
Computer Science 773

Robotics and Real-time Control

ROBOT PROGRAMMING

If a robot is a programmable machine, we must find some way of preparing programmes
for it. There are (at least) two ways to construct the programmes, corresponding to two
ways which can be used for conventional computer programming; interestingly, the easy
way for computers is comparatively hard for robots, and vice versa.

It's perhaps worth emphasising that when we speak of robot programming, we
don't include all the problems we mentioned in STEP BY STEP TO ROBOT CONTROL;
we assume that someone else has kindly sorted those out for us, so all we have to worry
about is the overall motion of the robot. Fortunately, this is a realistic assumption, if
only because manufacturers have to provide controllers which can do all those low-level
things if they want to sell their robots. Just now and then, market forces have their
points.

The two ways are on-line programming, or teaching, in which you demonstrate
directly by moving the robot about physically just what you want it to do, and off-line
programming, where you sit down and write a programme in some programming
language. Teaching is the easy way with robots, but the corresponding approach to
conventional computing – sometimes called by names such as programming by
demonstration – has met with rather little success, though comparatively recently script
recorders such as are available for Applescript and Word macros have been quite
successful.

TEACHING.

To teach a robot is quite simple. You position the robot in a sequence of configurations
along a trajectory you wish it to repeat, and cause it to record each configuration by
reading the robot's internal joint coordinate sensors. Once recorded, you can play it back
again by directing the robot to move to the recorded positions one by one. All being
well, this will result in motion which is close to what you want. (Most reasonably
ambitious robot controllers can handle at least linear interpolation satisfactorily.) In
case the performance is unsatisfactory, editing functions are provided; you can go to a
particular position in the sequence and change it, or you can insert intermediate points
for greater accuracy in tricky places.

There are different ways of recording the programme. You can manually
manipulate the robot into the position you want, or you can drive it into position by
operating its joints one by one, or by giving world coordinates of some sort. Many
systems provide a teaching pendant – a small hand-held controller – for convenience in
moving the joints and indicating the positions which are to be recorded.

If teaching will make the robot do what you want it to, it is a very good
programming technique. As robots are very good at reproducing a position, it is very
precise, and you don't need to do a lot of measurements to make it precise; it needs no
special programming skills, so can be done by someone who knows about the task to be
accomplished and is therefore likely to perform better than could be achieved by a
programmer who wasn't familiar with the requirements.

As against that, there are some less satisfactory features. You can only teach a
specific trajectory; some controllers can accommodate a library of trajectories, and can
select from it according to conditions, but really flexible behaviour can't be learnt by
rote. Even adapting the behaviour in obvious ways to conform to simple sensor input
poses severe problems. It can also be very inconvenient to have to use the robot while
programming; it is a fairly laborious process to teach a complicated trajectory and to
make sure it's right, and taking your robot out of service for that length of time might
have a serious effect on your production schedule. It is also unfortunately true that a
taught programme is not usually transferable to a new robot of the original breaks down
and must be replaced. Even if the two robots are ostensibly identical, the same

773 Robot programming : page 2.

instructions will be unlikely to send them into exactly similar configurations, and if
millimetres are important – which they often are – reprogramming is quite likely to be
necessary.

Nevertheless, when it works, it works well, and it is a widely used technique for
programming industrial robots where the requirement is for precise repetition of tasks
which require complicated movements in space but no, or very few, decisions. This
makes it a suitable technique for activities on assembly lines, which fit those
specification very well, and where, once set up, long production runs can offset the time
lost in programming.

OFF-LINE PROGRAMMING.

Writing a programme for a robot is much the same as writing a programme for a
computer. You can use one of several fairly widely known robot languages of various
sorts (which we shall discuss later), or you can write your programmes in a
conventional language of your choice – nowadays, usually C or C++. If you choose the
conventional language, you have to worry a bit more about getting the instructions to
the robot, but most robot controllers now understand something like the standard MMS
instructions, which they are happy to receive by conventional serial communications, so
the fiddly bits aren't too fiddly.

If you want to use any significant amount of sensory input, programming is almost
inevitable, for at least two reasons. First, the requirement for sensory input implies that
the robot's behaviour is going to be quite variable, so you're unlikely to be able to use
teaching; and, second, there is little or no standardisation in the way you can use sensory
input, so it must all be programmed.

The advantages of off-line programming are fairly obvious. The main advantage is
flexibility; the robot's motion can be made to adapt to circumstances – usually sensor
inputs of one sort or another – comparatively straightforwardly, once the sensor inputs
have been interpreted. A programmed robot at least has a chance of dealing with events
which were not foreseen in detail when it was set up, because the programmes can be
written to manage the robot's action in fairly general ways. The cost of off-line
programming is not great, and production need not be stopped for long periods. Given
the appropriate sensory equipment (which means, approximately, enough to implement
position control), it is also possible to overcome the problems of non-transferability of
programmes from robot to robot; provided that the body of the programme gets the
configuration reasonably close to that required to do the work, final adjustments can
then be made using sensor information as the robot goes about its task.

Disadvantages are also fairly obvious. If you're going to write programmes, you
have to have programmers; the process engineers who are well equipped to teach a robot
are not necessarily equally well equipped to write the programmes, and in any case if
you're going to keep the plant running they'll be busy. A programme does need testing,
and while you can do a certain amount by simulation you will almost certainly have to
carry out the final tests on the plant itself – though this is likely to be less expensive in
time than teaching the same actions. A programme is also more difficult to modify in
case there are small changes to the specification.

WHICH IS BETTER ?

Both are, in their respective spheres. For simple repetitive operations, with limited
variability, it's hard to beat teaching. At the other extreme, if you want complex
behaviour which adapts extensively to circumstances perceived by sensors, you can't
avoid programming.

Having said that, it is fair to add that manufacturing trends are away from very
repetitive production of vast numbers of identical products. Even production lines are
commonly built to incorporate some product variability, and robots which rely on

773 Robot programming : page 3.

teaching might not fit into environments of this sort very well. Perhaps programming is
the answer for the future, but teaching is likely to be with us for a long time yet.

BUT IN THE LONG RUN ?

There are serious concerns that as we require our machines to be more and more
intelligent (whatever we mean by that), and to be able to cope with more and more
diverse circumstances, we shall find ourselves unable to write the programmes. Almost
all industrial robots operate in worlds which are to some extent simplified; they are
comparatively free of extraneous objects, everything that happens is governed by
standard work practices and routines, and there are, on the whole, few surprises. In these
environments, the most sophisticated robots are probably the automatically guided
vehicles used in some plants to move products and equipment around. Advanced
versions are able to find their way around the plant, avoid obvious small stationary
obstacles, and not run over people. And that's about it.

Suppose you want to build a robot which will deliver your completed products to
your customers. It will have to behave sensibly on public roads, understand traffic
regulations (and adapt when they change), avoid idiot pedestrians who run in front of
them, work out when to try another route, answer questions from policemen

How do you write the programme for that ? Do you have to write a separate
procedure to cope with every eventuality ? The sheer volume of code would be
unmanageable. Do you try to programme your robot to behave like a human ? How do
you do that ?

No one knows the answer. There are fairly convincing arguments that it really is
beyond our capabilities; if so, then our best prospect for building such intelligent robots
might be to try to make them in such a way that they can learn, much as we do.

But no one knows how to do that either.

Alan Creak,
April, 1998.

