
WORKING NOTE AC51
Alan Creak

12 May 1986

ECCLES AND ELIZA.

WHAT'S WRONG WITH ECCLES ?

A major disadvantage of Eccles (1) is that it is restricted to zero-order (propositional) logic, in
which it is not possible to make propositions about variables. Thus, Eccles can handle arguments of this
sort :

Daisy is a cow ;
If Daisy is a cow, then Daisy eats grass;
Therefore Daisy eats grass.

But Eccles must be given each of those assertions explicitly. It cannot infer the second from the general
statement "All cows eat grass" – or, equivalently,

For any object X : If X is a cow, then X eats grass.

This does not, of course, detract from Eccles's utility in circumstances where it can be used; but it
does limit those circumstances to finite (and, in practical cases, quite small) collections of assertions;
because, for any even moderately large set of objects, we wish to make general statements like "All cows
eat grass", rather than provide a separate statement for every cow in our universe.

Logic languages like Prolog are based on the first order (predicate) calculus, in which universal
statements can be made, and the Prolog system is designed to apply general statements to special
conditions by matching constants to variables. Thus, given the two statements

Cow(Daisy)
and Cow(X) –> eats(grass, X)

the Prolog system can deduce that

eats(grass, Daisy)

WHERE DOES ELIZA COME IN ?

Eliza is the name of a computer programme originally written many years ago by Joseph
Weizenbaum (2), which is designed to carry on a conversation. It is an accepted fact that Eliza is not an
intelligent programme (3); all it does is compare its input with a lot of patterns which it keeps in its
memory until it finds a matching pattern, then it constructs a response by transforming the text of the
input statement according to a rule associated with the matched pattern. (It is tempting to ask whether
Expert Systems, which everyone knows to be excellent examples of artificial intelligence (4), do much
more.) For example : an input sentence

Tomorrow I am going to Wellington

might be matched by a pattern

Tomorrow I am going to X

with the associated response pattern

Have you been to X before ?

leading to the reply

Have you been to Wellington before ?

Working note AC51 : page 2

If the input sentence made sense, then – provided that the matching operation is carefully designed – the
output will make sense too; and an Eliza with a large number of such patterns and transformation rules
can keep up a very impressive, though ultimately quite pointless, conversation. The proviso in that
sentence is critical; the patterns used, and the order in which they are tried, must be meticulously tailored
if the replies produced are to remain credible. What would happen to the example given if the initial
sentence had been "Tomorrow I am going to scream" ?

Here's a picture of Eliza's basic operation :

Remember it.

WHAT'S THAT GOT TO DO WITH ECCLES ?

What do we need to make Eccles work like (or, for preference, better than) Prolog ? We need
the capacity to generalise. We need, in fact, to perform a transformation like this :

That should look familiar. It does ? Good ! I can sum up all that in this inequality:

Eccles + Eliza > Prolog

Why do I assert that the combination of Eccles and Eliza will exceed Prolog in some way ?
Because Eccles can handle negation precisely, and Prolog can't. Further, Eliza-Eccles should be able to
cope with reasoning in higher-order logic in a more natural way than Prolog (5), which has to do it by
defining "meta operations" of various sorts.

This is how it will (perhaps) work.

First order reasoning :

1. We tell Eccles :

 X is a cow –> X eats grass.

2. We tell Eccles :

 Daisy is a cow.

Working note AC51 : page 3

3. Eccles looks for terms including "Daisy is a cow" with which it can combine the new
information. (I suppose it should have done the same for "X is a cow" etc, but we'll
suppose nothing happened.)

Working note AC51 : page 4

4. Eccles now tries to match "Daisy is a cow" with appropriate items in its symbol table, by
instantiating variables. (By simple matching ? or maybe something like unification ?). It
infers :

 Daisy eats grass.

Or something along those lines. Notice that the pattern matching is quite distinct from the
reasoning; the reasoning is performed with bit arrays, as described earlier, but the pattern matching
is done on textual items in the name table. Notice, too, that the pattern matching can work in either
direction; as with Prolog, the process can be driven by an attempt to work backwards from "Daisy
eats grass" rather than forwards from "Daisy is a cow".

Higher order reasoning :

To show how Eliza-Eccles might deal with a problem involving higher-order reasoning,
consider the statement : If X is honest, and X says Y, then Y is true. That statement involves higher-
order reasoning, because it makes an assertion about an assertion : that statement Y is true. You can
do it in Prolog, but it's certainly outside the ordinary realm of straightforward logic programming.
Eliza-Eccles, on the other hand, reasons like this :

Given that :

 (X is honest) => ((X says Y) => Y).
 Albert is honest.
 Albert says Mary was there.

we first combine the first two to obtain :

 (Albert says X) => X.

then combine this with the third statement to derive :

 Mary was there.

The magic, if there is any, perhaps comes from the separation of the reasoning and substitution steps :
the pattern matching doesn't concern itself with the logic of the statements, only the textual form; while
the reasoning ignores the text and concerns itself only with the logic.

Once we have something that'll do all that, then we can start to experiment with it. We could also

start to explore its theoretical power, but I don't know how to start. (Note that one useful thing about
logic programming in predicate logic is that we have a good knowledge of the mathematical properties
of the notation we use : I don't know just how important that might or might not be.) I'm just not sure
what its capabilities will be – but they should be interesting.

NOTATION.

It may turn out to be convenient to formalise the way in which statements are represented,
perhaps to something like the conventional predicate logic pattern. This makes the pattern matching
much less touchy, and helps to avoid the ambiguities of English parsing which lead to confusing
similarities between sentences including "Wellington" and "scream", as illustrated earlier. I would prefer
to avoid such disciplines for as long as we can, though, because I think they can constrain one's
thinking : one tends to think in terms which are easy in the language one is using, and a constrained
language can easily lead to constrained thought. If we keep the notation as free as possible for as long as
possible, we're more likely to try to say hard things, a therefore be brought up against challenging
problems.

Working note AC51 : page 5

It's also worth pointing out that a formal notation isn't the only way to resolve ambiguity : an
alternative is to make the input end of the programme clever enough to distinguish "Wellington" from
"scream". I know that's not easy either, but it's certainly interesting; and one nice thing about Eliza-
Eccles's separation of reasoning from parsing is that we don't have to choose a notation that lends itself
easily to logical manipulation.

REFERENCES.

(1) G.A. Creak : ECCLES , Working note AC50 (1986).

(2) J. Weizenbaum : ELIZA – a computer program for the study of natural language communication

between man and machine, Comm.ACM 9, 36 (1966).

(3) E. Rich : Artificial intelligence (McGraw-Hill, 1983) p305 (and see also reference 2).

(4) E. Rich : Artificial intelligence (McGraw-Hill, 1983) p284.

(5) W.F. Clocksin, C.S. Mellish : Programmimg in Prolog (Springer-Verlag, 2nd edition, 1984)

p255.

