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STATES IN PDL 

 
An alarming fact has come to light : it is not clear that the state-based 

machinery previously described for programme control in PDL will work. Here 
I say why, try to do better, and end up reassured. 

 
This sort of thing always happens when I'm forced to look closely at PDL. This time, I'm looking because 
I'm trying to work up a seminar on PDL, and I've come to a point which I can't explain. 
 

THE PROBLEM. 
 
The closest we have to an official definition of the use of states in programme control is a passage in an 
early report1. Thereafter, the matter is regarded as settled, with a number of references in passing, leading 
up to the confident assertion2 that "Branching and iteration are dealt with by the state-based execution 
algorithm". Unfortunately, it seems that nobody has ever worked out just how that confident assertion can 
be put into practice. 

 
I think that it can be put into practice, but some cases are clearer than others, and the ( very 

informal, and probably restricted to me ) model of PDL's execution on which the assertion was based is 
no longer current. In this note I hope to sort it out to my satisfaction, and make it available to whom it 
may concern for examination in more detail than has hitherto been possible. 

 
I should add that someone has previously expressed strong scepticism about the practicability of 

the state approach as the sole means of programme control; I think it was Roger Kay, which accounts for 
my inserting the confident assertion into our joint report. In hindsight, he was right to be sceptical, and I 
should have taken more notice of his comments. Thank you, Roger. ( Or whoever. ) 
 

MORE DETAIL. 
 
The principle behind the state-based method is that any transition within the programme is characterised 
by information about the current state of the programme and some signal which identifies the reason for 
the transition. This is embodied in the execution algorithm in two ways. They were originally intended to 
be the same, but on analysis turn out to be slightly different in detail. 
 

At the lowest level, every instruction is identified with a state which has two components, and is 
written as { Normal, Fault }. Normal is the current state of the execution; it identifies the instruction in 
the process currently being executed. Its value while executing instruction N is Instruction-N. Fault says 
something about the overall state. Its value is usually NoFault. Unless otherwise instructed, at the end of 
any instruction the normal state is changed to Instruction-(N+1).  

 
When an instruction is complete, the next instruction is chosen by a dispatcher. It searches the 

available instructions for one with the state identified by the current values of the two state components; 
if nothing untoward happens, this is Instruction (N+1). All that is so simple that all the details, state 
names, etc. can be omitted from the visible programme and defined automatically, leaving a programme 
which looks like a conventional sequential programme. That's sensible, because it's easy to read that way.  

 
Any departure from this normal mode of execution requires that an instruction "out of sequence" 

be specified as the next to be executed. Following the same algorithm, that means that some other state 
must be defined as the next state. A state can therefore be given another name ( a synonym, not an 
alternative ) by prefixing the instruction in the programme with  

 
State { <normalstate>, <faultstate> } : 

 
Arbitrary ( descriptive, one hopes ) state names can thereby be attached to any instruction, so that an 
instruction can easily be addressed from anywhere else. So far, I've assumed that the scope of such names 
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( like the scope of the automatically generated names ) is the programme for this machine. If large 
numbers of names are required, this could become difficult to sustain, but very long sequences of 
instructions which cannot be expressed as smaller machines did not seem to be very common when we 
thought about it. I can't remember the evidence, though, so this point must be regarded as not yet settled. 

 
The theory then says that the code of any state can change the execution sequence by changing 

one or other of the two state components. That's sensible enough too. But what the theory doesn't say is 
how to do it. I can invent a reason for the omission, though I don't remember whether it was the real 
reason : it is that every machine's instruction set is in principle different, so there's no guarantee that an 
arbitrary machine can do whatever corresponds to changing its state arbitrarily. Generally in PDL, a 
machine has no predefined vocabulary, so if you want some verb to be available, it's up to you to make it 
work if you can. But the specification cannot require that any verb must be available because some 
systems might be too simple for that to be possible. In some cases, you might choose to implement  
vocabulary verbs such as "setstate" and "if", which would solve the problem, but that's your business. So 
my position was that I can't tell you how an arbitrary machine deals with loops etc., because I don't know.  

 
It is now clear that I can't just walk away from the question like that. As the functioning of any but 

the simplest system is likely to depend fairly critically at some level on such abilities as branching and 
conditions, and they are likely to be required in almost all entities which can be called controllers, I must 
at least go some way to discuss possible means of implementation. I shall do so item by item. Please 
observe carefully that the descriptions I shall give are not in any sense specifications of what must be 
done; the implementation details remain undefined, as they must to preserve generality. Here I merely 
illustrate the general problem, and suggest one possible solution. 

 
SETTING THE STATE. 

 
This is the simplest requirement. It is necessary to implement an unconditional branch, and, once 
available, is likely to prove useful in the more complicated instructions too. A simple possibility is 
illustrated in this sequence : 
 

 ..... 
 Instruction 1. 
State { GoRound } : 
 Instruction 2. 
 Instruction 3. 
 SetNormalState to GoRound. 
 Instruction 5. 
 ..... 

 
( I have omitted the "normal" part of the state; that would perhaps be a reasonable provision in an 
implementation in the interests of clarity. ) 
 

The State directive identifies GoRound as a synonym of Instruction-2. Notice that 
SetNormalState is counted as the fourth instruction, and that Instruction 5 is inaccessible except by 
an instruction SetNormalState to Instruction-5. 

 
SetNormalState is an ordinary instruction; it must be implemented like any other instruction, 

and "SetNormalState" must be looked up in the appropriate database like any other verb. Its 
implementation must suppress the usual automatic state change which occurs after an instruction. 
 

CONDITIONS. 
 
I had tried to avoid explicit conditional constructs in the system, on the grounds that it was the thin end of 
a wedge which would open the way to arbitrarily complicated programmes which it would be beyond the 
capacity of a diagnostic system to comprehend. It also seemed to me that conditional branches would be 
caused by the arrival of messages of different types, so could be dealt with by linking the type of the 
received message with the next state desired. 
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I don't find either of these arguments persuasive now. It's still true that complicated programme 
structures are difficult to interpret, but some sort of conditional testing is necessary; it is perfectly 
reasonable that a control system should – for example – compare two temperatures to determine what to 
do next. The same example also illustrates why it is unreasonable to insist that conditional results should 
be associated with incoming messages, as there is no reason why temperatures should be continuously 
polled. 

 
A conditional construct of some sort therefore seems to be inevitable. Given that, my preference is 

to evolve a variant of the SetNormalState instruction rather than to introduce a new operator. A 
possibility is : 

 
SetNormalState to <state> if <condition> 

 
I think that's about the simplest way to do it. That's important for comprehensibility. It's true that any 
other conditional construct can be reduced to something like that, so could in principle be used instead 
without increasing the complexity of the language, but recall that the language we're designing is 
intended to be interpreted by machines, understood by machines, and composed by machines in the grand 
plan. It seems only sensible to begin with the simplest instruction set. 
 

For similar reasons of complexity, I'm not in favour of accepting the if <condition> suffix 
on any other instructions. It's easy for machines to interpret, but understanding and composing are 
perhaps just a bit harder, and the system becomes more than minimally complex. 
 

FAULTS. 
 
This case is interesting for historical reasons. In early attempts at implementation ( particularly, I think, in 
Adrian's work, but perhaps in Mark's too – I haven't got the theses here, so can't check ) the vocabulary 
was implemented as a set of function calls, with all the bits and pieces passed as strings. This was a long 
way from the interpreter model of PDL, but served as a sort of test of the language. ( It sort of passed. ) 
The idea then was that if anything went dreadfully wrong while executing one of the functions, it would 
return a corresponding fault state, which would set the overall state to { Thisinstruction, 
SomethingWrong }, and leave the dispatcher to direct execution to an appropriate fault handling 
instruction if one was implemented. This is the mechanism described in the report1. 
 

That went some way to demonstrating that the state mechanism could handle faults sensibly, and 
that it was easy to incorporate fault-handling procedures, but it opened up a brand new way to incorporate 
facts about the system in impenetrable code : just write them into the functions using – say – C. In 
particular, the association between a response from a machine and a corresponding fault state was hidden, 
and so were any difficulties in implementing the fault handling.  

 
I conjecture that the consequent impression that fault handling was easy led me to be 

overconfident about the abilities of the state-based model, and to assume that it was all easy. The same 
idea can be extended directly to conditional branches, as a function can just as well perform a test and 
return a corresponding normal state, so that's easy too. This is the informal model I mentioned at the 
beginning, and which I'm trying to improve.  

 
I therefore ask : what happens if a controller is waiting at Instruction N for a signal, and it receives 

an unexpected response ? ( That can include no response, provided that the machine on which the 
controller is implemented is clever enough to manage time-outs. ) The model answer, which can be 
elaborated to any required degree if certain responses can be foreseen and good reactions are known, is to 
set the fault state to some catch-all value – say, UnexpectedInput – and let the dispatcher handle it. The 
complete state would then be { Instruction-N, UnexpectedInput }, and an instruction identified with that 
state would be executed if one has been defined. If not, a general error-handling procedure must be 
executed. If the fault can be identified more precisely, a more precise fault state can be used; in either 
case, a branch from the normal sequence is executed. 
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A syntactic form remains to be determined. If the fault information is in variable parts of the 
message rather than represented by an immediately recognisable message format, the forms already 
introduced ( extended to permit changes to the fault state ) should be sufficient. For example : 

 
Receive Expected-message from SomeMachine. 
SetFaultState to SomeFieldValue if Some-field-in-

Expected-message <> Expected-value. 
 

If the error message is of quite a different structure from that of the expected message, the first 
instruction will fail, and a more appropriate syntactic form might be : 

 
Receive Expected-message from SomeMachine else 

SetFaultState to UnexpectedInput. 
 

In either case the desired effect is achieved.  
 
( As an illustration, I have used that fault state SomeFieldValue in the first instruction, where a 

rather specific test has been applied and failed, but the more general UnexpectedInput in the second case 
where the fault is not specifically defined. In each case, it is the responsibility of the programmer, human 
or machine, to ensure that code is provided to deal with the states { Instruction-N, SomeFieldValue } and 
{ Instruction-N, UnexpectedInput }. ) 

 
Ideally, the contents of the unexpected message will be available somewhere for analysis, but 

that's a different topic. Bear in mind that all this has to be implemented on some arbitrary machine which 
we don't know about beforehand. While it's likely that anything used as a controller will be able to 
manage such operations, there's no guarantee. 
 

DISCUSSION. 
 
• I think it, or something rather like it, will work. I think I've covered the significant cases, and that 

the answers I've suggested are at least plausible. 
 
• I do not claim that my answers are simple or elegant, and am very willing to consider alternatives. 

In so doing, though, I shall bear in mind that the code is to be produced – or, at least, 
produceable – by a machine, so that aesthetic appeal alone isn't a strong criterion for acceptance. 

 
• In her project report3, Natalie suggested that basic PDL instructions could usefully be predefined. 

In general, that can't be done, because there's no guarantee that an arbitrary machine will be able to 
implement an arbitrary instruction. On the other hand, in practice it is clear that many of the 
machines for which PDL programmes might be written, and particularly those used as controllers, 
will be quite capable of supporting a selection of the instructions commonly required for 
controllers. In these cases, Natalie's suggestion might have a lot of merit. It would perhaps be 
useful to define a collection of standard facilities which need not be implemented in particular 
cases, but for which certain standard forms could be recommended. Examples are instructions 
such as send, receive, calculate, set*state; declaration of variables; facilities to save 
messages; and doubtless others. While the very nature of PDL guarantees that uniformity cannot 
be enforced, informal standards could save time. 

 
• I haven't discussed what happens if an instruction arrives from a machine for which nothing is 

waiting. That's because there's nothing we can do about it, except raise a general alarm. If we were 
at all aware that it might happen, we'd have allowed for it; the very absence of an appropriate 
receiving instruction means that we don't know anything about it, and have no predefined strategy 
to handle it. 

 
• There is another possibility which might be worth considering. It isn't quite the same as the state 

model I've been discussing, but shares many of its properties. In this implementation, the states are 
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preserved, but the transitions are initiated by the receipt of signals by the dispatcher, and it is the 
signal which specifies the new state. 

 
In this view, the internal moves from instruction to instruction are unified with the receipt 

of signals from the external world. An internal instruction by default sends a signal containing the 
state of the next instruction when it finishes, and the language must contain instructions analogous 
to set*state to send other states explicitly or to send fault state values. The result of that is to 
reproduce the behaviour described above. 

 
Now, though, introduce a general message handler. It must catch messages as they arrive 

from outside, classify them, and associate them with appropriate signal types. Some of these will 
correspond to normal states, when the signal is expected; others will correspond to fault states, 
when there is something amiss. 

 
This is a more complicated system, and could not run at all on a very simple machine. It 

requires a message handler which must be given the information it needs to classify each input 
received. With the current programme structure, that would need a compiler, I think, and would 
seriously impair the uniformity of the PDL structure. Could the benefits ( should there be any ) be 
worth it ? 
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