
WORKING NOTE AC129
Alan Creak

2001 January 8

PROPERTIES OF CODE AND DATA

I point out some parallels between descriptions of code – particularly source
programmes – and of data – particularly disc files.

PREFACE.

I started writing this note on the day I was struck by the brightish idea reported herein. Any mention of
"today" is therefore to be interpreted as 2000 September 9.

As is not uncommon with brightish ideas, once you get past the first bit, things get harder. In
trying to record the insight comparatively formally and comprehensibly, I found no dearth of material to
work on, but encountered a problem in taxonomy : how should it all be classified ? Now I don't want to
spend any longer on this note, but haven't got as far as I'd hoped. Well, I suppose that's what the notes are
for, really.

So the current state is : I'm still impressed by the idea, but I think there's a lot more to do to work
out the details. Do not watch this space, but further developments are not impossible.

THE IDEA.

Programmes and data are both kept in files. In both cases, the raw material – numerical or symbolic data,
or machine code – is associated with a quantity of metadata, connected with the raw material itself or with
its administration in the computer system.

It is suggested that in both cases the metadata can usefully be organised into essentially the same
structure.

This will hereinafter be identified as the Idea.

BRIEF HISTORY.

Sometimes I'm a bit slow. It has taken me well over ten years to notice the Idea after becoming cognisant
of the things connected. My lapse becomes all the less explicable when seen in the light of my long-
standing, and oft-repeated, emphasis on the dual relationship between code structures and data structures. If
I have a defence, it's that I haven't heard about the Idea anywhere else, though to be fair I haven't been
looking in places where such things might be found. ( Are there such places ? Where ? )

I began to muse over the file side of the question perhaps around 1986, when Macintosh systems
began to infest the Computer Science department, and with them the strange files1 with data and resource
"forks". I mused because I like things to be orderly, and perhaps therefore wanted to see more in this
development than just another way of storing stuff. This led me ( perhaps around 1990, but I don't have
the old records any more so can't check ) to expand my discussion of files in the Operating Systems
course to allow the possibility of several components.

Perhaps I had been alerted to the possibility of such extensions by some earlier experience of
stuffing different sorts of information into files. In 1979 I was involved in the development of Zeno2,
which was intended to run the computing services for students at Auckland University. Having in mind
that services for students would certainly be offered on several different machines, we hoped to provide a
consistent interface which would work on all of them. Zeno was our answer. We thought of it as an
operating system "mask", which would use the facilities of the machine's native operating system to
provide a comprehensible set of services, which themselves would be designed to be better adapted to a
learning environment than were the standard compilers and other software. This led us to require that
various files should be simultaneously "native" files, conforming to the host operating system's
conventions, and "our" files, with additional information appropriate to our requirement. A first design3

had all "our" information contained within the files, merged in and stripped out as was necessary, but
further analysis4 led us to propose that "our" information should be held in a separate, but associated
"profile". The profile is supplementary information about a file which is neither an attribute of the file as
a whole nor the file data proper, but was nevertheless clearly a component of the file in some sense.



Working note AC129 : page 2.

I've presented the preceding paragraph as a file topic because that's how it seemed
to us at the time; alert readers will have observed that it could be just as readily
seen as a programme topic. In hindsight, that reinforces the Idea – but we are still
concerned with history.

The programme side of the question emerged earlier still. I learnt and used Fortran in 1962, or so; I
bought a Cobol manual around 1967 and first used it in anger around 1970. I knew about machine
language even earlier – perhaps from 1955 ? – and used assembly language seriously in 1969. ( That
doesn't include a spell of programming an Olivetti Programma 101 – perhaps 1966 ? – which was the
best way I know of learning the principles of assembly language, though I was never able to convince
anyone else of that. ) Around 1970, I knew Fortran and Cobol reasonably well, knew a bit of PL/I, and
had read about Algol. I accepted the Algol-Cobol-Fortran trio as different and comprehensible answers to
rather different varieties of the same question, and found PL/I rather clumsy.

It was perhaps around then that I became aware that Cobol was looked down upon by "academics".
( I use the quotation marks to suggest that the title is not deserved. I was, and am, an academic, and could
not see the force of their assertions. Today I have become even more sure that they were wrong. ) Cobol
was the only one of the trio to provide facilities for managing characters in straightforward ways; more
significant for present purposes, it was also the only one to take account – in the Environment
Division – of the possibility that it might be used on different sorts of machine. Both of these provisions
seemed to me to put Cobol at a higher level than the others from the point of view of sensible design, but
the provision of the Environment Division5 goes beyond immediate programming convenience to provide
a new sort of information. This is associated with the executable code, but complementary to it, and
essentially independent of it; in principle, and fairly reliably in practice, to move a programme from one
computer to another it is necessary to change only the Environment Division.

I don't know when I really understood that declarations and executable instructions in programmes
were different in nature. I suspect that I was not alone in this; I recall earnest debates on whether
declarations should be permitted within the body of programmes, and what their significance would be if
they were. I knew that they had different functions, but thought of them all as fitting into the single
pattern of what had to be done to make the programme go. Declarations then became mainly instructions
which were executed to provide storage space ( so it was not silly to think of declarations in the middle of
procedures ), and they became administrative operations, rather similar in nature to procedure calls. This
view is probably fostered by an interest in compiling methods ( which I had ), though challenged by an
interest in programming theory ( which I hadn't ).

The question came to the fore around 1975, when, with colleagues in the Computer Centre, I was
engaged in building a Basic interpreter for a minicomputer6 ,  7. As there was no recognised standard, we
began by inspecting all the Basic manuals we could find, and it was wondrous to behold their variety. We
didn't really like any of them, and one of our reasons was the apparently universal practice of deciding on
the language semantics by picking a convenient implementation technique. We thought we should decide
on the semantics we wanted, then implement a system accordingly. Details appear to be lost in the mists
of time, but the final decision ( there were reasons, but they are not relevant to this discussion ) was to
interpret the programme strictly according to the execution order as determined by line numbers and
transfers of control as directed by various instructions. Declarations were not regarded as special, so their
significance depended on where they were executed in the programme.

That gives the wrong answer – that declarations are just ordinary instructions – for this discussion,
but the Basic experience led me to think a lot more about the significance of declarations, and I began to
see them as indeed declarative items within a procedural context, different in nature from the executable
instructions, while obviously closely connected. This separation becomes much clearer in later languages
( Algol 68 ? – someone stole my book; Ada ? – I've forgotten ) where notions of information hiding
became common. Once again we have collections of data ( declarations and procedural code ) which are
different in nature, but intimately connected. In this case, the conventional programming language syntax
imposes a relative order on the two parts which has almost no significance, and in some ways obscures the
association of the declarations with their possibly broad scopes.

But it was not until today that I noticed the parallels between these two trains of thought.



Working note AC129 : page 3.

ABOUT THE FILES.

I deal with the files first, because that's where most of the agonising has been, stimulated by the demands
of the Operating Systems course. The first step was to make sense of the Macintosh files.

A Macintosh file1 has three components : attributes, data, and resources. The resources identify
things which will be required when the file is used, but which are usually considered to be in the nature of
comparatively static appendages – as opposed to the data, which may be read and written as usual. The
resources are typically independent of the file in many senses, so they can be changed without affecting the
significance of the file itself. Examples are icons, details of presentation of various sorts of window,
sounds used, and so on. This additional dimension to the file system requires appropriate supporting
software, so special procedures to handle the "resource fork" are supplied in the Macintosh system, and
there is a "resource editor" to manipulate resources in various ways. Here's a diagram comparing the
Macintosh and conventional file structures :

MACINTOSH 

CONVENTIONAL  

Name

Attributes
Data

Name

Attributes
Data
Resources 

Does that exhaust the possibilities ? Certainly not, once you start to think of it. The Zeno
profiles4 fit the pattern exactly, but in this case the additional material runs parallel to the file data, and is
specifically connected to it at various points. For a more conventional example, security properties could
well be seen as sufficiently specialised and sensitive to be kept somehow separate from other attributes; an
access control list8 is already handled in a comparable way, without the built-in connection to the
associated file.

Formatting information for a data file can be seen in the same light. The information required to
define the format of, say, a text file is quite specific. In a text-formatting programme, it is commonly
expressed as a collection of styles which can be invoked and associated with various parts of text as
required. In this case, the text and the styles are quite distinct and independent components, and the links
between them form a third component. In practice, all these data are commonly kept in the same file data
component, with somewhat different separation methods for mark-up notations ( where the styles
themselves might be in a separate file ) and "word-processors". In both cases, it can be less than easy to
extract the basic text from the file, particularly if you do not have the precise software concerned.

It is not unreasonable to generalise the "Macintosh" pattern, and to regard a file as a collection of an
arbitrary number of separate, though related, sets of information, which I shall call ( indeed, already have
called ) components. A structure of this sort would be not too difficult to implement in a rather general
way, which would leave room for expansions of many sorts. ( It begins to sound distinctly like an object,
as in object-oriented systems – particularly as resources can include executable code. You can think of that
either as an amusing accident, or as an indication that the object model does indeed capture something
fairly fundamental about the nature of computing. ) In terms of the diagram above, the general structure
would look something like this :



Working note AC129 : page 4.

Attributes
Data
Etc. ...

Etc. ...
Etc. ...

GENERALLY ? 

Name

Just what appears in the "Etc." areas depends on circumstances. Traditional file systems provide nothing at
all; Macintosh systems provide resources. Generally, there's no very obvious reason why explicit system
support for specific sorts of component should always be necessary, nor that it should always be the same
for all files in a system.

We preached this doctrine for many years in our operating systems course, where it grew naturally
from our top-down design9. The world, as usual, is a bit slow in catching up, but it's getting there.
Something almost identical with this structure has been reported10  as a means of coping with files for
high-speed parallel file systems. In these files, the data are organised into several separate components
( which the authors unfortunately call forks ), and different forks an be used for different purposes.

ABOUT THE PROGRAMMES.

I do not really know how it was that I came to compare the structures of programmes to the examples
above. It happened while I was contemplating those examples, and expanding them along the lines I
describe below. I had got as far as files with no attributes, and was pondering the IBM1130 Disk Monitor
System's files which had just two attributes, and I was trying to remember what they were. I thought one
of them was executability – and the rest, somehow, followed.

A programme usually has a name. It always has some sort of code, or nothing will happen. Unless
it is written in a very low-level language, it has information about the code, including at least the
information which we usually call declarations. Though they are commonly written as part of the
programme and included in the same syntax specifications, this is accidental, as they are not ( usually )
executed in the same sense. If we had kept them separate from the start, we might have been spared a lot of
silly argument about whether declarations can be scattered through the code, what it means if they are,
whether you can put executable parts ( such as computations of initial values ) in the declarations, and so
on. The questions wouldn't have gone away, but they would have been separated from irrelevant
considerations.

Is there anything else ? Yes : the Cobol Environment Division5. This is not about what the
programme does, nor about how the programme does it; it is about the programme's links with the world
outside. Other examples can be found in the special features provided by different implementations of
languages – such as the "project" structure found in the Borland implementations of languages in the C
and Pascal families11 .

As a more general example, consider Knuth's "literate programming" software, Web12 . A Web file
includes both programme code and commentary, and there is software ( Tangle and Weave ) which
separates one from the other for compiling or printing as required. The same pattern of two separate but
complementary streams appears once again.

And, just to link things together, recall my earlier observation that our Zeno profiles, though we
saw them as useful with many sorts of file, originally turned up in the context of programmes. A
particular example was the provision of assistance with programme diagnosis and correction; we had
intended to provide means for merging compilers' error reports with source programmes so that the two
could be edited together and a new source file produced comparatively easily. This is a commonplace
interactive activity now, provided as a matter of course by programme development software, but in 1979
it wasn't.



Working note AC129 : page 5.

It is mildly interesting that Zeno offers another example of the sort of material that could well be
kept in a separate structure – indeed, it is just the sort of thing that is managed well by the Macintosh
resource forks. A principle of Zeno was that it would be menu-driven, so it was clearly a good idea to have
a standard way to manage menus. We recognised that the menus should be handled as distinct entities, but
thought that the details should appear in the context of the programme which uses the menu, so the
complete separation of menu from programme found in the current Macintosh and Windows APIs was
avoided. It is fair to say that the alternative was cumbersome; the menu specifications, written according to
a special syntax13 , were embedded in the Zeno source code, and translated into further ordinary source code
using a preprocessor. ( For practical reasons, Zeno was written in Fortran. ) The menu specifications,
essentially declarative in nature, were converted into tables which were then passed to a standard menu
subroutine for display and for managing the response2. Cumbersome or not, it worked, and it made the
point that menus were not the same sort of thing as ordinary procedural code; the resource fork is an
elegant solution to our problem.

THE CONNECTION.

Now, at last – what was it that I found out today ? It was that these two patterns were, in effect, one.
Consider this table, which gets more speculative as it goes on ( this is the taxonomy problem ) :

Files Programmes

Name Name Name

Local attributes of name Location

Icon

Size

Date

Location

Icon

Size

Date

Attributes related to using
the name

Security Security

Body Data Code

Internal attributes of body Record structure

Consistency criteria

Programme structure

Declarations

Links between body and
external entities.

Creating programme

Formatting instructions

Source programme

Cobol Environment Division

Interface ( Displays, Menus,
API )

Project structure

Material auxiliary to the
body

Documentation

Styles

Documentation

Help

Material auxiliary to
parts of the body

Annotations

Zeno profiles

Web text

Comments

Error reports

Perhaps the name, the body, and their immediate attributes are more significant than the others. These are
all things which have to be there ( but see the next section ), not incidentals which are optional ( perhaps
colour screen, sound ) or can be changed without affecting the viability of the item ( perhaps specific
devices used, identity of input file ) – though in some cases the items in each "perhaps" might be true
requirements. I should remark, though, that I do not think that any of the items which I've included in the
table are trivial.

This taxonomy of attributes is significant because ( if I've got it right ) the various parts are in
some sense independent, and can be operated upon by their own specific programmes. The Macintosh
resource editor is a simple example. So is the Zeno menu preprocessor, and it would have been a lot easier
with a structural separation between the menus and the Fortran code !



Working note AC129 : page 6.

WHAT DO WE DO WITH THEM ?

Clearly, as we are getting by without worrying significantly about this structure, we do not need to do
anything at all about it. You could say the same about the wheel; the interesting question is whether we
could get by better if we paid more attention to this, or a related, structure. Could we ? I don't know, but
the fragments I've mentioned suggest that if we do recognise the existence of distinctions between different
sorts of information pertaining to a file or programme then we can find better ways of doing things.

In current operating systems, we are usually provided with the basic file body and a fixed attribute
list. Not surprisingly, the attribute list contains the information required by the operating system, which
can sensibly be kept separate from everything else because they are used for different purposes. My point
in this note is that we commonly wish to define what are, in effect, our own attributes, for precisely the
same reason. Of course, we can get everything in the file body if we want to, but this is a nuisance,
because every programme which uses the file must include code to sort out the attributes ( which it might
not need at all ) from the data.

Again, I speak from experience. There used to be things called something like "self-
describing files", though I can't find a reference. Anyway, I produced an
information-retrieval system called Croak which used such files14 , where the
structure of the file record ( a tree ) was described in the first file record. It worked
well, but later attempts to reimplement it in somewhat abbreviated form have been
plagued by the requirement to deal with the first, rather special, record. As the file
is usable for many purposes without the structural details, it has commonly been
omitted, so the interesting parts of Croak haven't worked for a very long time. This
has not dampened my enthusiasm for the principle; I am even now working on a set
of markup files15  which follow much the same pattern but with differences in detail,
and the same sort of record structure information would be useful – but, again, it
would be a nuisance in programmes which didn't need it, so it's happened
occasionally, but not often. Yes, it's bad programming discipline, but if I had the file
structure I wanted it wouldn't be.

I record for possible ( though unlikely ) future reference that I speculate on the possible
complementary nature of the attributes of programme and data; somehow, programme and data must match
if they are to be compatible. ( It is not at all clear to me how that can be done except in the most trivial
way – "I want a file of 10-byte records"; "I am a file of 10-byte records" – but it would be satisfying if
the union of the attribute sets of programme and data ( perhaps more than one of each ) were in some
sense demonstrably sufficient to run. ) There is obviously some link between this thought and my
obsession with Vocabulary Translation Analysis16 , but I'm not sure what it is.

My table is intended to be illustrative, not exhaustive. I don't think that it is possible to construct
an exhaustive table, as there are always other sorts of association one might want. ( An exhaustive set of
headings might be possible, but I don't know what it is. ) I have selected a collection of items reasonably
representative of current practice, but twenty years ago I would probably not have included items such as
the API or project structure – and the significance of project structure depends on the source of your
programming language software.

Likewise, not every item I have listed is essential. A good source of extreme cases is early
practice : for example, the name is unnecessary ( in the IBM1130 software, at least one programme
assumed that it owned the disc and wrote wherever it pleased thereon, using only disc addresses; and in the
disc monitor system for the same machine, omission of a name could imply that the source was an area
called working storage ); you don't need a body ( The Unix /dev/null is an example ); you don't need
attributes ( the IBM1130 monitor system again – in fact, there were two 1-bit attributes, but they were
almost invisible ). These are curiosities, but they serve to establish the principle that what we see now as
essential might not be so.

IS IT REAL ?

A reasonable objection to my claim is that my taxonomy is so general that it will fit almost everything
that is – at least, everything which can be denoted by a name. The thing, and its name, will always ( ? )
have attributes of some sort and relationships with other things, so there will be ways to fill in the table.
Is the taxonomy too general to be useful ?



Working note AC129 : page 7.

That is a reasonable objection, but I think it is a matter of vocabulary rather than substance. I chose
the terms I used in the table so that they would include both programmes and files, but couldn't find
anything more specific than those I've given. I think that my case depends not on the possibility of filling
in the blanks in the table but the observation that, when you do so for files and for programmes, the items
in corresponding cells are themselves related in significant and interesting ways. For example, both
programmes and files have structure, and there are many parallels to be drawn between them.

Or perhaps it is more correct to say that I believe that there ought to be many parallels to be drawn
between them. The table has turned out to be both more and less convincing than I had expected when I
started to write this note. It is less convincing in that the parallels I sought have not turned up as readily
as I had hoped; but it is more convincing in that when I have sought parallels I have usually been able to
find them, or hints that there are interesting things to find – though not all have had snappy names which
I could put in the table.

One example will suffice as illustration, if only because I don't want to spend any more time on
this note. I mentioned the structure of programmes and files as an example of duality, but to find the
parallels you have to burrow a little. A simple file is a sequence of records all of the same form but with
different data in each record; a programme with associated structure is one written in a rather simple
machine language. where each item has a operation code and some form of address. A programme in a
higher-level language might have much more complex structure, with iteration, condition, sequence, and
so on as significant relationships within the structure. We are not accustomed to thinking of such
relationships in files, though they have parallels in data structures. How do we store complex data
structures ? "With difficulty" is perhaps the only satisfactory reply – but we contrive to store the
programmes. We have standard ways of converting highly structured code into overtly purely sequential
machine code; why can't we compile our complex data structure into overtly purely sequential files ? –
then the parallel would be pretty well complete.

There is obviously a lot more to say about that "argument", but there is something in it. For
example, there are problems with the directly-linked databases to which it leads. On the other hand, one
might also think of languages such as Lisp, where the distinction between programme and data is
deliberately vague.

WHAT I FOUND OUT TOMORROW.

One of the disadvantages of defining "today" as a fixed point is that it precludes new ideas. The heading
above is my way of circumventing this barrier so that I can record what has come out of all this mental
agitation. I think this is a lot better.

Perhaps the real real answer to the question rather loosely considered in the previous section is that
the taxonomy is indeed general, which is why it's useful. The generality is also a very good reason for
building corresponding structures into computer files, which are correspondingly general repositories for
anything we want to keep in computing terms.

For historical reasons, largely concerned with what I was thinking about today, I've said a lot about
programmes. It is gratifying that programmes fit into the pattern, but they are just one sort of thing that
we want to keep. We have seen that formatted text is also structured in a related way.

If I had a case, I'd rest it.



Working note AC129 : page 8.

REFERENCES.

1  : Inside Macintosh, volume 1 ( Addison-Wesley, 1985 ).

2  : G.A. Creak ( ed ) : The Zeno system ( Auckland University Computer Centre Technical Report
#22, 1984 ).

3  : G.A. Creak : Files, editors, and things ( unpublished Working Note AC12, 1979 ).

4  : G.A. Creak : Files In Zed and Zeno – positively the Last Exposition ( unpublished Working Note
AC18, 1979 ).

5  : J.E. Sammet : "Basic elements of COBOL 61", Comm. ACM 8 , 9-17 ( 1965 ) ( reprinted in
Programming systems and languages ( ed S. Rosen, McGraw-Hill, 1967 ), 119-159 ).

6  : G.A. Creak : LSI Basic ( unpublished Working Note AC42, 1985 ).

7  : G. A. Creak : Student Basic ( Auckland University Computer Centre, 1975 ? ).

8  : M.G. Lane, J.D. Mooney : A practical approach to operating systems ( Boyd and Fraser, 1988 ).

9  : G. A. Creak and Robert Sheehan : "A Top-Down Operating Systems Course", Operating Systems
Review 3 4 # 3, 69-80 ( July 2000 ).

10 : D. Kotz, N. Nieuwejaar : "Flexibility and performance of parallel file systems", Operating
Systems Review 3 0 # 2, 63-73 ( April, 1996 ).

11 : Turbo Pascal for Windows users guide ( Borland International, 1991 ), 121-125 ( – and many
other places, but that's the closest to me at the moment ).

12 : D.E. Knuth : "Literate programming", Computer J. 2 7, 97 ( 1984 ).

13 : G.A. Creak : Preliminary instructions for using Dietician ( unpublished Working Note AC20,
1979 ).

14 : G.A. Creak : CROAK : Collected References Organised for Access by Keywords ( Auckland
University Computer Centre Technical Report #18, 1980 ).

15 : G.A. Creak : Standards for information files ( unpublished Working Note AC130, 2000 ).

16 : Vocabulary Translation Analysis is not yet documented adequately, but some examples appear in :
G.A. Creak : Analysing WordKeys ( unpublished Working Note AC103, 1996 ).


