
Computer Science 773

Robotics and Real-time Control

ROBOT PROGRAMMING LANGUAGES

The software which drives robots is most commonly written in an ordinary programming
language, with C or C++ perhaps the most common. For programming the robots
themselves, though, special languages have met with some acceptance, because the
operations required – particularly the geometry – are sufficiently specialised to make it
worth while. You could, of course, do it in C with a specialised function library, but the
result wouldn't be particularly readable.

However it's done, you want lots of support for data structures and appropriate
operations. I'll discuss some special robot languages, because the discussion brings out
the different levels at which programming can be described and (with a lot more
difficulty) performed, but the same considerations apply to doing it with conventional
languages.

LEVELS OF PROGRAMMING.

Just as you can give instructions to a computer on many levels, using assembly
languages, procedural languages, declarative languages, and so on, so you can express
robot instructions in different ways. Here's a list of five levels of increasing
sophistication and complexity.

Notice that the idea of "level" here is concerned with the level of description of the
process being performed. It isn't the same as the more syntactic notion of level used in
classifying conventional programming languages. There's a sort of correspondence, but
that's accidental so far as I know.

Actuator level Instructions are given in terms of
the motions of the actuators. This
is the equivalent of machine
language; everything has to be
converted into instructions at this
level eventually, but nobody uses
it directly.

Joint level Instructions are given in terms of
joint coordinates. In effect, this is
what you get after solving the
inverse kinematic problem.

Manipulator level Instructions are given in terms of
ordinary spatial coordinates. This
is the lowest level at which you'd
want to write a programme.
Compare it with an assembly
language.

move to (a, b, c);
close gripper;
move to (d, e, f);
open gripper;

Task level Instructions are given in terms of
the job to be done. This is
beginning to get fairly tricky to
implement. Analogous to a
procedural language.

move base to jig;
drill hole in centre;
stand upright on base;
insert screw through

hole in base into
threaded hole in
upright;

773 Robot programming languages : page 2.

Object level No instructions – you describe
the finished product. The system
has to work out the instructions.
Almost impossible, but not quite.
This is a declarative language,
comparable with Prolog.

screw passes through
hole in base into
threaded hole in
upright

SOME EXAMPLES.

Here are some examples of small programmes (or fragments thereof) written in a few
robot programming languages. They are selected mainly to illustrate different approaches
to robot programming, but the selection was biased by the ready availability of examples
in certain languages. Nevertheless, I think this set is fairly representative, except for RSS.

WAVE : 1970 – 1975.

R. Paul : "WAVE : a model based language for manipulator control", The Industrial
Robot, 10 (March 1977).

WAVE's main distinction is its claim to be the first robot programming language. As well
as instructions which move the robot, it provides for force control and input from a vision
system.

WAVE is a manipulator-level language, with provision for a gripper and – perhaps
oddly, in view of its rather low level – force control. Syntactically, it looks rather like a
conventional computer assembly language. Think of it as an assembly language for a
virtual machine with somewhat unusual registers.

EXAMPLE : A portion of a programme to pick up parts from a stack. STACK and
AWAY are the positions of the stack base, and where to put the block; they are set in the
first two (incomplete) instructions of the programme. TOP is also predefined, but not
shown in the programme; it's the displacement of the top of the stack from its base.

TRANS defines a spatial position (on first use with a variable) or
transformation (if used again with the same variable).
TRANS STACK will be followed by six numbers giving a
displacement and orientation.

RESTORE resets the "current transformation" to the value in its argument,
which is a thing called a SAVE cell. A SAVE cell holds a
transformation, initially a null transformation, but resettable
using a SAVE instruction. (I think.) The "current
transformation" is a displacement (compare an index register)
from a base position, so you can easily use local coordinates
for an object in different places.

MOVE moves the robot's hand to the position identified by its
argument as transformed by the current transformation. The
intention is to make it easy to perform the same sequence of
actions in different places without cluttering the code with lots
of necessary but bulky transformations.

CLOSE closes the gripper to the distance given as the argument.

773 Robot programming languages : page 3.

SKIPE skips one instruction if an error is signalled with error number
matching the argument. Presumably CLOSE fails if it succeeds
(if it does close, it signals an error), and only succeeds if it
fails – that is, if the gripper can't close to the distance
specified.

JUMP does.

OPEN opens the gripper to the distance given as the argument.

CHANGE moves the hand. I can't work out from the text just what the
different arguments are. (I think it changes the current
transformation.)

SAVE resets the value of the SAVE cell named. It is cleverer than it
looks : it actually resets the transformation rather than the
absolute position.

Here is the programme :

TRANS STACK ... ; Top of the stack of blocks
TRANS AWAY ... ; Where to go with block

RESTORE TOP ; Move to STACK modified by TOP
MOVE STACK

TEST:
CLOSE 1 ; Pick up block
SKIPE 2 ; Error 2, no block there
JUMP OK ; Error did not occur go to OK
OPEN 5 ; Error did occur, open up again
CHANGE Z,-1,NIL,0,0 ; Move down one inch
SAVE TOP ; Change TOP to get us here
JUMP TEST ; and try again

OK:
MOVE AWAY ; All is well here

773 Robot programming languages : page 4.

EXAMPLE : Compliance.

WAVE will also handle compliance and force control : it has instructions FREE,
SPIN, WOBBLE, and FORCE which, respectively, identify directions and axes of
free translation and rotation, add a dither to the hand's motion so that it can find a
stable position of some sort, and prescribe a force and torque which the hand
should exert in the directions of compliance. The example sets compliance and force
conditions which must be observed while executing the CHANGE instruction.

FREE defines the number of degrees of translational freedom and the
directions of freedom.

FORCE defines a force and torque which must be exerted.

FREE 1,Z ; Comply in the z direction
FORCE FV,NIL ; and exert 50 oz. in the z

direction
CHANGE X,2,NIL,0,0 ; while moving 2 inches in x

RSS : Robot Servo System : ≈ 1979.

C.C. Geschke : "A system for programming and controlling sensor-based manipulators",
IEEE Trans.Pat.Anal.Mach.Int. 5 , 393 (1983).

RSS is interesting in that its instructions aren't simply of the "go to (x, y, z)" pattern,
but rely on servo processes which try to establish relationships between the positions of
things in the system, and to maintain the relationships once established. It also provides
for integration with sensory systems, particularly vision.

It has elements of manipulator level methods – much of the detail is expressed in
quite low-level terms, though extensive use of defined values makes it more readable than
one might expect – but the notion of identifying constraints which the system is then
expected to maintain approaches the object level. Notice too that this implies a
multiprocessing model, as many essentially independent servo processes have to be
maintained simultaneously.

The vision system is separate; it is assumed that it maintains something equivalent to
a world view, which can be interrogated when information is required. In this example,
the vision system knows how to identify bolts and holes, can be instructed to find them,
will return an indication (called flag) when the search is successful or when anything
goes wrong, and can track an object as it moves. It also returns the coordinates of the
objects which it finds.

Anything in the programme beginning with R$ or r$ is a reserved symbol to do
with the position or orientation of the robot hand. The symbols, and some others
associated with the workpiece, are defined in the diagrams below.

773 Robot programming languages : page 5.

EXAMPLE : A programme to put a bolt into a hole.

SERVO turns ON or OFF all the servo functions.

FORCE and
TORQUE

are servo functions which maintain a force or torque at the
robot wrist.

VISION declares that its arguments are functions with values provided
by the vision system. It is the vision system's job to recognise
these objects (the paper doesn't say how, but gives a
reference) and return the coordinates when required.

DEFINE defines a function, the value of which is maintained by the
system as the robot's configuration changes.

LOCATE is an instruction to the vision system to find the argument and
set the value of a variable to its coordinates

ORIENT FIXED defines a servo process which holds the orientation of the two
axes defined at the values defined, thereby fully defining the
orientation. ORIENT by itself defines only one axis, allowing
freedom in other directions.

POSITION
POINT

defines a position servo process.

TRAP deals with error signals.

TRACK instructs the vision system to keep track of the argument and
continually adjust the value to reflect the current position.

POSITION
LINE

defines a servo process which constrains its argument to move
to and along a defined line; this type of process can be used to
control compliant motion.

FORCE is used for force control.

773 Robot programming languages : page 6.

; Bolt insertion routine
; Clifford C. Geschke 9-12-78

servo off
force ZERO
torque ZERO

; Define some functions
vision BOLT, HOLE
define HOLEAXIS = [0,0,1]
define BOLTAXIS = R$FINGER
define BOLTPOS = R$GRIP + 2 * BOLTAXIS
define BOLTGOAL = HOLE + 2 * HOLEAXIS
define ERROR = |(BOLTPOS – HOLE) # HOLEAXIS|
define f = 25

; Tell vision processor to locate HOLE
locate HOLE
wait until flag found HOLE
print HOLE found.

; Move to above estimated hole location
orient fixed BOLTAXIS;R$THUMB = – HOLEAXIS;[-1,0,0]
position point BOLTPOS = BOLTGOAL
servo on
wait until |BOLTPOS – BOLTGOAL ;lss .5;

; Locate and track BOLT
trap 2 to lostit on flag lost BOLT
locate BOLT
wait until flag found BOLT
print BOLT found
track BOLT
define BOLTPOS = BOLT
position line BOLTPOS = HOLE;HOLEAXIS

; Insert BOLT into HOLE
fwait: force ZERO

wait until error ;lss .1
trap 1 to fwait on error ;gtr .1
force f*BOLTAXIS
wait until R$FORCE·BOLTAXIS ;lss –.8*f
print All done!
stop

;
; Error routine if BOLT is lost
lostit: servo off

print Lost BOLT
stop

773 Robot programming languages : page 7.

AUTOPASS : 1977.

L.I. Lieberman, M.A. Wesley : "AUTOPASS : an automatic programming system for
computer controlled mechanical assembly", IBM J.Res.Dev 2 1, 380 (1977).

A high level language for describing assembly operations in terms of the objects for
assembly. An Autopass programme gives a sequence of instructions for assembly, with
descriptions of how the parts are to be fitted together. The compiler is required to work
out the correct sequence of instructions for the robot.

Autopass is clearly a task-level language.

EXAMPLE : assembling a support bracket.

The programme is fairly self-explanatory – though obviously it needs a lot of
declarations and definitions. The support bracket itself is never clearly described in
the reference, but this is my reconstruction :

car-ret-intlk-stud

interlock

bracket

car-ret-tab-nut

fixture

That picture carries no guarantee, but it does make sense of the programme:

1. OPERATE nutfeeder WITH car-ret-tab-nut AT fixture.nest

2. PLACE bracket IN fixture SUCH THAT bracket.bottom CONTACTS
car-ret-tab-nut.top AND bracket.hole IS ALIGNED WITH
fixture.nest

3. PLACE interlock ON bracket SUCH THAT interlock.hole IS
ALIGNED WITH bracket.hole AND interlock.base CONTACTS
bracket.top

4. DRIVE IN car-ret-intlk-stud INTO car-ret-tab-nut AT interlock.hole
SUCH THAT TORQUE IS EQ 12.0 IN-LBS USING air-driver
ATTACHING bracket AND interlock

5. NAME bracket interlock car-ret-intlk-stud car-ret-tab-nut ASSEMBLY
support-bracket

773 Robot programming languages : page 8.

RAPT : 1978.

A.P. Ambler, S.A. Cameron, D.F. Corner : "Augmenting the RAPT robot language",
DAI Research Paper #330, Department of Artificial Intelligence, Edinburgh
University, 1986.

RAPT was originally developed in the style of APT (I have no idea why; someone
suggested to me that it was a bid for respectability), and was intended as a very high-
level language for describing assembly tasks. It gives the same sort of information as
Autopass, but if anything even less about how to do the assembly. In the example, the
only actual instructions are two MOVEs, and the rest is all geometry. It is worth
remarking, though, that the task which the programme accomplishes is trivial.

RAPT is unambiguously aimed at the object level.

EXAMPLE : a simple assembly task.

The plate is to be attached to the block using the peg in the obvious way. Note that I
have drawn the pointers on the diagram (which I have also redrawn, but
reasonably accurately), as they were missing from my copy of the report. I think
they're right.

pegshaft

pegheadleftface

pegheadbottomface

platetopface

platehole

plateleftface

blockleftface

blockfrontface

blocktopface

platebottomface

pa

pb

platebackface

773 Robot programming languages : page 9.

This is what the separate parts look like :

- and here is the RAPT programme :

tied/block, world [this specifies that the block is fixed in the world]

move/plate [this specifies that the plate should be moved]
move/plate, parallelto dir1, 20

[followed by a move of 20 units in the direction dir1]

[The next few lines specify where the plate must be now; RAPT

will use this to compute the two moves described above]

coplanar/ plateleftface, blockleftface

against/ platebottomface, blocktopface

against/ platebackface, blockfrontface

[Now we will specify a similar sequence for the peg]

move/ peg

move/ peg, parallelto dir1, 40

against/ pegheadbottomface, platetopface

coaxial/ pegshaft, platehole

parallel/ pegheadleftface, plateleftface

[now define dir1 as the vector between two points]

dir1 = line/pa,pb

773 Robot programming languages : page 10.

WHAT'S HAPPENING NOW.

So far as I can make out, nobody is pushing very hard at the moment to advance these
rather ambitious languages. There is a feeling that they've gone about as far as they can
go. That's because the sort of structural information that you give in a RAPT programme
is much the same sort of thing as you can get from CAD systems, and to handle anything
but the simplest task by writing painstaking instructions for every step is very hard work.

And they don't help at all when you want to write programmes for advanced robots
which have to deal with arbitrarily complicated contingencies which might occur in
uncontrolled environments. They must necessarily depend heavily on perception of the
world in working out how to achieve goals, and the specialised languages are not
obviously well suited to that sort of activity.

The consequence is that teaching has largely taken over for simple repetitive tasks,
but tasks which are too complicated for teaching are also likely to be too complicated for
the special languages. In fact, programming a robot is not really very like programming a
computer; the environment is far more important. There's no equivalent in conventional
computing to knocking a workpiece off the bench.

Alan Creak,
April, 1998.

