I guessed, and got a number of
things wrong.

REFERENCES.

1 : P.A. Sergent-Shadbolt : A new computer language for process control (Ph.D. Thesis, Auckland

University, 1985).

2 : G.A. Creak : PFL : progress report ? … (unpublished Working Note AC49, 1986).

THE SYNTAX SPECIFICATION.

% PFL FORMAL SYNTAX. 31-x-1984
%
% NOTATION :
%
% < ... > A non-terminal symbol.
%
% AWORDINCAPITALS A terminal symbol.
%
% Any symbol not defined here
% Itself.
%
% ::= Produces.
%
% => There follows a note in English on the implications of
finding
% the production.
%
% | Or.
%
% |> s | A1 | A2 ... <| A sequence of one or more of An, without duplication
(unless
% indicated by |* or |+), in any order, separated
if need
% be by the mark s.
%
% |* Zero or more of whatever follows.
%
% |+ One or more of what follows.
%
% |! At most one of what follows.
%
% [...] Optional.
%
% % Following text to the end of the line is a comment.
%

Working note AC72 : page 3

<pflprogramme>
 ::= <identifier> [IS] [A] PROGRAMME [WITH] < programmeparts>
 END [[OF] <identifier>] .
 => <identifier> names a programme;
 both <identifier>s are the same.
<programmeparts>
 ::= |> . | <image>
 | <components>
 | <startup>
 | <shutdown>
 | <emergency>
 | <operations>
 <|
%
<image>
 ::= IMAGE : <imagedetails>
<imagedetails>
 ::= |> ; |* <linedetails>
 <|
<linedetails>
 ::= <identifier> [IS] <linedescription>
 => <identifier> names a line.
<linedescription>
 ::= |> , | <linewidth>
 | <linecontinuity>
 | <lineconditionnames>
 <|
<linewidth>
 ::= SINGLE
 | BYTE
 | CHANNEL <expression>
 => <expression> evaluates to give an integer.
<linecontinuity>
 ::= INTERRUPT
 | CONTINUOUS
<lineconditionnames>
 ::= |> , | ON [IS] <identifier>
 => <identifier> names a line state.
 | OFF [IS] <identifier>
 => <identifier> names a line state.
 <|
%
<components>
 ::= COMPONENTS : <componentspart>
<componentspart>
 ::= |> , |* <identifier>
 => <identifier> names a machine or procedure.
 <|
%
<startup>
 ::= STARTUP : <identifier>
 => <identifier> names a procedure.
%
<shutdown>
 ::= SHUTDOWN : <identifier>
 => <identifier> names a procedure.
%
<emergency>
 ::= EMERGENCY : <identifier>
 => <identifier> names a procedure.
%
<operations>
 ::= OPERATIONS : <operationsbody>
<operationsbody>
 ::= |> \ |* <sentencesequence>
 <|
<sentencesequence>
 ::= |> ; |* <sentence>
 <|
% <sentence>s within <sentencesequence>s must be executed serially;
% different <sentencesequence>s may be executed in parallel.

Working note AC72 : page 4

<sentence>
 ::= <declaration>
 | <instruction>
%
% Declarations are available, but not syntactically required; in that
respect,
% the syntax is interpreted literally. The system is supposed to infer the
type
% of any object from its context.
<declaration>
 ::= <datadeclaration>
 | <proceduredeclaration>
 | <machinedeclaration>
<datadeclaration>
 ::= <identifierlist> <propertieslist>
<identifierlist>
 ::= |> , |* <identifier>
 => <identifier> names a variable of type T.
<propertieslist>
 ::= |> , | [IS] <typedetails>
 => Type T is defined by <typedetails>.
 | <- <constant>
 => Type T is the type of the <constant>.
 <|
<typedetails>
 ::= <datatype>
 | FILE [OF] <datatype>
<datatype>
 ::= <simpletype>
 | ARRAY [OF] <expression> <simpletype>
 => <expression> evaluates to an integer.
<simpletype>
 ::= CHAR
 | INTEGER
 | LOGICAL
 | NUMBER
 | STRING
%
<proceduredeclaration>
 ::= <identifier> [IS] AN OPERATION [WITH] <procedureparts>
 END [[OF] <identifier>]
 => <identifier> names a procedure;
 both <identifier>s are the same.
<procedureparts>
 ::= |> . | <inputlist>
 => the procedure uses input parameters.
 | <outputlist>
 => the procedure uses output parameters.
 | <valuespecification>
 => the procedure is a function.
 | <startup>
 | <shutdown>
 | <emergency>
 | <operations>
 <|
<machinedeclaration>
 ::= <identifer> [IS] [A] MACHINE [WITH] <machineparts>
 END [of <identifier>]
 => <identifier> names a machine;
 both <identifier>s are the same.
<machineparts>
 ::= |> . |! <image>
 | <components>
 |! <startup>
 |! <shutdown>
 |! <emergency>
 | <operations>
 <|
<inputlist>
 ::= USING |> , |+ <identifier> <|
 => the number of input parameters, and their order,
 are known.

Working note AC72 : page 5

<outputlist>
 ::= GIVING |> , |+ <identifier> <|
 => the number of output parameters, and their order,
 are known.
<valuespecification>
 ::= RETURNING <simpletype>
 => the type of the function is known.
%
<instruction>
 ::= <compoundinstruction>
 | <conditionalinstruction>
 | <iterativeinstruction>
 | <simpleinstruction>
<compoundinstruction>
 ::= GROUP <operationsbody> [;] END
<conditionalinstruction>
 ::= IF <expression> THEN <instruction> [ELSE <instruction>]
 END IF
 => <expression> evaluates to give a logical value.
<iterativeinstruction>
 ::= REPEAT <iterationcontrol> : <instruction> END REPEAT
<iterationcontrol>
 ::= |> : | WHILE <expression>
 => <expression> evaluates to give a logical value.
 | UNTIL <expression>
 => <expression> evaluates to give a logical value.
 | [up to] <expression> TIMES
 => <expression> evaluates to give an integer expression.
 | FOR EACH <identifier>
 => <identifier> names an array.
 <|
<simpleinstruction>
 ::= <assignment>
 | <procedurecall>
 | <stopinstruction>
 | <returninstruction>
 | <hearinstruction>
 | <sayinstruction>
%
<assignment>
 ::= <identifier> <- <expression>
 => the types of <identifier> and <expression> are
 the same.
<procedurecall>
 ::= CALL <identifier> [<actualparts>]
 => <identifier> names a procedure which is not a
 function.
<actualparts>
 ::= |> , | USING |>, |+ <expression> <|
 => information on the input parameters.
 | GIVING |> , |+ <expression> <|
 => information on the output parameters.
 <|
<stopinstruction>
 ::= STOP
<returninstruction>
 ::= RETURN <expression>
 => the current scope corresponds to a function;
 the type of <expression> is the same as that of
 the function.
<hearinstruction>
 ::= HEAR <identifier>
 => <identifier> names a string.
<sayinstruction>
 ::= SAY <expression>
 => <expression> evaluates to give a string.
%

Working note AC72 : page 6

<expression>
 ::= <term>
 | <term> <binaryarithmeticoperator> <term>
 => both <terms> are numeric values.
 | <term> <binaryrelationaloperator> <term>
 => both <term>s are numeric values, or both are string;
 the <expression> is logical.
 | <term> <binarylogicaloperator> <term>
 => both <term>s are logical;
 the <expression> is logical.
 | <term> & <term>
 => both <term>s are strings;
 the <expression> is a string.
<binaryarithmeticoperator>
 ::= **
 | *
 | \
 | +
 | -
<binaryrelationaloperator>
 ::= >
 | <
 | =
 | >=
 | <=
 | <>
<binarylogicaloperator>
 ::= AND
 | OR
<term>
 ::= <primary>
 | – <primary>
 => the <primary> is numeric;
 the <term> is numeric.
 | NOT <primary>
 => the <primary> is logical;
 the <term> is logical.
 | # <primary>
 => the <primary> is a string;
 the <term> is numeric.
 | $ <primary>
 => the <primary> is numeric;
 the <term> is a string.
<primary>
 ::= <constant>
 | <identifier>
 | (<expression>)
 | <identifier> [<actualparts>]
 => <identifier> names a function;
 the function type and <primary> type are the same.
%
<constant>
 := a number
 | a string between quotation marks
 | TRUE
 | FALSE
<identifier>
 ::= any string of letters and digits beginning with a letter which
 is not a <constant> nor a reserved word.

