
WORKING NOTE AC123
Alan Creak

1998 June 10

LEARNING TO LEARN : A COMPARISON

Paul Qualtrough1 asserts that if machines - particularly robots, but I don't think that's significant here - are
to be able to perform useful functions in the complexities of the world as it is, then they must be able to
learn for themselves. After prodigious efforts, Paul has succeeded in constructing a machine which can
find its way reliably from one end of a straight line to the other. I don't think it has a name, so I shall refer
to it (and to any of its close relations) as PQ.

Maulsby and Witten 2 report on a machine they call Cima, "an interactive machine learning system
... Designed to acquire behavior concepts from a few examples ...". So far as I can determine from the
paper, it too operates with limited sensory equipment, though as well as observing the immediate
environment within a text, it can perceive hints presented by a teacher. (PQ is also intended to accept
hints, and other forms of cooperation, in due course; and Cima can operate without the hints.) Cima has
no understanding of its activities. It operates by associating a sort of clump with each significant structure
it learns to observe; unlike PQ, Cima works on one clump at a time, learning every modification directly
from its teacher, and producing clumps which can in principle become very elaborate. Once made,
though, these clumps are not used for anything else - indeed, Cima develops no knowledge on its own
initiative. This machine can learn simple editing operations after a few exchanges with its teacher, and
then apply these reliably throughout a document.

There are certainly basic similarities between the two approaches, but the level of performance is
vastly different; PQ struggles to learn a trivially simple task, while Cima acquires new skills in editing
operations with impressive facility and speed. It is interesting to attempt a comparison in order to
determine where the difference lies.

THERE ARE REALLY THREE METHODS.

Maulsby and Witten describe two sorts of experiment : first a "Wizard of Oz" experiment (Turvy),
conducted to learn about the requirements, then a real Lisp implementation (Cima). The same general
principles apply in both cases, but the abilities of the two systems are noticeably different, though the
precise nature of the difference is not defined. It is stated that in the Turvy experiment "we limited the
types of instructions (sic) Turvy could understand" (page 37), but the limitations are not presented.
Turvy certainly deals with hints in a more sophisticated way : "Cima merely spots keywords; Turvy
parses sentences" (page 43).The examples described suggest that Turvy is indeed somewhat more clever
than Cima, so I shall regard them as different methods. And PQ makes three.

Despite the difference, I don't think that there's enough detail in the paper to distinguish between
Turvy and Cima in any productive way here. I've left these comments here because I think they are at
least slightly significant, and a more complete analysis should include both methods. The more complete
analysis should also take into account information which I don't have about the details of the three
methods. I infer that the more complete analysis is unlikely ever to be done, by me anyway.

INSTANT COMPARISON.

PQ begins with very limited sensory equipment and no knowledge of their environment, and by trial and
error learn how best to respond to their currently observed environments and recent history. The responses
are composed from a set of actions which initially comprises those actions built into the machine; the
machine has no model with which it can relate the actions to its perceptions, and must learn the effects of
the actions from scratch, with the help of feedback from the environment of the "cost" (positive or
negative) of each action, after the event. As it gains experience, it might notice that certain sequences of
elementary actions are commonly useful, and it can then compose these into a single action by
"clumping". The composite action then becomes available as a unit which can be used in other contexts if
should prove of value.

Both Cima and Turvy begin with a great deal of world knowledge about the task to be
accomplished. In the task described in the paper, Turvy understands quite a lot of English, including
parsing and punctuation, and it knows what sorts of thing are important attributes of the objects it sees -
such as the distinction between letters and words, the significance of capital letters, that brackets are
special things, etc. It knows that there is an authoritative teacher who always speaks the truth (though it

Working note AC123 : page 2.

might not be the whole truth), and it begins by inferring an algorithm from a worked example provided
by the teacher. The algorithm is refined by more examples, or by the system performing what it believes
to be the algorithm until stopped by the teacher at a mistake, when it can try to guess at an extension of its
rule, or accept hints from the teacher. The Cima task described is generally similar, adding little to the
principles involved, but it does demonstrate that the task really can be automated.

PAUL'S STRAIGHT LINE.

A brief description of Paul's straight line problem, successfully solved by PQ, is presented so I know what
I'm talking about when I refer back to this (if ever).

In this exercise, PQ lives in a two-dimensional world of square cells. Certain inter-cell boundaries
have walls; others don't. PQ's task is to move from its current position to an identified goal. It doesn't
know that it has a task or a goal; its only information is that if it reaches the position which we know is a
goal, then it receives a considerable reward of some useful resource, and that every movement costs it
some resource. Trying to walk through a wall costs it a lot of resource. The agent's view of the world is
limited to the edges of its current cell (so it can see the walls, if there are any), and its perception of its
current store of resource. Its possible actions are to move North, South, East, or West. It has a memory,
which remembers a selection of its history as a sequence of { cell type, move chosen, cost } triplets.

In the straight-line problem, the agent lives in a world like this :

*
The goal is marked by the asterisk. From the agent's point of view, there are three distinguishable places,
identifiable by the presence or absence of walls in the N, E, S, and W directions as 1011, 1010, and 1110;
it must learn that the best strategy is to move East in the first two cases, and something else (irrelevant for
present purposes) in the third.

COMPARING THE METHODS.

I have compared the methods by gedanken experiments in which I consider the solution of problems
solved by PQ, by Cima, and by Turvy using methods which I hope resemble those used by Paul and by
Maulsby and Witten. I do not even try to provide real solutions; my intention is only to point out the
differences between the different methods.

PQ and the straight-line problem.

PQ (like Cima and Turvy) works by associating actions with records of its perceptions. It uses a
reinforcement-learning method. It begins with no knowledge. In any position, it chooses an action on the
basis of what it remembers of the consequences of previous actions taken with the same perceptions; if
some action turns out to be good in terms of resource costs, the memory is adapted accordingly. After
quite some time, it succeeds in learning the expected strategy.

Cima or Turvy and the straight-line problem.

Hint 1 : If the world looks like 1011, go East.
Hint 2 : If the world looks like 1010, go East.
Hint 3 : If the world looks like 1110, do something else.

Problem solved.

PQ and the bibliography problem.

The first question which must be asked is whether PQ could in principle solve the bibliography problem.
The answer is almost certainly "yes". PQ is so designed that it has no intrinsic "understanding" of either
its perception or its actions, and it proceeds by seeking relationships between whatever symbols it
perceives and the actions which it takes. A version of PQ constructed to work on the bibliography
problem would be able (like the version for the straight line problem) to move along a line, which is the

Working note AC123 : page 3.

character string, to left and right, and to sense the characters one by one. It would be endowed with a new
action, the ability to write into the character string. I think that's all it would need, though it might be of
assistance to add actions to copy the current character and write the copied character; without these, it
would have to learn separate operation sequences for each different character it wanted to move.

Given this new sort of PQ, then, consider the example on page 38.

It begins with a hint : "Take the last name, before the colon", accompanied by the sequence of
actions "Select 'Agre', copy, move to start of paragraph, make new paragraph, type '[', paste, type ']', set
style 'citation'". (The sequence might not be precisely correct, but it's about right; I derived my guess
from various clues in the paper.)

To make sense of this, PQ would have to perceive the hint and the selection. Its perception of the
context of the selection must include these points :

• 'Agre' is a name. This is necessary to match the selection to the description.
• 'Agre' is followed by a colon. Also necessary to interpret the hint.
• It must know that the character ':' is a colon.

PQ must also know that :

• the selection of an explicit text item accompanied by a more general description given as a hint
identifies a pattern of behaviour which is to be applied to any text satisfying the more general
description. (Though why doesn't that work with "the last two digits of the date" in the second
hint ?)

• Unless there is an explicit "move to the start of this paragraph" instruction, it must be able to
identify the insertion point of the new paragraph as the beginning of the same paragraph as that
including 'Agre' - perhaps by inspecting the parse tree ?

These items of knowledge are more to do with procedure than perception.

Proceeding through the rest of the sequence produces further examples, generally of a similar
nature; it is clear that Turvy's perception of its environment is assisted by a great deal of analysis - so, for
example, it knows not only the immediate item under inspection but also its context, and it knows whether
the item is a word or a letter or a number or a punctuation mark, and it knows whether a word is expressed
in upper or lower case letters. There is also quite a lot of special procedure built in.

Are there any conclusions for PQ ? A version of PQ incorporating all these attributes as the
perceptions of specialised sensory organs could be built - but the result would be an agent specialised for
work of a very limited sort. Special procedures could not obviously be incorporated without doing
violence to the principles of PQ.

To preserve the essence of PQ, a more appropriate approach would be to encourage it to learn to
distinguish digits from letters, to parse (at least at the level of lexical analysis), and so on. I don't see any
reason why it couldn't do that, though again an extension is suggested. At present, it can learn to classify
its experience in terms of { move, percept } pairs of the forms { M, P }, { *, P }, and { M, * }, where * is
a wild character. To form a notion of digits, it would help if an intermediate level of classification of the
form { M, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 } } could be identified. It is true that in principle this is only a matter
of convenience, as without the extension it is only necessary for the machine to learn the cases
separately - but to cope with the telephone number example some means of coping with all four-digit
numbers is required, and it would take some time to learn the requisite 10000 rules.

Nevertheless, it is interesting to ask whether the prowess of PQ could be demonstrated on a
problem in some sense equivalent to the bibliography problem. I think such a simplified problem can be
defined. The bibliography problem has three significant components :

1 : Identify a significant string;
2 : Go to an appropriate place;
3 : Perform some defined action.

Working note AC123 : page 4.

Here is a simple problem which follows this pattern : in a string such as that shown below, find the
sequence of two 3 symbols, then proceed to the left until a 1 symbol is found, then ring a bell. A suitable
string would be

111111122222222222223311111111

Only the three percepts 1, 2, and 3 need be distinguished; and the only actions are left, right, and bell. The
bell could also reasonably include the generation of a new string and a teleport into it somewhere. I think
some internal state might also be necessary. Could one argue that a demonstration that a PQ could solve
this problem would show that it was as capable as the Maulsby and Witten system ?

A SOLVABLE PROBLEM ?

Masliah and Albrecht 3 solve robot navigation problems by getting people to do them using only the input
available to the robot. Their example is a mobile robot navigated by sonar along a corridor. Given only
the sonar inputs displayed on a screen, the people were able to find doorways in the corridor, and navigate
the robots through them - though they couldn't determine whether or not the doors were open, which
seems odd.

Their next step was to use cues from the people's way of addressing the problem to show how to
programme the robots to do the same job, which they did, though not as well as the people. This makes
Paul's point very well : coping with the real world is too hard to programme. It doesn't go on to the next
step, which is to make the robot do the learning.

Can PQ do that ? It seems to be exactly the right sort of problem. I think it could.

The solution depends on noticing the special sorts of sonar reflection from the doorways; so
consider this simplified form of the problem :

Again, I think I've eliminated incidentals and kept the essence. The dark grey ellipse shows the limits of
the robot's vision, and that can be encoded as a set of eight tokens, each indicating the type of the
corresponding piece of wall. Examples might be :

@ + + + + * * + + + + *
@ + * * + + + + + + + +

(Each of those appears in the diagram; work it out. As the diagram stands, there's no point at which the
robot sees nothing but plain wall, and that's perhaps not realistic, but I'm too idle to change it.) The robot
gets a big reward if it moves north or south through a doorway.

The next question is : How could you hook together a PQ and one of the people whom Masliah and
Albrecht refer to as Mobile Robot Surrogates (MRS - I hope that's why they call them "she") so that the
actions of the MRS are interpreted as hints by the PQ ?

BRAINSTORM

Consider the hypothetical PQ proposed for the "solution" of the bibliography problem. Extend it just a
little in the direction of further compliance with the conditions of the real problem by adding actions
which will allow it to write 1, 2, or 3 at its current position in the string.

Now it can move along a string, inspect and notice the characters it sees, and alter them; it has all
the machinery necessary - when seen from the outside - to learn to be a Turing machine. Is it possible ?
From the inside, it doesn't have anything corresponding obviously to a state - though its memory might be
equivalent. Or might not. Or one could be added. Or learnt ?

Working note AC123 : page 5.

Does that mean that a PQ could, in principle, learn to compute any computable function ? I don't
know, but it sounds like a good trick. Could it learn to be a universal Turing machine ? - that's an
interesting question, because you can build astonishingly simple universal Turing machines with a very
small number of internal states, which means that you wouldn't have to incorporate an autonomous state-
generating action which might run wild.

Should the PQ have provision for state ? It's a way of being able to take different actions in
specific circumstances, depending on what you're doing at the time, so it offers an escape from perceptual
aliasing.

DISCUSSION.

This comparison can be interpreted as showing either how much you have to provide, and how restricted
the result is, if you want to make an efficient system, or what a lot there is to learn, and how hard it is, if
you want the system to learn for itself.

A major difference is in the amount of structural knowledge available to the agents in the different
cases. Cima and Turvy are on much the same level; they have built-in knowledge of the differences
between letters, numbers, and punctuation characters, of words, of upper case and lower case, of
bracketing, of the significance of the case of the first character of a word, and much more. (Some
examples of Cima's knowledge are presented on page 41 - and, from page 40, Cima's knowledge
"includes facts about data types, generalization hierarchies, methods for matching and generalizing
examples, default rankings for the salience (that is, 'interestingness') of example attributes, and directed
graphs that encode suggested changes in focus of attention". That's quite a lot.) PQ knows exactly none
of this, and must learn it all by inference from the examples it receives. Cima and Turvy also know the
importance of hints; PQ doesn't, and perceives a hint only as additional sensory input to be evaluated
along with the rest. Many other similar comparisons could doubtless be suggested, with the common
feature that almost everything built into Cima and Turvy must be learned by PQ from its experience
alone.

The title chosen by Maulsby and Witten is "Teaching agents to learn : from user study to
implementation". It is hard to see this as anything but a joke; there is no sense in which their agents can
learn any better after their experiments than before. Instead, the agents learn because they are
programmed to do so, not in any sense taught. And they're programmed in enormous detail. Cima has
been tested in several different fields and has given good results; details are not presented in the paper, but
one imagines that a substructure parallel to that required for the text editing must be required before the
basic method can be effective.

The agents used by Maulsby and Witten are in fact taught to perform simple, and very specialised,
routine tasks. Could the teaching be elaborated to the extent of really teaching them to learn ? For several
reasons, this is not an easy question to answer. First, the meaning of being "taught to learn" must be
defined; I have previously got myself into a tangle4 by trying to define and distinguish between notions
such as learning to do, learning to learn, learning to learn to do, and so on. The intended meaning is
something like "able to acquire new learning methods through interactions of the sorts currently used in
teaching tasks, and certainly without any additional programming". Second, it might very well be that the
structure of the agents is constrained to the extent that it is not possible to add necessary new instructions.
Third (and very like second, but I need at least three to justify "several"), even if instructions can be
added, the existing machinery might not be able to handle necessarily more complex data structures. I
don't propose to pursue this question further, because I don't have the information or the spare time, but it
is certainly not obvious that the answer is "yes". It is instructive, in a negative sort of way, to consider
what you would do to teach Turvy a new way of learning things.

Is Paul overdoing it ? I don't think so. PQ is dreadfully slow and primitive, but perhaps that is the
inevitable price of generality. Can he use some of the M&W ideas to extend PQ and speed it up without
losing generality ? Again, not obviously; without working through the sort of analysis which would make
me certain (or even knowing what sort of analysis that is), the M&W methods seem to be such that they
gain efficiency in special cases by ruling out activities which might not always be unwanted in a system
designed for generality. PQ might take a long time to learn to rival Cima in the performance of finding

Working note AC123 : page 6.

telephone numbers in text, but the same PQ can then go on to learn to drive a car. It isn't obvious that the
same Cima can do that.

Paul's methods will lead to a mode of operation in which the machines themselves learn all the
material preprogrammed into the system developed by Maulsby and Witten - which is to say, all the
substructure which they need in order to learn their tasks. To that extent at least, Paul is addressing the
problem of learning to learn.

The modelling the MRS method experiment is interesting in that it both ties PQ to its intended
arena of action - real mobile robots - and shows how hints might be interpreted. I've left out a step, I
think, and that's the robot's task of connecting the hints from the MRS (which amount roughly to
something rather like one of the simplified vision patterns in the experiment) with the real sensor data.
That looks very like a pattern recognition problem of a sort that shouldn't be terribly hard to solve, and
any appropriate self-respecting neural network should be able to do it. Said he, confidently. Anyway, the
example convinces me that PQ is close enough to real to be a significant development in more than a
theoretical sense.

The brainstorm probably is just that, but it suggests an interesting link. I don't think it extends
much further than showing that in principle the architecture of PQ, with state added, could in principle
suffice to implement a Turing machine. That doesn't say much - you can say the same for almost any
computer. Unless one can demonstrate that there's a real algorithm which could learn to be a Turing
machine, it doesn't get you much further - but if there is such an algorithm, that would be really
interesting.

REFERENCES.

1 : P.T. Qualtrough : divers conversations, whiteboard drawings, thesis drafts (< 1999).

2 : D. Maulsby, I.H. Witten : "Teaching agents to learn : from user study to implementation", IEEE
Computer 30#11, 36-44 (November, 1997).

3 : M.R. Masliah, R.W. Albrecht : "The mobile robot surrogate method for developing autonomy",
IEEE Trans. Robotics Automation 14, 314-320 (1998).

4 : G.A. Creak : Thoughts on building autonomous adapting machines, unpublished working note
AC90 (December, 1993).

