
 

 

WORKING NOTE AC59 
Alan Creak 

4 December 1986 
 

NOTES ON RICHARD O'KEEFE'S MAORI PARSER 
  
To make the programme run, you execute the predicate go, which 
 

• reads a sentence using read-sent. That's designed for general sentences : it accepts a sequence of 
character strings up to the next full stop, exclamation mark, or question mark, and returns a list of 
the strings, each classified as an atom ( containing only alphabetic characters ), a string ( between 
quotation marks ), an integer ( digits ), an apostrophe, an apostrophe-s, or a punctuation character.  
I imagine Richard used read-sent mainly for the sake of convenience, as the Maori parser proper 
largely ignores the details returned by read-sent. 

 
NOTE : Are apostrophes used in Maori ? Are there any other special punctuation or 
other marks we should know about ?  
 
NOTE : It should be straightforward to handle numbers properly. 
 

• uses split to reform the sentence.  This removes the "atom" label from ordinary words so identified 
by read-sent, but simply passes an anything else - so quoted strings, numbers, etc. aren't handled.  
Split also checks for composite words, and replaces them with their separate parts ( whence, 
presumably, the name ); and it queries words not in its dictionary.  It will accept in reply either the 
corrected word ( assuming it was a spelling mistake ) or the part of speech appropriate to the word, 
which it will then add to its dictionary for the session. 

 
NOTE : There's a peculiarity about the " biwords" and "triwords" which I suspect 
reflects a change of mind half way through writing the programme.  Each word is 
tested by biword and triword within split; but, if those tests fail, it is tested by 
word, which repeats the biword and triword tests.  Richard has noted that word/1 
is written "as a temporary measure" :  I guess that he intended eventually to collect 
all the words together into a single dictionary, which would be much easier to 
administer than the present arrangement ( or disarrangement ) in which the 
vocabulary is thinly distributed throughout the whole programme in lots of 
different predicates for the various parts of speech. 

 
• uses sentence to parse the sentence. 
• uses report to display the parsed version. 

 
Essentially all the grammatical work is done by sentence.  A sentence is identified as a sequence of phrases, 
perhaps preceded by an interjection.  An interjection is one or two words as defined in §37 of the book. 

 
NOTE : the treatment of anoo as an optional addition seems to be faulty.  I think 
that the grammar as written makes the anoo mandatory; we need an additional rule 
of the form after-interjection ( anoo, - ) --> 

 
An interjection is always parsed as  
 

interjection ( Int, Mod ), where  
 Int is the word of interjection itself ( such as kaatahi ), and  
 Mod is a modifier ( such as anoo ).   
The two parts are always included; if there is no modifying word in the sentence, the modifier is given as 

"-".  This practice seems to be continued throughout the programme. My instinctive reaction is 
that it's too rigid, but that's no more than a guess. 

 
NOTE : Could a sentence be introduced by several interjections? 

 



Working note AC59 : page 2 
 
 

 

A phrase is parsed by the predicate phrase which looks for three components: a preposed periphery, and 
nucleus, and a postposed periphery.  The same argument is used for all the corresponding predicates; the 
argument represents the parse tree ( phrase marker ) for the phrase.  Its structure is : 

 
phrase ( Preposed, Head, Mods, Post ) 
 
Preposed is 
 verbal ( Particle, If ) 

Particle is the verbal particle; 
If is e, me, or -. 
 
NOTE : it isn't clear whether the grammar will cope with an empty preposed 
periphery for a verbal phrase.  ( It's all right for nominal phrases. ) 
 
NOTE : I have no idea why If follows Particle; it's the other way round in the book. 
( §48.2 ) 

 
or nominal ( Prep, Sort, Def, Loc ) 

Prep is the preposition; 
Sort says something about the preposition, and can be with, focus, of, at, - ; 
Def is a definition: 
 def ( T,P,N ) 
  T is a possessive particle; 
  P and N are the person and number of the following pronoun; 
or  just the word; 
or - 
Loc is one of the positional particles nei, na, or ra, or -. 

 
Head is a base.  A preceding a is accepted under certain circumstances, but does not appear in the 
parse tree.  The circumstances are : 
 

• the preposed periphery is nominal with any preposition, Sort = at, and no definitive or 
positional particle, the base of Head is personal, and there are  no modifiers; or 

• the preposed periphery is nominal with any preposition, Sort = focus or -, and no 
definitive or positional particle, the base of Head is personal or locative, and there are 
no modifiers. 

 
In any other circumstances, the base of Head must be consistent in type with the preposed 
periphery, with any modifiers which may follow, and with a possible terminating manner particle.  
Consistency for the preposed periphery is determined by the predicate : 
 
 Check ( Prep, Type ) 

Prep is the preposed periphery 
Type is universal, passive, stative, noun, locative, or personal. 

The test succeeds if : 
• the preposed periphery is verbal and the type is universal, passive, or stative; 
• the preposed periphery is nominal with any of these combinations : 

Definitive not - ; type = noun, universal, or stative. 
Preposition not - ; definitive and locative both - ; type = locative. 
Sort of preposition not at; definitive and locative both - ; type = personal. 

 
NOTE : There may be a flaw here somewhere.  In parsing teenaa koe ( converted 
by split into te na koe ) it identifies te na as a nominal preposed periphery, and koe 
as a personal pronoun, but is then unable to make them agree. 
 
Further: when the programme is given the sentence haere mai ki te whare, it 
determines that there is no preposed periphery ( which appears in the parse tree as 
nominal ( -,-,-,- ) ), then identifies haere as a universal base, but cannot match the 
preposed periphery with the base, and therefore fails.  I suspect we need a special 
representation for an empty preposed periphery. 

 



Working note AC59 : page 3 
 
 

 

Mods is a sequence of bases possibly followed by a manner particle.  Each has a type, which must 
agree with the type of the phrase.  The type is checked by the predicate : 
 
 agree ( Modtype, Headtype ) 
 The acceptable combinations are : 
 

 Modtype    Headtype 
 
 passive passive 
 
 derived derived 
 
 anything but anything but 
 passive, derived, passive or derived 
 or personal 
 

 
 
NOTE : 
 
1. There were two typing errors in the original, but I don't think they'll have 

affected the programme's performance.  ( I doubt if it ever got this far ! ) 
 
2. A personal modifier won't agree with anything. 
 
3. I don't know why he's attached the manner particle to the modifiers rather 

than to the postposed periphery. ( §48.4 ) 
 
Post is 
 post ( D, P, A, H ) 
  D is a directional particle or - 
  P is a positional particle or - 
  A is anoo or - 
  H is hoki, anake, ana, ai, or - 

( anake is commented with "???"  - I don't know why, but I notice that anake is 
missing from §48.4 of the book. ) 

 
To Summarise :  the programme is running, but so far its score is 0/2.  I stopped trying at that point and took 
away some traces to analyse so I'd have a better idea of what was going on.  I conclude that all the bits are there, 
but that there's a lot of tidying up to be done. 


