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ECCLES 

 
 
WHAT ABOUT ECCLES ? 
 

This note records some of the things I remember about my various tries at implementing an 
Environment for Computing with Complicated Logical Expressions Simply. Some of it is straight 
memory; some is supported by notes and/or records of experiments; some may be pure invention. But at 
least I'll get it written down, so it can't degrade any further. 

 
HISTORY. 

 
Eccles started when I was at Derby, in about 1970. I was looking for a way of handling the 

logical part of my project Peter ( Programme for Evaluating Theoretical and Experimental Results ), and 
something based on zero-order logic seemed to be the right thing. ( Though at the time I didn't know it 
was zero-order logic – but I went to a really excellent introductory course on Boolean Algebra, given by 
a Professor Goodstein of Leicester University (1); there I found out about sentence logic, which 
obviously fitted my purposes very well. ) As the computer at my disposal was – by present standards – 
very small ( an IBM 1130 with 8K of 16-bit words of memory ), I was very concerned to find a way of 
conducting arguments which would require as little as possible in the way of storage and time; and the 
possibility of packing assertions 16 to a word, and thereby getting 16-fold parallelism in the argument 
evaluation, seemed to kill two birds with one stone. ( It still seems like a good idea; however big your 
computer, there are always going to be some problems which won't fit into it – so economical techniques 
will always have some value. ) 

 
When I came to Auckland, I started again. The original Eccles was in Fortran and IBM1130 

assembly language, and didn't all work too well; I wanted to start again in Algol, and to take advantage 
of the even bigger 48-bit word of the Burroughs B6700. I'd also developed quite a few ideas about how 
the superstructure should be, though I hadn't been able to put those onto the IBM1130. 

 
I managed to get quite a bit of Eccles going. It didn't all work; I suspect that was mainly because I 

couldn't resist the urge to "optimise" my logic routines by using clever tricks, so they became 
enormously complex and faulty. Then Paul Lyons came along as a Ph.D. student, and developed the 
system further in his own way, finding quite a few mistakes in the process. Paul did manage to get it 
going with a reasonable "front end", which could accept logical statements in a reasonably 
comprehensible form, parse them, produce equivalent Eccles statements, and evaluate the whole system. 
Then he went away, leaving no trace of his work behind.  

 
I had always intended to carry on with Eccles, but didn't have time for some years. Then they got 

rid of the B6700, and all the work instantly became useless. And that's where we are now. 
 
THE ESSENTIAL IDEAS. 

 
Eccles is intended as a way of evaluating logical expressions ( see the name ). An expression is a 

formula , containing symbols representing atomic statements ( a, b, c, … ) connected by logical 
operators ( &, v, ~, =>, <=> ). Parentheses may be used to control the order of evaluation. Some 
examples of expressions are : 

 
a & b 
a & b v c => d <=> e 
( ( a & b ) v c ) => ~ ( d <=> e ) 

 
and so on. The second expression demands that some convention regarding operator precedence be 
established; I assumed that ~ was executed as a unary operator at the highest precedence, and that & and 
v had highest, equal, precedence among the binary operators, followed by =>, followed by <=>. 

 
Expressions in Eccles have NAMES: the data for Eccles consist, apart from possible 

housekeeping instructions, of a set of expressions with names. The names are kept in a name table, and 
each is linked to the representation of the corresponding statement body. The name table also contains 
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names of elementary statements, which, of course, have no corresponding statements body. For many 
purposes the names of elementary statements and of expressions can be used interchangeably – they 
both, after all, denote a statement of some sort. There are some complications with names if you want to 
leave them unevaluated in expressions, and I never really worked these out. 

 
Eccles combines logical statements to produce new statements. For example, given the initial 

statements X and Y, denoting, respectively, a & b and c & d, Eccles will evaluate ( X => Y ) as 
a new expression in disjunctive form : 

 
( ~a ) v ( ~b ) v ( c & d ) 

 
Statements in Eccles are represented bitwise within machine words; each bit position in a word 

corresponds to a single atomic statement. A pair of words ( strictly, bit arrays, which may be multiple 
words, depending on how many atomic statements are to be represented ) is used to represent a 
conjunction of atomic statements : so, assuming that the bits from left to right of the word are used to 
represent a, b, c, …, the simple conjunctive expression a & ~b & d would be represented by the 
pair of words 

 
@..@ … 
.@.. … 

 
Notice that the logical value associated with an atomic statement is defined by the combination of 
corresponding bits in the two words. We may call a simple expression of this sort a clause; then any 
logical statement can be represented as the disjoined assertion of a number of clauses. We can read such 
an expression as " clause 1 or clause 2 or clause 3 ……", which underlines its useful interpretation as a 
list of possible configurations of the logical universe defined by the initial statements.  

 
Two examples of applications of Eccles within the Peter project follow. Both of these really do 

work, and were running ( before 1973 ! ) on the IBM1130 version of Eccles. 
 
Chemical reaction mechanisms. 
 

One of the aims in the field of gas phase chemistry is to elucidate the "mechanisms" of 
chemical reactions which occur in  gas mixtures. Typically, one knows the sorts of reaction which 
can occur in the system under investigation, and the task is to select a plausible set of actual 
reactions ( the "mechanism" ) which will account for the observed reactants and products. Eccles is 
useful in this context because the arguments to be carried out can be simply expressed in logical 
form. Thus, if we have the chemical reaction : 

 
R1 : A + B –> C 
 

then we can formulate these logical statements: 
 

• If reaction R1 happens, then all the chemicals involved must be present in the system : 
 

R1 –> A & B & C 
 

• If compounds A or B are known to be consumed, then reaction R1 ( or some other 
reactions which consume these substances ) must occur : 

 
Aconsumed –> R1 v ……… 
 

• If C is found among the products, but was not initially present, then R1, or some other 
reaction which produces C, must have occurred : 

 
C –> Cinitial v R1 v ……… 
 

And so on. By asserting these logical statements, and providing the known facts about the 
substances which were observed to be produced and consumed, we can use Eccles to derive a final 
expression in which each clause describes a possible mechanism for the reaction. 

 
Double and single bonds in molecules. 
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A molecule in which the geometry leaves atoms with formally unsatisfied bonds is often best 
described in terms of structures involving multiple bonds; carbon atoms take part in many such 
bonds. If a carbon atom forms fewer than four bonds to other atoms, it is called unsaturated. If two 
such unsaturated carbon atoms are adjacent, their "spare" bonds may combine together, producing a 
double bond between the two atoms; if several such atoms are close together in a molecule, then 
there may be several possible ways of drawing the double and single bonds, leading to the idea of 
resonance and resonance stabilisation. While it is possible to treat such phenomena by quantum 
mechanical methods ( albeit very approximately ), practising chemists manage very well by simply 
drawing the bonds; and they have managed in this way since long before the quantum mechanical 
interpretations became available. This empirical approach is therefore of great interest in a study of 
chemical reasoning, and it offers a satisfactory way of determining how multiple bonds are 
configured given only the topological properties of a molecule, such as may be derived from certain 
line-formula representations. Most such notations designed for use by people provide ways of 
representing the order of each bond; but, using the method about to be described, such an explicit 
representation is not necessary, and is in any case not necessarily reliable. The same is true, with 
even more force, for formulæ produced by computer calculation, and this approach was developed 
in order to discover the properties of molecules represented by such formulæ. 

 
For each unsaturated atom in the molecule, one can construct a statement which makes certain 

assertions about the bonds made by the atom. For example, if the atom forms three bonds, say b1, 
b2, and b3, with other unsaturated atoms then we can construct the statement : 

 
( b1 & ~b2 & ~b3 ) v ( ~b1 & b2 & ~b3 ) v ( ~b1 & ~b2 & b3 ) 

 
where we write b1 for the statement "b1 is a double bond", and so on. Combining all such 
assertions, we arrive at a final expression which is a disjunction of the possible configurations of 
double and single bonds in the molecule : there may be none of these, which suggests some oddity 
about the molecule ( it may be a free radical ); or there may be exactly one, in which case there is a 
single possible configuration; or there may be several, in which case the molecule is resonance-
stabilised, and the results can be used to make guesses about the orders of the various bonds 
involved. 
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